論文 プレキャストコンクリートブロックと FRP ブロックを併用する 増設耐震壁工法の開発

栗田 康平^{*1}· 增田 安彦^{*1}· 木村 耕三^{*1}· 萩尾 浩也^{*1}

要旨:プレキャストコンクリートブロックを用いる増設耐震壁に,RC規準で定められた開 口周比よりも大きな開口を設けるため,採光が可能なFRPブロックを開口部に組積した複合 型耐震壁を開発した。実験には,FRPブロックの組積面積と,FRP壁厚さを実験変数とした 一層壁せん断試験体を用いた。その結果,FRP壁の厚さにより異なる破壊性状が生じる事, 終局耐力は,各構成要素の耐力の累加で評価できる事が明らかとなった。 キーワード:耐震補強,耐震壁,鉄筋コンクリート,プレキャストブロック,FRPブロック

1. はじめに

近年の耐震補強工事では,建物を使用しなが らの作業がしばしば求められる。しかし従来の 耐震補強工法では対応が困難なため、騒音や振 動を抑制でき,補強状況に柔軟に対応できる工 法が求められた。こうした背景から筆者等は, プレキャストブロック(以下 PCa ブロックと記 す)やガラス繊維強化プラスチックブロック(以 下FRPブロック)を組積する耐震補強工法を開発 した $^{1)\sim4)}$ 。しかし PCa 壁では設けられる開口の 大きさには制限があり, FRP 壁では採光性には 優れているものの剛性・耐力は PCa 壁には及ば ない。そこで写真-1の示すように、そで壁状に 設けた耐震壁の中央開口部に FRP 壁をはめ込む 事で、より大きな開口面積を実現する PCa-FRP 複合補強壁(以下複合壁)の開発を試みた。本 報では、複合壁で補強した一層壁試験体のせん 断加力実験で確認した補強効果を報告する。

2. 実験概要

2.1 実験計画および試験体形状

試験体概要および実験計画を表-1に,使用材料を表-2に,樹脂の接着強度を表-3に,試験体形状を図-1に示す。実験因子は,(1)FRP壁 面積(組積列数1列,2列,3列),(2)FRP壁厚さ(貼 り合わせ層数1層,2層)で,これらを組み合わせ レームは共通で、せん断破壊型の柱を剛強な基礎梁と加力梁で挟み、基礎梁ー加力梁間を供試 部とした。両そで壁部は、小型のPCaブロック 相互をエポキシ系樹脂で接着して組積し、溝内 部の壁筋と充填グラウトにより一体化するPCa 壁とした。PCa壁の周囲には、壁筋と定着させ る接合筋を溶接した調整用鋼製枠(以下ガイドス チール)を配し、周辺フレームと樹脂で接着した。 中央部は、小型のFRPブロック相互をエポキシ 樹脂で接着して組積するFRP壁とした。FRP壁 の周囲にもガイドスチールを配したが、FRP壁 上部では、周辺フレームに接着するカットTと、 FRP 壁に接着するアングル材で構成し、アング ル材でカットTを挟み込み高力ボルトで接合し た。FRP壁下部は、PL4.5のみとした。PCa壁と

た試験体数は4体,縮尺は約1/3とした。周辺フ

写真-1 補強状況

FRP 壁の境界部は、PCa 壁に接合筋で定着され たガイドスチールに FRP ブロックを接着した。
FRP 壁面積は、同部分を開口と見なした等価開 口周比 n で示した。試験体の製作は、中央の FRP 壁を組積したのち、左右の PCa 壁を組積し、溝 内部へグラウトを充填して行った。

2.2 載荷方法

層せん断水平力 Q は, 圧縮力で加力梁に載荷 した。載荷履歴は,層間変形角 R の目標所定値(± 1.0, 2.0, 4.0, 6.67, 13.3, 20×10⁻³rad.)で2回の交番 載荷と,正方向の単調載荷(R=30×10⁻³rad.まで) とした。鉛直軸力は柱頂部から一定に載荷した。

3. 実験結果および考察

3.1 破壊性状および荷重-変形関係

荷重-変形関係を図-2に、最終破壊状況を写 真-2に、実験により得られた各種耐力を表-4 に、モデル化したひび割れ発生状況を図-3に示 す。破壊状況は、FRP 壁厚さが2層の試験体 H1, H2, H3 と、1層の試験体 H2b に大別される。

