論文 RC 構造物のひび割れ幅変動同定のための実構造物載荷実験

撫養 啓祐^{*1}・国枝 稔^{*2}・西田 信吉^{*3}・中村 光^{*4}

要旨:塗装系の表面被覆材の動的ひび割れ追従性を評価するにあたり、その入力値を明確に する必要がある。本研究では、実構造物のRC床版に生じたひび割れを対象に、既知荷重を RC床版に作用させ、その際のひび割れ幅変動の計測を行い、ひび割れ幅変動に及ぼす荷重、 移動速度の影響を明らかにした。その結果、ひび割れ幅変動の振幅値は、荷重の大きさの違 いの影響を受け、周波数の値は荷重の移動速度に大きく影響されることがわかった。 キーワード:ひび割れ幅変動、RC床版、表面被覆材、ひび割れ追従性試験

1. はじめに

塩害や中性化を防止,抑制するため,外部からの劣化因子に対する保護を目的として,塗装系の表面被覆材(有機系,無機系)が適用される。筆者らは,道路橋のRC床版ひび割れ部では,活荷重の作用により,ひび割れ幅が動的に変動することを明らかにしている¹⁾。一方で,図-1に示すように,表面被覆材の性能評価を行うにあたり,動的なひび割れ追従性の試験方法の開発が急務であるが,その試験条件(ひび割れ幅変動の振幅値や周波数)を設定する必要がある。とりわけ,現状の構造物において,どのようなひび割れ幅変動が生じているのかを計測し,データベース化するなどが考えられる。

動的なひび割れ幅変動の計測事例は少なく, たとえば成瀬ら²⁾は,列車通過時のひび割れの開 閉幅を計測している。その結果,対象とした構 造物の範囲内では,列車通過時にはひび割れ幅 の約 10%程度のひび割れ幅変動となることを明 らかにしている。しかし,その際の列車荷重(軸 重)は 110kN とほぼ一定であることから,一般 道路橋などにおいて起こりうる荷重条件とは大 きく異なっている。筆者らが行った計測³⁾におい ても,Bridge Weigh-in-Motion により,ひび割れ 幅変動と荷重の関係が推定されているが,明確 な荷重条件の下で,動的なひび割れ幅変動と荷 重との関係をキャリブレーションしておくこと は非常に重要である。

本研究では,桟橋における RC 床版に生じたひ び割れを対象に,既知荷重を RC 床版に作用させ, その際のひび割れ幅変動の計測結果から,載荷 荷重やその移動速度の違いが動的ひび割れ幅変 動に及ぼす影響について検討し,表面被覆材の 動的ひび割れ追従性評価を行うための条件設定 のための基礎資料とした。

2. 計測概要

2.1 計測対象

本研究では、A 港にある桟橋の RC 床版(RC 床版厚:300mm,舗装厚:100mm,床版支間長 4.5m)下面に生じた図-2に示されるひび割れを 対象とした。対象としたひび割れの幅は、0.6~ 0.7mm であった。

2.2 計測方法

図-3 に示すようなひび割れの中央部および 端部の計3ヶ所に,ひび割れに直角に検長50mm のパイ型変位計(感度1/2000mm)を取り付け, RC床版上を3軸のトラックをひび割れの長手方

*1	名古屋大学	大学院工学研究科社会基盤工学専攻		(正会員)
*2	名古屋大学	大学院工学研究科社会基盤工学専攻助教授	博士(工)	(正会員)
*3	(株) 港建技	術サービス		
*4	名古屋大学	大学院工学研究科社会基盤工学専攻教授	博士 (工)	(正会員)

図-1 動的ひび割れ追従性の評価方法(イメージ)

向に対して直角に走行させた。トラックの諸元 (軸位置)を図-3に示す。なお、荷重の違いを 検討するため、空車時(100kN)と積載時(300kN) の2種類の載荷条件を選定した。ひび割れ幅変 動の計測時のサンプリング数は100Hzとした。

(1) 動的載荷

動的な載荷での車両進入位置を図-4 に示す。 トラックの車両中心が図-4のA,B,Cの位置 となるように走行させた。なお、トラックの車 幅は 2060mm であり、トラックがA,Cの位置 を走行するときは、片輪がひび割れ上を走行し、 Bの位置を走行するときは、両輪がひび割れ上 を走行する。走行時の移動速度は、100kN、300kN のいずれの荷重についても、それぞれ 20km、 40km、60kmの3種類とした。以上のように、進 入位置の違い(3種類)、移動速度の違い(3種 類)および荷重の違い(2種類)に着目した計 18回の動的なひび割れ幅変動を計測した(表-1 参照)。なお、各ケースにつき、1回の計測を行 った。

