論文 圧縮鉄筋の腐食がせん断補強筋のない RC はりのせん断強度に及ぼ す影響

宇田 好一郎^{*1}·川本 卓人^{*2}·出路 康夫^{*3}·佐藤 良一^{*4}

要旨:鉄筋腐食が RC 部材の力学挙動に与える影響を明らかとすることを目的として、本研 究では圧縮鉄筋の腐食の有無に着目した。実験パラメータとしては、圧縮鉄筋の腐食の有無、 鉄筋の腐食レベルを3種と設定し、それらの影響によるせん断補強筋のない RC はりのせん 断耐力を実験的に検討した。その結果、圧縮鉄筋を腐食させたはりには、引張鉄筋のみを腐 食させたはりにみられるせん断耐力の増大はみられず、耐力は同一腐食レベルの比較におい て下回った。圧縮鉄筋に沿った腐食ひび割れによる、圧縮部コンクリートのせん断抵抗面積 の減少が、耐力低下の理由であることを考察した。

キーワード: 圧縮鉄筋, 鉄筋腐食, 腐食ひび割れ, せん断耐力

1. はじめに

鉄筋コンクリート構造物はこれまで数多くが 建造され、わが国の重要な社会資本となってい る。しかし、これらの早期劣化が社会的な問題 となり久しいにもかかわらず、塩害劣化に関す る構造物の性能照査技術は確立されていない。 これまで、鉄筋腐食が RC 部材の付着性能や RC はりの耐力に及ぼす影響に関する研究^{例えば1),2)} が行われている。しかし RC 部材のせん断耐力に, 引張・圧縮・せん断補強鉄筋の腐食が及ぼす影 響をそれぞれ検討した事例は少ない。そこで本 研究では、連続桁で部材下面が圧縮場になる場 合などに考えられる, 圧縮鉄筋に沿った腐食ひ び割れに着目し、その腐食ひび割れの有 無及びひび割れ幅が RC はりの力学挙動 に及ぼす影響を把握することを目的と して、実験的検討を行った。

部材として,比較的腐食程度のコントロールが 容易な電食法により,促進腐食させた RC はりを 用いた載荷試験を行った。実験パラメータは, 1.圧縮鉄筋の腐食の有無,2.腐食レベルとして平 均腐食ひび割れ幅の2種とした。まず圧縮鉄筋 の腐食は,先に述べた鉄筋の腐食劣化が圧縮部 となる場合を想定し,実験においては圧縮鉄筋 と引張鉄筋を電気的に絶縁した上で,圧縮鉄筋 を腐食させる場合はそれぞれの鉄筋に接続され たリード線を外部で電気的に接続し,一方腐食 させない場合は引張鉄筋のみに電流を印加する ことにより圧縮鉄筋の腐食を制御した。

供試体は図-1に示すように、150×330×

2. 実験概要

2.1 供試体概要

本研究の対象である腐食劣化した RC

図-1 RC はり供試体

- *1 広島大学大学院 工学研究科社会環境システム専攻 (正会員)
- *2 広島大学大学院 工学研究科社会環境システム専攻
- *3 国土交通省中国地方整備局 中国技術事務所 調査試験課長

*4 広島大学大学院 工学研究科社会環境システム専攻教授 工博 (正会員)

表-1 コンクリートの示方配合

粗骨材の	スランプ	空気量	水セメ	細骨材率 s/a(%)	示方配合(kg/m ³)				
最大寸法 (mm)	の範囲 (cm)	の軛囲	ント比 W/C(%)		水	セメント	粗骨材	細骨材	混和剤 AE 減水剤
20	10±2	4±1	60	47	175	292	841	962	2. 92

1900mm (幅×高さ×スパン長),有効高さ 272.5mm とした。引張鉄筋端部は90 度折り曲 げ直角フックとし,支点外に補強筋を設置した。 圧縮側に 2-D16 (SD295),引張側に 2-D25