(1)試験体 H1, H2, H3

初ひび割れは、ガイドスチールグラウト側界 面の剥離ひび割れもしくは壁せん断ひび割れに、 R=0.72~0.9×10⁻³rad.で生じた。ガイドスチール 躯体側接着面のひび割れは、R=1.4~4.0×10⁻³rad. で断続的に生じ、接着接合部のひび割れパター ン A を形成した。最大耐力は概ね R=6.67×

試験体 H2

試験体 H2b

畄位.I-N

写真-2 最終破壊状況 表-4 実験結果

					+
試験体名		H1	H2	H3	H2b
部材角	1/1000 (R=0.001)	430	414	392	359
	1/500 (R=0.002)	484	487	441	505
	1/250 (R=0.004)	696	587	549	564
	1/150 (R=0.0067)	709	680	681	700
	1/75 (R=0.0133)	689	680	594	767
最大耐力(部材角)		709 (0.0067)	684 (0.0125)	681 (0.0067)	789 (0.0100)
破壊形式		接合面破壊	接合面破壊	接合面破壊	分離型破壊
	目視初ひび割れ(部位)	360 (ガイドスチールグラウト界面)	380 (壁せん断)	391 (壁せん断)	160(ガイドスチールグラウト界面)
	ガイドスチール躯体側 接着面(部位・部材角)	486 (PCa・FRP下,0.0014) 696 (PCa・FRP上,0.0040)	487 (PCa・FRP上,0.002)	441(PCa上,0.0019)	-335 (柱際・PCa下,-0.001)
ひび割れ			538 (柱際,0.003)	534(PCa·FRP下,0.0037)	386 (FRP下,0.002)
			586 (PCa·FRP下,0.004)	548(PCa·FRP上,0.0040)	-433 (PCa·FRP上,-0.0018)
	PCa-FRP間境界接着	784.4-1-	764-1	邓什 中一世	-433 (-0.0018)
	接合面(部材角)	完生せ 🤊	完生せ り	完生せ 9	789 (0.0100)
	FRP壁せん断破壊	7844	764-1-1-1-	628 (0.010)	780 (0.010)
	(部材角)	完生せ 🤊	完生せ り	-628 (-0.010)	/89 (0.010)
鉄筋降伏	柱主筋(部材角)	707 (0.0064)	680 (0.0067)	664 (0.0064)	622 (0.0051)
	「「「「「「「」」」	707 (0.0064)	680 (0.0067)	654 (0.0079)	652 (0.013)

10⁻³rad.で生じ,それ以降はガイドスチール躯体 側接着面のひび割れの目開きやずれによって変 形が進んだ。R=13.3×10⁻³rad.加力サイクルでは, 引張側柱頭付近のパンチングシア破壊と,PCa 壁上隅部の圧壊,複合壁上部の接着接合面のず れが顕著に進行し,耐力が低下した。最終破壊 時においても PCa 壁-FRP 壁間の境界接着接合 面のひび割れは軽微で,両者の一体性は保たれ ていた。これらの試験体の破壊モードは,複合 壁上部の接着接合面のせん断すべり破壊と引張 側柱頭パンチングシア破壊による「接合面破壊」 (図-6)と考えられる。

(2)試験体 H2b

初ひび割れのガイドスチールグラウト側界面 の剥離ひび割れや壁せん断ひび割れの発生は他 の3体と同様だが,R=1.8×10⁻³rad.でPCa壁-FRP壁間の境界接着接合面にひび割れが発生し, ひび割れパターンBを形成した。以後PCa壁と FRP壁間にずれが生じたが耐力は上昇し,R=13.3 ×10⁻³rad.加力サイクルに最大耐力Q=789kNを示 した後,FRP壁にせん断破壊が生じて耐力が低 下した。この試験体の破壊モードは,PCa壁と FRP壁のせん断破壊と付帯柱破壊による「分離 型破壊」(図-6)と考えられる。

(3)実験変数による比較

実験因子毎の荷重-変形関係包絡線の比較を 図-4に示す。FRP壁面積の相違は,R=4.0× 10⁻³rad.までの耐力と剛性に影響したが,R=6.67 ×10⁻³rad.以降の履歴への影響は小さい。一方 FRP壁厚の相違は,R=6.67×10⁻³rad.までの履歴 には殆ど影響を与えなかった。

