論文 H 型鉄骨を内蔵した CES 柱の構造特性

田口 孝^{*1}·永田 諭^{*2}·松井 智哉^{*3}·倉本 洋^{*4}

要旨:H型鉄骨を内蔵した CES 柱のコンクリートの一体性が構造特性に及ぼす影響を明らか にすることを目的として,繊維補強コンクリートによる一体打ち CES 柱および外殻に PCa 繊維補強コンクリートパネルを用いた CES 柱の曲げせん断実験を実施し,比較検討した。 その結果,両試験体とも安定した履歴特性を示すことが確認された。一方,一体打ち CES 柱は PCa-CES 柱に比して初期剛性が増加する等,両試験体に差異があることも確認された。 キーワード:鉄骨コンクリート構造,繊維補強コンクリート,一体性,構造実験,柱試験体

1. はじめに

鉄骨鉄筋コンクリート構造は優れた構造シス テムであるが、その反面、鉄骨・鉄筋工事の必 要性、コスト増加、鉄筋・鉄骨配置に要するス ペースの確保等に問題が残る。そこで筆者らは、 鉄骨とコンクリートのみからなる合成構造 (CES構造: Concrete Encased Steel)に関する研 究を継続的に行ってきた^{1)~5)}。これまでの研究 では、体積混入率 2.0%の繊維補強コンクリート

を用いることで安定した履歴特性を示すことは 確認されたが、施工性に若干の課題を残した³⁾。 そのため、PCa繊維補強モルタルパネル、およ びPCa繊維補強コンクリートパネルで内蔵鉄骨 を囲み、その中に普通コンクリートを打設する こととした。これによって、安定した履歴特性 を示すとともに、施工性の問題は解消されたが、 PCaパネル部分と内部コンクリートの一体性に ついて問題点が残った^{4),5)}。

本研究では、PCaパネル部分と内部コンクリ ートの一体性の改善を図るとともに、一体打ち CES 柱 (CES-U)、外殻 PCa パネル使用の PCa-CES 柱 (CES-S)の違いが構造特性にどの ような影響を及ぼすかについて比較・検討する ことを目的して、曲げせん断実験を行った。

2. 実験概要

2.1 試験体

試験体形状および寸法を図-1 に示す。試験 体の柱部分は、断面が b×D=400mm×400mm, 内法高さ h=1,600mm(せん断スパン比 M/QD=2) である。内蔵鉄骨には、H-300×220×10×15の H 形鋼を用いた。試験体は 2 体とし、繊維補強

*1 矢作建設工業(株) 建築技術部 課長 博士(工学) (正会員)
*2 豊橋技術科学大学大学院 工学研究科建設工学専攻 (正会員)
*3 豊橋技術科学大学 工学部建設工学系 助手 博士(工学) (正会員)
*4 豊橋技術科学大学 工学部建設工学系 助教授 博士(工学) (正会員)

コンクリート(FRC)による一体打ち CES 柱 (CES-U)と、外殻に PCa 繊維補強コンクリー トパネルを用い、内部に普通コンクリート(NC) を打設した CES 柱(CES-S)を製作した。CES-S 試験体は、PCa パネル間の接合部および上下ス タブとの接合部をエポキシ系接着剤で接着する とともに、PCa パネル内部にスタッドボルトを 取り付けることで内部の普通コンクリートとの 一体性を高めるようにした。

2.2 使用材料

繊維補強コンクリートに使用した繊維は、繊 維直径 0.66mm、長さ 30mm のビニロンファイ バー(RF4000)であり、一体打ち、PCaパネル ともに体積混入率で 1.5%とした。表-1に使用 した繊維補強コンクリートの調合表を示す。ま た、表-2にコンクリートの、表-3に鉄骨の 材料特性を示す。

2.3 載荷方法

載荷は図-2に示す載荷装置を用いて正負交 番逆対称曲げせん断加力を行った。実験は図-2に示すように、2本の軸力用ジャッキにより 軸力比 ($N/(bD \sigma_B)$) で 0.3 に相当する一定圧縮 軸力 (CES-U試験体: 1,600kN, CES-S試験体: 1,500kN) を負荷した後、水平力ジャッキにより 変位制御による繰り返し漸増水平力を載荷した。 載荷プログラムは図-3に示すように、柱上下 端の相対水平変位 δ と柱長さhで与えられる相 対部材角 ($R = \delta/h$) で、0.005、0.01、0.015、0.02、 0.03, 0.04rad.を 2 サイクルづつ繰り返した後,0.05rad.まで一方向載荷するように設定した。