(SD490)を配した複鉄筋断面とし、鉄筋比

(A_s/b_wd)は2.48%で一般に比べ大きいが,こ れはせん断破壊を曲げ破壊に先行させるため である。コンクリートかぶりは,断面横方向に 貫通する腐食ひび割れを導入するために,側面 かぶりを高さ方向のかぶりよりも小さくした。

使用するコンクリートは水セメント比 60%,細骨材率は47%である(表-1)。使 用した鉄筋の公称径及び強度試験結果を表 -2に示す。打設後,28日間養生を行ったコ ンクリート試験体(標準養生を含む)及び載 荷時材齢(81日)における試験体の材料特性 を表-3に示す。材齢28日で圧縮強度は 35N/mm²程度であり,81日では44N/mm²と 増加している。これは,塩水中に浸漬されて いたために水和反応が進んだものと考えられる。

2.2 電食試験

はり供試体はコンクリート打設後28日間,屋 内にて水分を十分に含んだ新聞紙とラップフィ ルムで供試体を密封し,湿潤養生を行った。そ の後,電食中の腐食ひび割れの拡大を把握する ために,引張鉄筋及び圧縮鉄筋位置コンクリー ト表面に基長40mmでコンタクトチップを添付 した。その際,水中での劣化・脱落を防ぐため に,エポキシ樹脂,シリコンシーリング剤によ り防水加工した。

供試体は海水相当 3%NaCl 水溶液に約 1 週間 浸漬した。電食試験時の電気的接続のため,鉄 筋組立時に腐食対象鉄筋端部にリード線をはん だづけした。またその接続部に水分が浸入する ことによる,局所的な劣化を避けるために,ブ

表-2 鉄筋の材料特性

使用用途	呼び名	規格	降伏強度	静弾性係数
引張鉄筋	D25	SD490	554. 1	187399
圧縮鉄筋	D16	SD295A	336.4	184384
横補強筋	D10	SD295A	321.7	178887

単位:N/mm²

表-3 コンクリートの材料特性

材齢	圧縮強度	静弾性係数	引張強度	養生方法
28日	35.5	33036	3.02	標準養生(20℃水中)
28日	34.7	31538	2.91	湿潤養生(はりと同様)
81日	43.9	32696	3.23	28日湿潤その後塩水浸漬

単位:N/mm²

チルゴム,エポキシ樹脂及びアクリル樹脂により,防水コーティングを行った。

促進腐食電流は図-2に示されるように,直 流安定化電源装置を用いて,供試体内部鉄筋(陽 極)と供試体下面,両側面にそれぞれ設置され た鋼板(陰極)の間に,腐食電流密度100μA/cm² 相当の一定電流を強制的に印加した。また,試 験中はコンタクトゲージにより測定区間の変位 を一定期間毎に測定した。

電食試験にて与える実際の腐食電流密度は, 自然状態での $0.1 \sim 1.0 \mu \text{ A/cm}^2$ 程度³⁾,厳しい腐 食環境下での $10 \mu / \text{cm}^2$ 程度⁴⁾に比べて, 10 倍程 度と比較的自然状態に近い促進速度といえる。

2.3 載荷試験

載荷方法は、はりスパン 1900mm のうちせん 断スパンを 800mm (せん断スパン比 2.94),残り 300mm を等曲げモーメント区間とする 2 点集中 荷重の単調載荷とした。試験中は、荷重、はり 中央のたわみを、それぞれロードセル、高感度 変位計(精度1/1000mm)により測定した。また 一定荷重毎に、ロゼット法を参考に、コンタク トチップを用いた測定長100mmのロゼットを、 はり高さ中央位置を中心としてはり軸方向に複 数設置し、コンタクトゲージで測定されたそれ ぞれの変位から、各ロゼットの主ひずみを算出 した。さらにその最大主ひずみに測定基長をか け、斜めひび割れ幅とした。

