論文 台湾における典型的な小中学校の補強工法に関する実験的研究

邱 建國*1・野口 貴文*2・兼松 学*3・簡 文郁*4

要旨:台湾台南のある中学校をモデルとして,2層3スパンの実物大試験体を製作し,鉄板 巻立補強工法,そで壁補強工法,増打補強工法の補強性能の検討を行った。さらに,等価荷 重-等価変位曲線と想定地震動に対する応答加速度スペクトル-応答変位スペクトル曲線 を用いて等価1自由度系の最大応答値を計算し,耐震能力を評価した。結果,本研究で検証 した補強方法により有効に脆性破壊を避けることが可能で,梁部材の塑性ヒンジを柱の塑性 ヒンジより早く発生させ,じん性を与えることができる。今後,本研究の成果により補強方 法を選んで校舎の耐震能力を改善することができるものと考える。

キーワード:校舎,実物大,そで壁,鉄板,増打補強,耐震能力,スペクトル

1. はじめに

台湾はこれまでに何度も壊滅的な地震にみま われ,生命財産に重大な損失が引き起こされて きた。歴代の震災調査報告によると,学校建築 は設計上の耐震性が一般的な建物より高く定め られているにもかかわらず,それらの被害は特 に深刻であった。1999年に台湾で発生した集集 地震を例にとれば,この地震により中部地方の 学校の半分以上が倒壊または大規模な損傷を受 けた。地震による校舎の被害や,教師や児童の 死傷者数などを減らすために,早急に全面的な 校舎の耐震補強を行うことが強く望まれている。 本研究の目的は,校舎の使用性と耐震性を考慮 し,適切な補強方法を提案するとともに,実験 によりその効果を検証することにある。

2. 実験概要

2.1 試験体概要

(1) 台南市後甲中学校

典型的な小中学校舎の力学特性を模擬実験し 分析するために,台南市後甲中学校德育樓と同 じ仕様により,各試験体(寸法,配筋,材料強 度など)を設計した。台南市後甲中学校德育樓 (震区係数 Z は 0.33g,地盤は第二類)は 1968 年に建てられた三階建ての RC 造の典型的な校 舎で,高さは10.8m,梁間方向の長さは10.2mで, 桁行方向への長さは53.5mである(図-1)。

(2) 試験体及び補強方法

実験設備と場所は制限があるので,桁行方向 への教室の主要構造体部分のみを模擬実験する ものとし,2層の試験体(L10m×H7m)を3体 制作した。まずSBFU 試験体は補強せずに載荷 試験を行い,地震を想定した損傷を導入した後, 増打補強工法により補強してSBFU-C 試験体と した。SBFW およびSBFSの両工法は,地震によ る損傷を受けていないものを想定し,最初から 柱補強を行い,試験を行った。表-3に各補強材 料の強度を示す。

*1 東京大学 工学系研究科建築学専攻 工修 (正会員) *2 東京大学 工学系研究科建築学専攻 助教授 工博 (正会員) *3 東京大学 工学系研究科建築学専攻 助手 工博 (正会員) *4 台湾の国家地震工程研究センター 副研究員 工博 SBFU試験体(標準試験体)の各部材の寸法と 配筋を図 - 2 と図 - 3 に示す。試験体の腰壁と柱 の間にはスリットが設けられていない。コンク リートの設計基準強度は18.0N/mm²で,設計用の 鉄筋降伏強度は280N/mm²としたが,実測の材料 強度(鉄筋ヤング係数は210000 N/mm²,コンク リートヤング係数は14000 N/mm²と仮定した)は 表 - 1 および表 - 2 のようになった。

SBFW 試験体(袖壁補強工法)は SBFU 試験 体と同仕様により製作した。校舎の使用性を維 持することを目的として,試験体両端の柱のみ にそで壁を後から増設して補強した。そで壁は 幅 40cm,厚さ 24cm とし,配筋は図 - 4 に示す 通りである。構造の耐力を補強するほかに,れ んが造の腰壁で短柱現象を予防するため,腰壁 と柱の間にスリットを設置した。