3. 実験結果と考察

3.1 ひび割れおよび破壊状況

各試験体の*R*=0.01rad., *R*=0.02rad.におけるひ び割れ状況および *R*=0.05rad.の最終破壊状況を **写真-1**に示す。

CES-U 試験体では, *R*=0.005rad.で柱頭・柱脚 部の引張側で, スタブと柱の境界部にひび割れ が発生し, 同時に柱頭・柱脚部近辺に曲げひび 割れが発生した。*R*=0.01rad.では曲げひび割れが

表-1 繊維補強コンクリート調合表

試験体名	水セメント比 <i>W/C</i> (%)	繊維混入率 vol. (%)	所要量				
			水	セメント	細骨材	粗骨材	繊維
			W(kg)	C(kg)	S(kg)	A (kg)	$V_f(kg)$
CES-U	60.0	1.5	182	300	1051	525	19.5
CES-S	53.0	1.5	182	343	1282	536	19.5

表-2 コンクリート材料試験結果

試験体名	種類	圧縮強度 σ_B (N/mm ²)	材齢	
CES-U	FRC	33.5	71	
CEC C	FRC	37.0	77	
CES-5	NC	25.3	45	

FRC:繊維補強コンクリート,NC:普通コンクリート

表-3 鉄骨材料試験結果

	鋼種	降伏点 σ _y (N/mm ²)	引張強度 σ _U (N/mm ²)	部位
H-300×220	55400	288.6	450.5	フランジ
imes 10 imes 15	55400	298.8	454.9	ウエブ

進行するとともに, 柱頭・柱脚部にせん断ひび 割れが発生し, 圧縮破壊によるひび割れも確認 された。その後, 変形角の増加に伴い曲げひび 割れ, せん断ひび割れが増加し, 特に圧縮破壊 が進行して最終状態を迎えた。

CES-S 試験体では, R=0.005rad.で柱頭・柱脚 部の引張側でスタブと柱の境界部 (PCa パネル の境界)の接着面が剥離し始め, 第2 サイクル 目終了時には、この剥離が全周に渡って確認さ れた。R=0.01rad.には、PCa パネルの柱頭・柱脚 部で圧縮破壊によるひび割れが発生し,さらに, PCa パネルどうしの接着面でもひび割れが発生 した。R=0.015rad.に達すると柱頭・柱脚部の圧 縮破壊が進行し、PCa パネル表面が剥離する現 象が見られた。さらに、R=-0.03rad.に達すると、 PCa パネルどうしの接着面のひび割れが進行し て柱頭部から柱脚部まで完全に繋がった。 R=-0.04rad.に達すると、その接着面のひび割れ 幅が進行するとともに、柱頭・柱脚部の PCa パ ネル表面はほとんど剥離した。しかし, R=0.05rad.まで PCa パネル中央部ではひび割れ は確認できなかった。

クラックスケールにより測定した,各部材角 Rの第1サイクル除荷時の最大残留せん断ひび 割れ幅を図-4に示す。

この結果, CES-U 試験体は CES-S 試験体に比 べて R=0.02rad.以降, せん断ひび割れ幅が増加 する傾向にあることが確認された。また、ここ では示していないが、CES-U 試験体は部材角 R の進行とともに徐々に曲げひび割れ幅が進行す る結果が得られ, CES-S 試験体ではスタブと柱 の境界部(PCa パネル境界部)の接着面が目開 きすることによって曲げ変形が発生する結果が 得られている。従って、両試験体のひび割れ幅 の差異は、PCa パネル使用の有無によるものと 推測される。すなわち, CES-U 試験体は一体化 されているために, 柱にせん断ひび割れ, 曲げ ひび割れが発生するのに対し、CES-S 試験体は PCa パネルを使用していることにより、スタブ と柱の境界部に変形や損傷が集中することによ って他の箇所でひび割れが低減し、特に曲げひ び割れはほとんど発生しないものと考察される。

図-4 最大残留せん断ひび割れ幅

R=0.01rad.

R=0.02rad. CES-U

R=0.02rad.

CES-S

R=0.05rad.

写真-1 ひび割れおよび破壊状況

3.2 水平荷重一水平変形関係

実験結果における水平荷重-水平変形関係を **表-4**, 図-5に示す。なお, 図中の●は内蔵 鉄骨の柱頭および柱脚部に貼付した歪ゲージの いずれか一つが最初に降伏歪に達した点を, ▲ は最大耐力点を示している。また, 図中の一点 鎖線は*P*-δ効果を考慮した累加強度理論⁶⁾ に よる終局強度を示している。

CES-U 試験体は, 鉄骨が降伏するまで弾性的 な挙動を示し, 正載荷時 *R*=0.0126rad.で, 負載 荷時 *R*=-0.0138rad.で最大耐力に達した後, 耐力 は低下する傾向が確認された。ただし, *R*=± 0.015rad.から *R*=±0.04rad.の間は, 顕著な耐力低 下は見られず, *R*=0.05rad.で耐力低下が見られた。