載荷試験後はひび割れ状況の確認の後,供試体のコンクリートをはつり,腐食鉄筋を取り出した。取り出した腐食鉄筋は約3日間,常温の10%クエン酸二アンモニウム水溶液に浸漬し, ナイロン製のブラシにより腐食生成物を丁寧に除去した。その後一定長さに切断し,正確な長さと重量を測定した後,同様に処理した健全鉄筋の長さあたりの重量と比較し,腐食重量減少率を算出した。また測定後の鉄筋は引張試験を行い,健全鉄筋を含めたそれぞれの降伏荷重を比較することにより,降伏荷重低下率を算出した。本研究では,腐食重量減少率と降伏荷重低下率あわせて2種の腐食度を指標とした。

3. 実験結果

3.1 腐食ひび割れの進展

電食試験による平均腐食ひび割れ幅の変化を 図-3に示す。ここでNNは圧縮鉄筋を腐食させ ないシリーズ,NCは圧縮鉄筋を腐食させるシリ ーズを表す。また数字は腐食レベルを、つまり1 はひび割れ幅0.3mm程度,2は0.6mm程度を表し ている。平均腐食ひび割れ幅は、供試体側面の支 点、載荷点、せん断スパン中央の計12か所にお ける軸方向鉄筋の腐食ひび割れ幅の平均とした。

電流印加開始から 10 日程度は,腐食反応に伴 う気泡以外に測定値,目視においても大きな変化 は認められなかった。その後,供試体表面での腐 食生成物の溶出とともに,引張鉄筋に沿った腐食 ひび割れが確認された。ひび割れ発生直後は,10 日間で 0.2mm 程度の速度でほぼ線形的に拡大し,

20~30日で0.3mmに, 30~60日で0.6mmに到達 した。ひび割れ幅0.2mm以降は,開口速度は若干 緩やかとなるものの,巨視的には線形的に増加し ているといえる。一方圧縮鉄筋に沿ったひび割れ は,引張鉄筋に遅れて発生し急激に開口が進んだ。 圧縮鉄筋のコンクリートかぶりが,引張鉄筋のそ れに比べ大きいためにひび割れ発生が遅れたが, 発生後はひび割れを通じて電流が流れやすくな ったために,その後のひび割れ開口は急激に進展 したものと考えられる。このとき NN2 は電流印加 から線形的に拡大しているわけではなく,他に比 べて測定期間間隔が長く,ひび割れ発生前後の測 点が少ないためそのように見えるものである。

図-4に平均腐食ひび割れ幅と腐食度との関係を示す。ここで腐食度は、載荷試験後に取り 出された鉄筋の重量減少率である。圧縮鉄筋の 腐食の有無どちらの場合も、ひび割れ幅と腐食 度はほぼ線形関係となっている。これはひび割 れ幅が腐食生成物の膨張に依存する、つまり腐 食生成物の量と関係が深いことからも妥当な結 果といえる。しかし、圧縮鉄筋を腐食させるは りは、腐食ひび割れの開口に必要な腐食生成物 が、圧縮鉄筋を腐食させないはりに比べて多い 結果となった。これは引張鉄筋と圧縮鉄筋を同 時に腐食させるために、それら鉄筋の腐食特性 が相互に影響を及ぼしているものと考えられる が、現時点では解明には至っておらず、今後の 検討課題である。