SBFS 試験体(鉄板巻立工法)も,他の試験体 同様,SBFU 試験体と同じ仕様により製作した。 全部の柱を鉄板(台湾規格 A36、厚さ 6mm)で 巻き,曲げ補強しないために,柱頭・柱脚と鉄板 との間に 30mm の隙間を設けた。鉄板と柱の隙 間にモルタルを充填し,M22 の高強度ボルトを それらの結合に用いた(図-5)。また,SBFW と 同様に腰壁と柱の間にスリットも設置した。こ の補強工法の目的は,柱のせん断破壊を防ぎ, 靱性を高めることにある。

SBFU 試験体をテストした後,増し打ちにより 柱補強を行い,SBFU-C 試験体(増打補強工法) とした。本研究は校舎の使用性を維持するため に,内柱だけに対して図-6のように補強した。 また,腰壁と柱の間にスリットを設置した。増 し打ち用の鉄筋は梁を通過しないので,補強の 手間がかからなかった。この補強工法の目的は, 柱の耐力および靱性の改善である。

2.2 実験の配置及び方法

実際の構造特性を模擬実験するために,数値 解析により実際の後甲中学校徳育樓の各柱の鉛 直荷重を分析し,試験体の各柱に同じ荷重を加 えた。解析結果によれば,1層柱の鉛直荷重は約 500KN であるが、載荷設備の制限があるから 400KN とした。本実験においては,1 層部分に 油圧シリンダーを1本2層部分に2本配置した。 2層の油圧シリンダーは変位によりコントロー ルし,1層の油圧シリンダーは荷重でコントロー ルした。

	SBFU	SBFW	SBFS	平均
第一次打設 (基礎)	24.3	23.1	23.2	23.53
第二次打設 (一階)	16.5	20.4	20.3	19.07
第三次打設 (二階)	16.8	16.9	15.7	16.47

表 - 1 コンクリート圧縮強度(N/mm²)

SBFU-CはSBFUと同様

表 - 2 鉄筋降伏強度(N/mm²)

鉄筋直径(mm)	SBFU	SBFW	SBFS	平均
#3(D10)	391.6	399.8	378.6	389.98
#4(D13)	364.9	356.3	361.4	360.85
#6(D19)	309.6	320.0	320.3	316.65
#7(D22)	369.2	370.2	370.9	370.06

SBFU-CはSBFUと同様

表 - 3 補強材料強度(N/mm²)

試験体	コンクリート	鉄筋降伏強度			
	工細蚀反	#3	#5	#6	
SBFW	23.6	370.0	446.1	1	
SBFU-C	23.6	370.0	-	429.9	
SBFS	鉄板降伏強度 313.9				

実験の各ステップにおいては,2階の油圧シリ ンダーの出力の5割を1階の油圧シリンダーの コントロール信号として入力した。各試験体の 終局限界は、1階部分の層せん断力が最大層せん 断力の8割に低下した時点とした。

2.3 実験の結果

SBFU 試験体は層間変形 2%で,他の補強の試 験体は層間変形 6%で実験を停止した。試験体の 2 層の変位を横軸,全油圧シリンダーの出力の合 計(一層の層せん断力)を縦軸としたものが図 -7,図-8,図-9,図-10である。実験中の観 察により,各試験体(図-11)は1層の破壊現 象が2層より早く発生し,1層部分の主な破壊形 式と破壊経過は表-4のようになった。

SBFU 試験体の最大層せん断力は 482KN(層 間変形 1%)で、内柱のせん断破壊で終局限界(層 間変形 2%)に達した。SBFW 試験体の最大層せ ん断力は 683KN(層間変形 2%)で、外柱の下端 の塑性ヒンジが発生し、終局限界(層間変形 6%) に達した。SBFS 試験体の最大層せん断力は 528KN(層間変形 4%)で、終局限界に達しなく て主要破壊形式がない。SBFU-C 試験体の最大層 せん断力は 882KN(層間変形 2.6%)で、外柱梁 結合区のせん断破壊で終局限界(層間変形 6%) に達した。