CES-S 試験体は CES-U 試験体と比べ, 鉄骨降 伏の発生した変形角はほぼ同様であるのに対し, 最大耐力の発生した変形角は, 正載荷時 *R*=0.0252rad., 負載荷時 *R*=-0.0203rad.と大きな 変形量を示した。また,最大耐力発生後も *R*= ±0.04rad.まで顕著な耐力低下は見られなかっ た。しかし, *R*=0.05rad.では, CES-U 試験体と 同様に若干の耐力低下が見られた。

図-6には両試験体の水平荷重-水平変形関係の包絡線を比較したものを示している。

いずれの試験体も鉄骨の降伏が発生する(R= 0.006rad.程度)までは剛性低下は少なく,弾性 的な挙動を示している。しかし,CES-U試験体 では,CES-S試験体と比較して,若干高い初期 剛性を示した。また,CES-U試験体では,最大 耐力発生(R=0.0126rad.)後,耐力低下が確認さ れるが,その後は,CES-S 試験体と同様に R=0.04rad.まで大きな耐力低下は見られない。

CES-U 試験体が若干高い初期剛性を示した 理由としては, CES-U 試験体は一体打ちである ため, 柱部分とスタブのコンクリートに一体性 があり, さらに繊維補強コンクリートを用いて いるため, その引張剛性が初期剛性の増加に寄 与しているものと考察される。また, 最大耐力 時には, この繊維補強コンクリートの引張耐力 も累加されているが, 図-4に示されるひび割

表-4 実験結果

⇒+ €> /+-	載荷	部材陶	锋伏時	最大耐力時		
武职14	方向	Ry (rad.)	Py (kN)	Rmax (rad.)	Pmax (kN)	
CES-U	正	0.0062	591.9	0.0126	734.4	
	負	-0.0078	-647.4	-0.0138	-704.4	
CES-S	E	0.0063	546.1	0.0252	732.2	
	負	-0.0051	-519.1	-0.0203	-723.9	

れ幅が増加し始めた変位に耐力低下が発生した 変位が一致することからも,損傷が増加すると, この引張耐力が無くなることによって耐力低下 が発生したものと考えられる。ただし,最大耐 力発生後は,繊維補強コンクリートの引張耐力 分は低下しても,鉄骨の拘束効果等は低下しな いことから,急激な耐力低下は見られず,安定 した挙動を示したものと考察される。一方, CES-S 試験体は PCa パネル境界部で初期の段階 から接着面が剥離するため, CES-U 試験体に比 べて剛性が小さいものと考えられる。また, 3.1 節でも見られたように, 外殻 PCa パネルの損傷 が少ないことからも, 曲げ応力状態にある柱断 面内の圧縮領域において, 損傷による圧縮面積 の変化が少ないために曲げ耐力低下がほとんど 無く,優れた靭性性能を示すものと考えられる。 ただし, 大変形時 (*R*=0.05rad.) になると, 外殻 PCa パネルが剥離することによって, 耐力が低 下するものと考えられる。

3.3 軸変形一水平変形関係

軸変形-水平変形の関係を図-7に示す。

CES-U 試験体は, *R*=0.015rad.まで, すなわち 最大耐力が発生するまでは, 一様な軸変形を繰 り返すが, その後, 繰返し載荷を行うごとに圧 縮変形が進行し, *R*=-0.04rad.の第2 サイクル目 では, 6.8mm まで圧縮変形が増加していた。

CES-S 試験体は, *R*=0.02rad.まで, すなわち CES-U 試験体と同様に最大耐力が発生するま では, 一様な軸変形を繰り返し, その後, 繰返 し載荷を行うごとに圧縮変形が増加している。 ただし, CES-U 試験体ほどの圧縮変形は発生し ておらず, *R*=-0.04rad.の第2 サイクル目の段階 で, 3.0mm であった。

CES-U試験体とCES-S試験体の軸変形挙動に 差異が発生した理由としては、3.1節、3.2節で も示したように、一体打ちのCES-U試験体では コンクリートが圧縮縁から順次損傷し、特に圧 縮側の破壊が進行することで圧縮変形が進行す るのに対し、CES-S試験体は外殻 PCa パネルの 損傷が少なく、外殻 PCa パネルでかなりの圧縮 力を負担し、コア部分のコンクリートと鉄骨の 圧縮歪みの進行が緩和されるため、圧縮変形の 進行が CES-U 試験体に比して遅延したものと考 えられる。

3.4 鉄骨の応力状態

内蔵鉄骨フランジの応力状態を図-8に示す。 応力の計算は,鉄骨に貼付した歪ゲージの値お よび材料試験結果を用いて,鋼材の応力-歪関 係を完全バイリニアにモデル化して換算した。