(2) 静的載荷

静的な載荷条件での車両進入位置を図-5 に 示す。動的載荷の場合と同様に,図のA,B,C

図-2 計測対象ひび割れ

の位置が車両中心となるように位置を変えて, 静的な載荷試験を行った(**表**-1 参照)。図-5 に示すように,100kN と 300kN について,計測 開始後に車両をゆっくりと進行させ,所定の位 置(i),(ii),(iii)に前輪を停止させた際に計測され たひび割れ幅を,静的載荷におけるひび割れ幅 変動と定義した。以上のように,進入位置の違

表-1 実験因子

	荷重 (kN)	移動速度 (km)	進入位置及 び計測位置	停止位置	
動的	100, 300	20, 40, 60	A - a		
動的 載荷			B - b	—	
戰刑			C - c		
转品			A - a		
 町 町 載 帯			B - b	(1), (11), (iii)	
取何			C - c	(111)	

い(3 種類),停止位置の違い(3 種類)および 荷重の違い(2 種類)に着目した計18回の静的 なひび割れ幅変動を計測した。なお,各ケース につき,1回の計測を行った。

3. 計測結果

3.1 動的載荷

(1) 概要

図-6,7に、動的載荷により計測されたひび 割れ幅変動を示す。なお、ひび割れが現状のま までまったく開口、閉口していなければ、この 値は0を示し、載荷によってひび割れが開口す ればプラス側に開口量が示される。本計測では、 車両が走り出す前に計測を開始し、車両が計測 対象床版を通過するまで計測したが、本図では、 時間軸をシフトして示している。また図中の記 号(例えば、A-a-20km)は、車両進入位置-ひ び割れ計測位置-移動速度となっている。

図より,移動速度や荷重の大きさの違いによ らず,前輪の影響によると思われるひび割れ変 動が計測され,次に後輪の影響と思われるひび 割れ幅変動が生じている。特に,後輪は2軸で あることもひび割れ幅変動の計測結果から確認 できる。これは,道路橋で計測された結果¹⁾とも

図-5 静的載荷での車両進入位置と停止位置

(i)

車輪

(iii)

(ii)

一致している。さらに、図-6、7 より、300kN の場合は、後輪が作用した時の変動幅の方が、 前輪が作用した時のそれよりも大きく、逆に 100kN の場合においては、後輪が作用した時の ひび割れ幅変動の方が、前輪が作用した時のそ れと同程度以下となった。これは、300kN では、 車両後部に土砂を積載したため、後輪による荷 重が前輪のそれに比べて相対的に大きくなった ことと良く対応している。

(2) 荷重の大きさの違いによる影響

300kN と 100kN の場合を比べると, 例えば, 床版中心を走行させた B のケースでは, 図-6, 7 の B-b-40km に示すように, 300kN でのひび割 れ幅変動(後輪による)が 0.007mm 程度である のに対して, 100kN のひび割れ幅変動(後輪に よる)が 0.002mm 程度となっており, 300kN に おけるひび割れ幅変動が, 100kN のそれに比べ て約 3 倍となっている。移動速度が異なる場合 においても, 同様の傾向が伺えることから, ひ

図-6 動的載荷計測波形 (100kN)

び割れ幅変動は,載荷荷重の影響を直接的に受 けることが確認された。

(3) 移動速度の違いによる影響

移動速度が異なる場合の影響に着目すると, 図-6,7より,移動速度が大きくなってもひび 割れ幅変動値の値はほとんど変化しない。しか し,前輪が通過した際に生じる変動(1つ目のピ ーク)と後輪が通過した際に生じる変動(2つ めのピーク)の時間間隔が異なっている。表-2 に,20km,40km,60kmで走行した際の,前輪 のピーク位置と後輪の最初のピーク位置の時間 間隔を示す。これによると20kmで0.5sec,40km で0.3~0.4sec,60kmで0.2secとなっており,移 動速度が速いほど両ピークが発生する時間間隔