3.2 初期剛性

等価開口周比 ηと初期剛性実験値 Ke の関係を, 無開口壁の剛性計算値 Kco で無次元化し Ke/Kco で図-5 に示す。同図中には,これまでの PCa ブロック補強壁実験で得られた結果¹⁾も合わせ て示す。図より複合壁の剛性は,FRP 壁を開口 とみなした既往の算定手法⁵⁾で概ね評価できた。

3.3 ひび割れ耐力

(1)壁せん断ひび割れ耐力

PCa壁に生じるせん断ひび割れ耐力 *wQsc*は, 周辺フレームと **PCa**壁, **FRP**壁が一体で挙動し ていると仮定し,式(1)で求めた。

$${}_{W}Q_{sc} = \frac{\tau_{sc} \cdot t_{Pc} \cdot I_{W}}{Sy}$$
(1)

ここに、 $\tau_{sc} = \sqrt{c \sigma_t^2 + c \sigma_t \cdot \sigma_o}$, $c \sigma_r = 0.33 \sqrt{\sigma_B}$, σ_o : 軸応力度, Sy: 複合壁の境界接着面よりも 外側(PCa 壁)の全断面図心に対する断面一次モ ーメント, t_{rc} : PCa 壁厚, I_w : 断面二次モーメン ト(FRP 壁は密実な壁厚 5.75mm/層として考慮)。 実験結果と式(1)による wQ_{SC} の比較を表-5に示 す。計算値は、実験値を概ね評価できた。

(2)境界接着接合面のひび割れ耐力

複合壁の加力実験では, 接着面破壊 (H1, H2, H3) と, 分離型破壊 (H2b) が観察された。2 つ の破壊性状の相違は, PCa 壁と FRP 壁の境界接 着接合面に生じたひび割れの有無によると考え られる。境界接着接合面のひび割れ耐力 *Q*_{BJ}は式 (2)で求めた。

ここに、 $\tau_{\scriptscriptstyle RJ}$:樹脂の引張せん断強度、 $t_{\scriptscriptstyle RJ}$:境界 接着面の幅で min(PCa 壁厚, FRP 壁厚)。境界接 着接合面のせん断強度には、接着樹脂の FRP ブ ロックおよび鋼材に対する引張せん断強度を期 待できると考え, 表-3 から最小値 *г BJ*=7.0 N/mm²を用いる。実験結果と式(2)による Q_{BJ}の 比較を表-6に示す。計算値は、ひび割れの有無 を含めて実験結果を概ね評価できた。

3.4 最大耐力の評価

3.1 節に示した 2 つの破壊モードの他に, PCa 壁と FRP 壁が一体で破壊する一体型破壊を含め、 図6に示す3つの破壊モードを想定し、各破壊 モードの終局せん断耐力を次のように仮定した。

(1) 一体型破壊

一体型破壊による終局せん断耐力 WQSUは, 開口による耐力低減率を用いた有開口壁として 求められるせん断耐力に, FRP 壁のせん断耐力 寄与分を累加できると仮定し、式(3)で求めた。

 $_{W}Q_{SU} =_{W}Q_{SU1} + Q_{B}$ (3) ここに, _wQ_{su1}:有開口 PCa 壁の耐力で ${}_{W}Q_{SU1} = \gamma \left\{ \frac{0.068Pte^{0.23}(18+Fc)}{\sqrt{M/Od+0.12}} + 0.85\sqrt{Pse\cdot\sigma sy} + 0.1\sigma o \right\} be \cdot je$

表-5 壁せん断ひび割れ耐力

衣	単位:kN			
	H1	H2	H3	H2b
実験値	419	380	391	399
(部材角)	(0.0009)	(0.0009)	(0.0010)	(0.0013)
計算值 _W Qsc	394.6	408.1	426.7	396.2
実/計	1.06	0.93	0.92	1.01

表-6 境界接着接合面のひび割れ耐力 , 畄 /台.1-N

				中世.KIN
	H1	H2	H3	H2b
宝殿庙				Q=505kN経験後
天歌旭	発生せず	発生せず	発生せず	負側Q=-433kN
(部7月)				(-0.0018)
計算值Q _{BJ}	734	749	771	428
実/計	いずれも	実験最大耐	力值以上	1.01