本研究では,非線形増分解析で試験体を解析 した。地震時に構造物に作用する動的水平荷重 を,等価な静的水平荷重に置き換えて非線形増 分解析を行った。柱・梁部材のスケルトンカー ブをひび割れ点と降伏点とするTri-Linearでモデ ル化した。第一折れ点であるひび割れ点は弾性 剛性とひび割れ強度の交点とした。ひび割れ強 度は曲げひび割れ強度の交点とした。ひび割れ強 度は曲げひび割れ強度の交点とした。ひび割れ強 度は曲げひび割れ強度の交点とした。ひび割れ強 度は曲げひび割れ強度の交点とした。ひび割れ強 度は曲げひび割れ強度の交点とした。のび割れ強度の 小さいほうで決定した。第二折れ点である降伏 点は,弾性剛性に降伏点剛性低下率 y(式(1)) を乗じて求めた降伏点剛性と降伏強度の交点と した。各部材のひび割れ強度,弾性剛性及び降 伏強度は文献⁴⁾⁵⁾に従い計算した。降伏後剛性は 弾性剛性の 1/100 とした。外力分布形は1次振動 モード比例外力分布形と仮定した。鉛直荷重は

図 - 7 SBFU 試験体の力-変位曲線

図 - 10 SBFU-C 試験体の力-変位曲線

図 - 11 各試験体の最終状態 $\alpha_y = (0.043 + 1.64np_t + 0.043 \frac{a}{D} + 0.33\eta_o)(\frac{d}{D})^2$ (1)
ここに、n:ヤング係数比

a:シアスパン長さ η_o:軸力比 p_t:引張鉄筋比

弾性剛性および降伏強度については,実験結 果より小さい傾向が見られたが,終局強度はほ ぼ同じであった。これは,各部材の弾性剛性, 降伏強度および降伏点剛性低下率を小さく評価 したほかに,スラブの影響を含めて考えなかっ たのが理由であると考える。 3. 結果の分析及び考察

(1) 各試験体の耐震性能²⁾

試験の結果の包絡線を終局限界の変位までの 歪エネルギーの総和³⁾が等しくなるようにバイ リニア曲線に置換し,式(2)と式(3)により 等価 1 自由度系の等価荷重 - 等価変位関係 (Sa-Sd)を算定した。ここから求まる塑性率µ を用い,式(4)により直接建物全体の等価粘性 定数hを求めた。最終的に,等価荷重 - 等価変位 曲線と想定地震動に対する応答加速度スペクト ル - 応答変位スペクトル曲線(台湾の耐震設計 基準法の第二類地盤)を用いて等価自由度系の 最大応答値を評価した。この際,最大応答点に おける等価1自由度系の減衰効果を式(5)で与 えられる減衰補正係数F_hにより考慮した。各試 験体の分析結果は表 - 5のようになった。

表 - 4 各試験体の主要破壊形式と破壊経過

試験体	破壊経過		
SBFU	れんが造腰壁(真中)は脆性破壊		
	れんが造腰壁(両側)は		
	脆性破壊と滑り		
主要破壊	内柱はせん断破壊(1.5%)		
SBFW	梁(両側)は塑性ヒンジ発生		
	内柱梁結合区はせん断破壊		
	内柱の下端は塑性ヒンジ発生		
	そで壁の下端(左側)は圧縮破壊		
主要破壊	外柱の下端は塑性ヒンジ発生		
SBFS	内柱の下端は塑性ヒンジ発生		
	内柱梁結合区はせん断破壊		
	れんが造腰壁(真中)は脆性破壊		
	梁(両側)は曲げ破壊		
SBFS 試験体は主要破壊形式がない			
SBFU-C	梁(左側)は塑性ヒンジ発生		
	内柱の下端は塑性ヒンジ発生		
	梁(真中と右側)は塑性ヒンジ発生		
主要破壊	外柱梁結合区はせん断破壊		

$$S_{a} = \frac{\prod_{i=1}^{N} m_{i} \times \varphi_{i,1}^{2}}{(\prod_{i=1}^{N} m_{i} \times \varphi_{i,1})^{2}} Q_{B}$$
(2)

$$S_{d} = \frac{\Delta_{N}}{(\prod_{i=1}^{N} m_{i} \phi_{i,1} / \prod_{i=1}^{N} m_{i} \phi_{i,1}^{2}) \phi_{N,1}}$$
(3)