表-2 時間間隔

	荷重 (kN)	移動速 度(km)	時間間隔(sec)		
何!			進入位置		
(KI			А	В	С
	100	20	0.5	0.5	0.5
10		40	0.3	0.4	0.3
		60	0.2	0.2	0.2
	300	20	0.5	0.5	0.5
30		40	0.4	0.3	0.3
		60	02	02	02

いや走行位置の違いが時間間隔に及ぼす影響は 小さい結果となった。

(4) 走行位置の違いによる影響

走行位置の違いが,動的ひび割れ幅変動に及 ぼす影響については,床版中央を走行させる B のケースが最も変動幅が大きい結果であった。 端部のひび割れ(a及びc)は桁近くに存在する

図-7 動的載荷計測波形(300kN)

ため、荷重の作用による変形が小さいためと思 われる。すなわち、車両走行位置がひび割れ幅 変動に及ぼす影響が大きいことが推察される。

3.2 静的載荷

静的載荷の計測例を図-8に示す。図中の記号 (例えば, A-a) は、車両進入位置-ひび割れ計 測位置である。図-8の計測波形は、図-5に示 されるように(i)、(ii)、(iii)の各停止位置に順次停 止させた場合のひび割れ幅変動を、継続的に計 測したものであり、図中に示されたフラットな 部分(停止状態)の値が、静的載荷におけるひ び割れ幅変動である。また、(i)の停止位置が前 輪ひび割れ直上に、(ii)の停止位置が後輪ひび割 れ直上に、(iii)の停止位置が完全通過(無荷重) に相当するものである。これらの図より、動的 載荷の場合と同様、300kNの場合のひび割れ幅 変動は、100kN の場合のそれに比べて約3倍程 度であり、また RC 床版中央部に載荷させた場合 の変動幅が最も大きい結果となった。また、動 的載荷と静的載荷のそれぞれのひび割れ幅変動 の値は、前輪による変動、後輪による変動とも に、ほぼ同程度であることが明らかとなった。 一般には、活荷重作用下においては、衝撃によ る影響を考慮する(例えば、衝撃係数)ことに なっているが、本実験の範囲内では、その影響 は認められなかった。

4. まとめ

本研究では、表面被覆材の動的ひび割れ追従 性評価を行うにあたり、その入力値を明確にす るために、実橋梁に生じたひび割れを対象に既 知の荷重、移動速度に対するひび割れ幅変動を

図-8 静的載荷計測波形例

計測した。本研究で得られた結果を以下に示す。

- (1) ひび割れ幅変動の振幅値は、荷重の大きさの影響を受け、周波数は移動速度の影響を 大きく受けることが明らかとなった。また、 振幅値は載荷位置の違いの影響を受けることも明らかとなった。
- (2) 本研究の範囲内では、動的載荷と静的載荷 の違いが、ひび割れ幅変動の振幅値に及ぼ す影響は明確ではなかった。ただし、衝撃 による影響については、その他の条件下に おいてさらに検証する必要がある。

今後は、さらにデータを蓄積し、様々な角度 から表面被覆材の動的ひび割れ追従性評価の条 件設定を行い、動的なひび割れ追従性試験の方 法を確立する予定である。

謝辞

本実験は、(財)港湾空港建設技術サービスセ ンター平成16年度研究開発助成「動的ひび割れ 追従性を考慮した高靭性セメント系表面保護工 の設計方法の確立(代表者:国枝稔)」,ならび に文部科学省平成17年度科学研究費補助金若手 研究(B)「動的ひび割れ幅変動を考慮した表面 被覆材のひび割れ追従性の評価・設計法の確立

(代表者:国枝稔)」の支援により実施されたも のである。また、実験の実施にあたっては、(独) 港湾空港技術研究所 LCM センター長 横田弘博 士に多大なるご協力をいただいた。ここに記し て謝意を表す。

参考文献

- 国枝稔, 撫養啓祐, 中村光: 表面被覆材の動 的ひび割れ追従性評価のための動的ひび割 れ幅変動の計測, コンクリート工学年次論文 集, Vol.27, No.1, pp.1573-1578, 2005
- c) 成瀬雅也,田中宏昌,関雅樹,丹間泰朗:コ ンクリート表面被覆材の長期ひび割れ追従 性試験について,Vol.23, No.1, pp.433-438, 2001
- (1) 撫養啓祐,国枝稔,上田尚史,中村光:動的 ひび割れ追従性評価のためのひび割れ幅変 動と推定活荷重の関係,土木学会第60回年 次学術講演会,5-063, pp.125-126, 2005