 $\gamma:$ 耐力低減率 $\gamma = 1 - \eta$, Fc: 柱と PCa 壁の平均 圧縮強度 $Fc = Fc_1 \cdot A_c / \Sigma A + Fc_2 \cdot A_{PC} / \Sigma A$, Fc_l : 柱の 圧縮強度, Fcs: PCa ブロックとグラウト圧縮強度 の小さい方, A_C, A_{PC}: 柱, PCa 壁の水平断面積, Q_B : FRP 壁のせん断強度 ³⁾ $Q_B = \tau_F \cdot A_F, \quad \tau_F$: 破 壊モード形成時の小型 FRP ブロックのせん断強 度で $\tau_F=3.0$ N/mm²とした。

(2) 接合面破壊

接合面破壊による終局せん断耐力 _aQ_{SU}は,周 辺フレームとの接着接合面の終局耐力に, 引張 柱側のパンチング耐力および圧縮柱側のせん断 耐力を累加して,式(4)で求めた¹⁾。

$${}_{a}Q_{SU} = Q_{ju1} + {}_{p}Q_{C} + \alpha Q_{C}$$

$$\tag{4}$$

ここに、Q_{in1}:水平接着接合面の終局せん断耐力 平均式 ⁴⁾ $Q_{\mu 1} = 0.12Fc_1(A_{PC} + A_F), A_{PC}, A_F$:PCa 壁, FRP 壁の水平接着断面積, "Qc: 引張側柱頭部パ ンチングシア耐力平均式⁶⁾ $_{p}Q_{c} = k_{av} \cdot \tau_{o} \cdot b \cdot D$, α:変形状況を考慮した低減係数, Q_C: 圧縮柱の 終局強度でせん断強度は荒川平均式、曲げ強度 は耐震改修指針による⁶⁾。

(3)分離型破壊

分離型破壊による終局せん断耐力 CWQSUは, そで壁とみなした PCa 壁のせん断耐力と FRP 壁 のせん断耐力に, 柱のせん断耐力を累加して式 (5)で求めた²⁾。

 $_{CW}Q_{SU} = Q_T + Q_B + \alpha_1 Q_{C1} + \alpha_2 Q_{C2}$ (5) ここに、 Q_T : PCa そで壁が負担するせん断耐力 *Q_T=min(Q_{T1}, Q_{T2}, Q_{T3})*, *Q_{T1}*: 斜材の圧縮耐力に基 づくせん断耐力, $Q_{Tl}=2 \alpha_B \cdot t^2 \cdot fc(L_1/L_2) \leq 2(N+ag \cdot t)$ σy)(L₁/H), α_B: 圧縮斜材置換時の斜材の有効幅 *α_B* =2.0, *Q_{T2}*: そで壁上下端接合部の摩擦耐力 $Q_{T2} = lc \cdot t_{pc} \cdot fc', lc = 0.3(L1 - Dc/2), Q_{T3}$: そで壁

(2) 接合面破壊

部ですべり破壊が生じる

柱頭部0

のせん断耐力 $Q_{T3} = \sum A_{PC}(fs + 0.5Psh \cdot \sigma sy)$, N: 柱 の長期軸力, $ag \cdot \sigma y$: 柱主筋の断面積と降伏点 強度の積, H: 階高, L_1 : 柱芯からそで壁端部ま での長さ, L_2 : L_1 , Hを一辺とする直角三角形の 斜辺の長さ, fc=0.85Fc₂, fc'=0.85Fc₁, Psh · σ sy: そ で壁の壁筋比と横筋降伏点強度の積, fs: PCa 壁 の許容せん断強度=Fc₂/20。

以上の式(3)~(5)と式(2)を合わせて,複合壁の 破壊モードを,境界接着接合面にひび割れの発 生する場合は分離型破壊,ひび割れが発生しな い場合は,一体型破壊と接合面破壊の何れか耐 力の小さな方と考えて,終局せん断耐力 wQsuo を式(6)で求める。

$$\begin{cases} {}_{W}Q_{SU0} = \min({}_{W}Q_{SU}, {}_{a}Q_{SU}) & \min({}_{W}Q_{SU}, {}_{a}Q_{SU}) < Q_{BJ} \\ {}_{W}Q_{SU0} = {}_{CW}Q_{SU} & \min({}_{W}Q_{SU}, {}_{a}Q_{SU}) \ge Q_{BJ} \end{cases}$$