ここに、
$$m_i: i層の質量(N層建ての建物)$$

 $Q_B: 一層部分の層せん断力$
 $\phi_{i,1}: i層の1次振動モード$
 $\Delta_N: N層の変位$
 $h = 0.25(1-1/\sqrt{\mu}) + 0.05$ (4)

$$F_{h} = \frac{1.5}{1 + 10h}$$
(5)

表	- 5	等価	1	自由度系の最大応答伯	直
---	-----	----	---	------------	---

試験体	最大応答値			
(層質量m _i (kg))	Sa(g)	Sd(mm)	(Sd/Sy) × Sa	
SBFU			-	
(94630)	-	-		
SFBS	0.27	150	0.72	
(95500)	0.27	150	0.73	
SBFU-C	0.49	02	0.78	
(100000)	0.48	85	0.78	
SBFW	0.26	110	0.77	
(96000)	0.30			

Sy:試験体の降伏点の等価変位

(2) 結果の考察

SBFU 試験体の内柱の内のり寸法は腰壁の拘 束により短くなってせん断破壊が発生した。ま た,等価荷重 - 等価変位曲線と想定地震動に対 する応答加速度スペクトル - 応答変位スペクト ル曲線の交点がなかったため(図 - 12),最大応 答値が評価できなかった。即ち,耐震能力は要 求水準としての想定地震動に達しなかった。

今回の実験は設備の制限があったため,SBFS 試験体は,破壊と判定されなかった。このため,

SBFS 試験体の終局状態の変形量は実験結果よ り高いと思った。等価 1 自由度系の最大応答値 について, Sa は 0.27g で,今回適用した補強工 法の中で最も低い結果となったが,Sd は 150mm と一番高かった(図 - 13)。SBFS 試験体の強度 は,SBFU 試験体に比べて増加することはなく, じん性量が増加することで耐震能力が改善した。

SBFU-C 試験体の Sa は 0.48g で,今回適用し た補強工法の中で最も高い結果となったが,Sd は 83mm と一番低かった(図 - 12)。主要破壊は 外柱梁結合部のせん断破壊に移行した。即ち, 強度上昇を中心として耐震性能が改善されたも のと判断される。

SBFW 試験体の Sa は 0.36g で, Sd は 110mm となった(図-13)。SBFW 試験体は SBFU 試験 体に比べると強度が上昇するほかに,変形量も 増加した。主要破壊は外柱の曲げ破壊に移行し た。即ち,強度およびじん性量を強化すること で,耐震能力が向上したものと判断される。

4. まとめ

現在行われている補強工法は校舎の使用性が 充分考慮されずに,ただ力学特性のみが重視さ れていると言われてきた。しかし,教育の点か らは,安全性のみならず,使用性も重要な視点 であり,本研究は施工性と校舎の使用性を考え, 簡単な補強方法を提出し,実物大の実験でそれ らの効能を検証した。結果,本研究で検証した 補強方法により有効に脆性破壊を避けることが 可能で,梁部材の塑性ヒンジを柱の塑性ヒンジ より早く発生させ,じん性を与えることができ る。今後,本研究の成果により,施工性と校舎 の使用性を考慮して補強方法を選んで校舎の耐 震能力を改善することができるものと考える。

参考文献

- 1) 台湾の国家地震工程研究中心:中小學校舍耐 震評估與補強,中小學校舍耐震評估與補強講 習会,2000.9
- 2) 日本建築学会:鉄筋コンクリート造建築物の 耐震性能評価指針・同解説,日本建築学会, 2005
- 3) 廖文義ほか:含非結構牆兩層樓構架之耐震試験,台湾の国家地震工程研究中心,2003.9
- 4) 日本建築防災協会:既存コンクリート造建築 物の耐震改修設計指針,日本建築防災協会, 2001
- 5) 日本建築学会:鉄筋コンクリート構造計算規準・同解説 許容応力度設計法,日本建築学会,1999