	腐食度(%)			平均腐食		せん断耐力時の荷重(計算)				
供試体 名	圧縮鉄筋		引張鉄筋		ひひ割れ幅 (mm)		断面減少	断面減少	最大荷重 (実験値)	破壊形態
	重量	降伏	重量	降伏	圧縮	引張	考慮せず	考慮		
NN0			0.0%	0.0%		0.000	108.1	108.1 (1.00)	176.3 (1.00)	せん断圧縮破壊
NN1			0.4%	0.7%		0.242	108.1	107.8 (1.00)	215.7 (1.22)	せん断圧縮破壊
NN2			0.8%	1.2%		0.548	108.1	107.6 (1.00)	259.2 (1.47)	曲げ圧縮定着同時破壊
NC0	0.0%	0.0%	0.0%	0.0%	0.000	0.000	108.1	108.1 (1.00)	144.2 (1.00)	斜め引張破壊
NC1	2.5%	2.5%	2.2%	2.0%	0.199	0.279	108.1	107.4 (0.99)	127.4 (0.88)	斜め引張破壊
NC2	7.2%	12.0%	3.4%	3.6%	0.621	0.622	108.1	106.8 (0.99)	155.0 (1.07)	せん断圧縮破壊

表-4 供試体試験結果一覧

重量:重量減少率 降伏:降伏荷重低下率 括弧内の数値は健全の場合に対する割合を示す 単位:kN

3.2 載荷試験結果

載荷試験結果を鉄筋の腐食度,腐食ひび割れ 幅と合わせて表-4に示す。表中のせん断耐力 時荷重は,土木学会の示方書式⁵⁾に実験時の材料 特性値と鉄筋の断面減少を考慮して計算したも のである。断面減少が数%であるものも,耐力 計算値では最大 1%程度しかその影響をとらえ られず,付着劣化による斜めひび割れ性状の変 化が大きく影響しているものと考えられる。

図-5に荷重-たわみ関係を示す。圧縮鉄筋を 腐食させないはりでは、既往の研究²⁾と同様に、 腐食の進行とともに耐力は増大した。一方圧縮 鉄筋を腐食させたはりは、それぞれ同程度の腐 食ひび割れを有する圧縮鉄筋を腐食させないは りに比べ、耐力が低下する結果となった。

図-6に斜めひび割れ発生荷重と平均腐食ひ び割れ幅の関係を示す。こちらも同様に,圧縮 鉄筋が健全なはりは,腐食の進行とともに斜め ひび割れ発生荷重が増大した。この際,0.6mm クラスのひび割れ幅を有する NN2 は,斜めひび 割れが発生せず,曲げ圧縮定着同時破壊となっ たため,定着破壊時の荷重とした。一方圧縮鉄 筋を腐食させるはりは,徐々にではあるが,腐 食進行に伴い斜めひび割れ発生荷重が低下した。

次に腐食させたはりと健全なはりの斜めひび 割れ発生荷重比を,上縁かぶりコンクリートを 割裂するひび割れに対する健全コンクリート幅 の残存率と関連づけて,図-7に示す。ここで の腐食ひび割れの進展が,最終的に圧縮縁コン クリートとの一体性を奪い,せん断力に抵抗す

図-5 荷重-たわみ関係

る面積を減少させ、斜めひび割れ発生荷重の低 下を招いたと考えられる。本研究の範囲におい て、側面かぶりに存在するひび割れのみでは、 荷重の低下は見られなかった。

図-8に供試体解体時の圧縮鉄筋の状況を示 す。この写真は圧縮部コンクリートを慎重に取 り除き,撮影したものである。左上は圧縮鉄筋 を腐食させないはりの圧縮鉄筋周辺である。右

上は圧縮鉄筋を腐食させるはり NC1 であり,か ぶり位置には腐食生成物が確認できるが,鉄筋 のあき部分にはみられなかった。一方右下 NC2 は,全体的に腐食が進んでいることが確認でき, これらの違いが耐力低下の一因を圧縮鉄筋の腐 食ひび割れ性状と考える理由である。

ひび割れ状況を図-9に示す。点線は腐食, 実線は載荷によるひび割れを示しており,太線 は破壊に至った主要なひび割れである。腐食ひ び割れは,腐食対象鉄筋周辺の供試体表面にあ らわれ,どの供試体もほぼ同じ分布であった。