$$(6)$$

実験値と式(6)による計算値 wQsuoの比較を表 -7に示す。試験体 H2, H3 は,一体型破壊によ る式(3)の計算値となるが,実験による破壊モー ドとは異なり,複合壁の耐力評価には課題があ る。実験と同じ破壊モード間を比較すると,接 合面破壊の式(4)では実験値/計算値=0.94~1.00, 分離型破壊の式(5)では実験値/計算値=1.15とな り,実験結果を概ね評価できた。なお本実験は, 剛強な加力梁を有した一層壁せん断実験である ため,式(5)による評価には梁強度を考慮した検 討が必要である。

4.まとめ

PCa 壁と FRP 壁を併用して補強する複合壁に よる一層壁せん断実験から次の知見を得た。

- (1) 複合壁には2つの破壊モードが生じた。
 - 1.PCa 壁と FRP 壁は一体のまま, 複合壁上部の 接着接合面がすべり破壊を起す場合。
 - 2.PCa壁とFRP壁の境界接着接合面に生じるひ び割れからずれが生じ、各々がせん断破壊を 起す場合。

(2) 破壊モードをモデル化した構成要素の耐力 を累加することで,複合壁の終局せん断耐力を 評価できた。

[謝辞] 試験体の製作にあたり FRP ブロックと接着剤の 提供に協力して頂きました旭硝子マテックス(株)田澤仁 氏,日本シーカ(株)藤井洋宣氏に厚くお礼申し上げます。

参考文献:

- 1) 増田安彦他: プレキャストブロックを組積して 構築した耐震壁のせん断耐力性状に関する研究, コンクリート工学年次論文集 Vol.25, No.2, p1459-1464, 2003
- 2) 増田安彦他: プレキャストブロックを用いたそ で壁増設柱の力学的性状に関する研究,コンク リート工学年次論文集 Vol.26 No.2, p1243-1248, 2004
- 3) 萩尾浩也他:FRP ブロックを用いた増設耐震壁 工法の開発(その2),日本建築学会大会学術講演 梗概集 C-2 分冊, pp.631-632, 2004
- 4) 栗田康平他:小型プレキャストブロックを用い た増設耐震壁工法の開発(その6),日本建築学会 大会学術講演梗概集 C-2 分冊, pp.567-568, 2005
- 5) 武藤清:耐震設計シリーズ I 耐震設計法, 9.開口 のある壁, 丸善, pp.189-198, 昭和 38 年
- 6)(財)日本建築防災協会:既存鉄筋コンクリート造 建物の耐震改修指針・同解説,2001 年版

			H1	H2	H3	H2b
	PCa壁とFRP壁の境界接着部ひび	割れ	—	—	_	-434
実験値	最大耐力		709	684	681	789
	破壊形式		接合面破壞	接合面破壊	接合面破壞	分離型破壊
(1)一体型破壊	$_{W}Q_{SU} = _{W}Q_{SUI} + Q_{B}$	式(3)	732	625	555	554
	(実/計)		(0.97)	(1.10)	(1.23)	(1.42)
(2)接合面破壊	$_{a}Q_{SU}=min(Q_{jol},Q_{jo2})+_{p}Q_{C}+\alpha Q_{C}$	式(4)	708	715	722	677
	(実/計)		(1.00)	(0.96)	(0.94)	(1.16)
(3)分離型破壊	$CWQ_{SU} = Q_{T2} + Q_B + \alpha_I Q_{CI} + \alpha_2 Q_{C2}$	式(5)	762	717	673	684
	(実/計)		(0.93)	(0.95)	(1.01)	(1.15)
境界接着接合面	ひび割れ耐力 $Q_{BJ} = \tau_{BJ} \cdot t_{BJ} \cdot Iw / Sy$	式(2)	734	749	771	428
	(実/計)		(-)	(-)	(—)	(1.02)
$min(_W Q_{SU}, _a Q_{SU})$	$Q_{SU} > Q_{JU}$ the wQ sun =min(wQ su, as	Q_{SU}	708	625	555	684
$min(_W Q_{SU}, _a Q$	$SU) \ge Q_{JU} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	実/計)	(1.00)	(1.10)	(1.23)	(1.15)

表-7 実験結果と計算値の比較

単位:kN