この結果,小変形時(*R*=0.005rad.)を比較す ると,CES-S 試験体ではスタブと PCa パネル境 界部の応力が最も大きく,柱の中央部に向かっ て直線的に応力が減少しているのに対し, CES-U 試験体では,最大値の発生箇所は同じで あるが,その内側の応力も大きくなっているこ とが分かる。このことから,両試験体の内蔵鉄 骨に発生する応力状態には差異があることが分 かる。これは,CES-S 試験体ではスタブと PCa パネル境界部のみに多くの変形が集中するのに 対し,CES-U 試験体では曲げひび割れの発生す る,スタブから少し離れた部分まで変形してい

るためと考えられる。ただし、変形が大きくな るにつれ、両試験体ともほぼ同様な応力状態に なることが分かる。

3.5 等価減衰定数

実験結果から得られた等価粘性減衰定数を図 -9に示す。ここで、図中の()内の数字は、 第1サイクル目、第2サイクル目を表しており、 正載荷、負載荷の平均値で表している。

CES-U 試験体, CES-S 試験体ともほぼ同様な 結果を示し,変形が進むほど増加する傾向が見 られた。また,両者を比較すると CES-U 試験体 の方が,わずかであるが大きな値を示している ことが分かる。これは,3.1 節のひび割れ状況 からも分かるように,CES-U 試験体の方が,損 傷が大きく発生することによって,より多くの エネルギーを吸収しているためと考察される。

3.6 曲率分布状況

実験結果から得られた鉄骨の正載荷時の曲率 分布状況を図-10に示す。ここで、曲率の計算 は図-1の曲率検長用の変位値を用いた。

CES-U 試験体, CES-S 試験体ともほぼ同様な 傾向を示し, 柱頭・柱脚部近傍での変形が大き いことが分かる。従って, 試験体の変形はほと んど柱頭・柱脚部近傍で発生しているものと言 える。また, 試験体の違いによる差異もほとん ど見られないことから, 曲率分布に関しては試 験体の違いによる影響はほとんど無いものと考 察される。

4. まとめ

本研究では、H型鉄骨を内蔵した CES 柱について曲げせん断加力実験を実施し、特に一体打ち CES 柱と外殻 PCa パネル使用の CES 柱の違いが構造特性にどのような影響を及ぼすかについて比較・検討を行った。

実験の結果,両試験体とも良好な履歴特性を 示したが,一体打ち CES 柱は,PCa-CES 柱に比 して,大きなひび割れが発生するとともに,最 大耐力後に若干の耐力低下が発生することが確 認された。また,初期剛性や内蔵鉄骨の発生応 力にも差異があることが分かった。

試験体位置(mm) 1600 -1200-▲ R=0.01 800 400--10 -5 0 10 ×10⁻⁵曲率(1/mm) CES-U 試験体位置(mm) 1600 -1-200 _____ R=0. 01 -800 400--10 -5 0 5 10 ×10⁻⁵ 曲率(1/mm) CES-S 図-10 曲率分布状況

謝辞

本研究は建築研究開発コンソーシアムの共同研究「鉄骨コン クリート構造システムに関する研究開発」(委員長:倉本洋・ 豊橋技術科学大学助教授)の一環として実施されたものであ る。ここに記して関係各位に謝意を表する。

参考文献

- 1)高橋宏行,前田匡樹,倉本洋:高靱性型セメント系材料を用いた鉄骨コンクリート構造柱の復元力特性に関する実験的研究,コンクリート工学年次論文集, Vol.21, No.3, pp.1075-1080, 2000.7
- 2)足立智弘, 倉本洋, 川崎清彦: 繊維補強コンクリートを用いた鉄骨コンクリート合成構造柱の構造性能に関する実験的研究, コンクリート工学年次論文集, Vol23, No.2, pp.271-276, 2002.7
- 3)足立智弘, 倉本洋, 川崎清彦, 柴山豊: 高軸力を受ける繊維 補強コンクリートー鋼合成構造の構造性能に関する研究, コ ンクリート工学年次論文集, vol.25, No.2, pp289-294, 2003.7
- 4)柴山豊,倉本洋,川崎清彦,Fauzan:繊維補強モルタルパネ ルで被覆した CES 構造柱の構造性能に関する研究,コンク リート工学年次論文集, Vol26, No2, pp157-162, 2004.7
- 5)柴山豊, 倉本洋, 永田諭, 川崎清彦: 繊維補強コンクリート パネルで被覆した鉄骨コンクリート柱の復元力特性に関す る研究, Vol27, No2, pp241-246, 2005.7
- 6)日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説, 1987