圧縮鉄筋が健全なはりは、腐食進行に伴い載 荷ひび割れがはり中央によった。これに伴いせ ん断区間コンクリートがアーチリブを形成し、 耐力が増加したと考えられる。また腐食が激し い NN2 は,圧壊と同時に定着部が破壊するなど、 付着劣化の程度と定着状態によっては、直角フ

図-8 圧縮鉄筋の腐食状況

ックでも定着破壊が起こる可能性がある。

圧縮鉄筋を腐食させたはりもひび割れは中央 によったが,破壊に至った主要な斜めひび割れ はほぼ同じ位置に現れ,すべてせん断破壊であ った。圧縮鉄筋を腐食させたはりは共通して,

図-9 腐食及び載荷によるひび割れ分布(点線:腐食ひび割れ,実線:載荷ひび割れ)

斜めひび割れが圧縮鉄筋のひび割れに到達した 時点で、荷重が大きく低下した。しかし、NC2 は腐食ひび割れが斜めひび割れを等曲げ区間に 誘導し、アーチ的耐荷機構により荷重が増加し た。載荷点外の圧縮縁を斜めひび割れが突き抜 け、終局に至った(図-10)。これらは前述した ように、圧縮鉄筋に沿った腐食ひび割れ性状が 破壊形態に影響を及ぼした結果と考えられる。

載荷に伴う斜めひび割れ幅の変化を図-11 に 示す。斜めひび割れ発生以降は荷重増加に伴い 斜めひび割れ幅は増加するが,圧縮鉄筋を腐食 させないはりでは,鉄筋の腐食劣化に伴い斜め ひび割れ幅が小さくなる傾向が認められた。こ れは引張鉄筋の付着劣化のため,斜めひび割れ がスパン中央により,せん断に比べ曲げが卓越 することによると考えられる。一方圧縮鉄筋を 腐食させるはりは,ほぼ同じ荷重で斜めひび割 れが入った後,大きく荷重低下するとともに, ひび割れ幅が急激に拡大したが,その値はほぼ 同じで,その後アーチ的耐荷機構に移行した NC2 が NC1 に比べ小さなひび割れ幅となった。

4. 結論

圧縮鉄筋の腐食に着目した RC はりの載荷試 験結果から得られた結論を以下に述べる。

- 圧縮鉄筋が健全な場合,斜めひび割れが腐食 進行に伴いはり中央よりに発生し,アーチ的 耐荷機構により耐力は増加した。一方,圧縮 鉄筋に沿ったひび割れがある場合,斜めひび 割れは局所化するもののほぼ同じ位置に発 生し,圧縮鉄筋が健全な場合の同一腐食レベ ルのはりに比べて,耐力が大きく低下した。
- E縮鉄筋に沿った腐食ひび割れがある場合の耐力低下は、圧縮鉄筋あき部分を貫通する ひび割れによる、せん断力に抵抗する圧縮部 コンクリートの断面積が減ることに依存す ると考えられる。

参考文献

1) Rodriguez, J. et al.: Load Carrying Capacity of

図-10 斜めひび割れの進展(NC2)

図-11 載荷に伴う斜めひび割れ幅の変化

ConcreteStructureswithCorrodedReinforcement,ConstructionandBuildingMaterials, Vol.11, No.4, pp.239-248, Jun. 1997

- 2) 松尾豊史ほか:鉄筋腐食した RC はり部材 のせん断耐荷機構に関する研究、コンクリ ート工学論文集, Vol.15, No.2, pp.69-77, 2004.5
- Andrade, C. et al.: On-site measurements of corrosion rate of reinforcements, Construction and Building Materials, Vol.15, No.2-3, pp.141-145, Mar./Apr. 2001
- Rodriguez, J. et al.: On site corrosion rate measurements in concrete structures using a device developed under the Eureka project EU-401.Int.,Conference on Concrete across Borders, Vol.1, pp.215-226, Odense, Denmark, Jun. 1994
- 5) 土木学会:コンクリート標準示方書[構造性 能照査編], 2002.3