報告 実態調査に基づく既設構造物のコンクリート強度分布に関する考察

松橋 宏治*1·谷村 幸裕*2·曽我部 正道*3

要旨:既設鉄道 RC ラーメン高架橋の柱部材4本を対象に、コア採取によるコンクリートの 圧縮強度、およびテストハンマーを用いて反発度を測定し、これらの柱高さ方向分布につい て調査した。その結果、柱部材ではブリーディングの影響を受ける打継位置直下のコンクリ ート強度は、最深部の強度に比べ最低で1/2 程度まで低下し、設計基準強度を下回る場合も あることを確認した。また、本調査結果の線形回帰式を用いて、テストハンマーの反発度に より圧縮強度の推定を行った結果、推定誤差は概ね±20%の範囲であったが、打継位置の上 下で、強度が著しく変化する部位では推定精度が低下した。

キーワード:コンクリート強度分布,既設構造物,ラーメン高架橋,柱部材

1. はじめに

耐震診断や健全度診断など,既設 RC 構造物を 維持管理する上で,コンクリート強度を把握す ることは非常に重要な項目の一つである。既設 構造物のコンクリート強度は,対象構造物から 採取したコアの圧縮強度試験により得るのが一 般的な方法である。しかしながら,コンクリー ト強度は部材や部位により少なからずばらつく ことが報告されており¹⁾,また費用や時間の制 約により一時期に行えるコア採取の箇所数は限 定されるため,コア採取のみでは場合によって はコンクリート強度の妥当な評価が行えない恐 れがある。これに対し,より簡易に多くの部位 を測定できる方法として,テストハンマーの反 発度を利用した強度推定法があるが,既設構造 物に対しては推定精度の面で確立された推定式 が無いのが現状である。一般的には,同一箇所 から採取したコアの圧縮強度試験との関係を用 いて強度推定を行うが,その具体的な適用法に ついては明確でない。

そこで、本報告では図-1に示す形状寸法をな す鉄道 RC ビームスラブ式ラーメン高架橋の柱 部材に対し、採取したコアの圧縮強度試験を実 施することにより、コンクリート強度の柱高さ 方向分布について調査した。また、テストハン マーの反発度の測定も同時に実施し、これによ るコンクリート強度の推定値とコア強度とを比 較することにより、その推定誤差について検討 した。

2. 調查対象構造物

調査対象は図-1に示す通り、ほぼ同形状のラ ーメン高架橋7基(R1~R7ブロック)からなる 延長約 300m の範囲から、ブロックの異なる4 本の柱(以下、C1~C4柱とする)を選定し、 これらに対し同様の調査を行った。また、本高 架橋は建設後28年が経過しており、設計図書よ りコンクリートの設計基準強度が $f_{ck}=27N/mm^2$ であることは明らかとなっているが、その他コ ンクリート材料に関する情報は現存していない。

3. 調査方法

3.1 コア採取および圧縮試験

本調査では,表-1 に示す位置に対し,合計 33 箇所のコアを採取した。図-2 に,C1 柱にお けるコア採取位置図を示す。

	とコア	径			
++-	高さ位置H	コア径φ			
仕	mm	mm			
61	600	45			
	1200	45			
	1800	45			
	3000	100			
CI	3600	100	打継位置2		
	4800	100	GL+7m付近		
	6000	100	GE / militize		
	7200	100			200
	600	45			÷1
	1200	45			i
	1800	45			00
C2	3000	45			12
	3600	45		0	X
	4900	45			00
	6100	45			12
	7000	45			<u>+</u>
	1000	100			୍ରୀ
	2000	100	打継位置1 GL+3m付近		120
	2800	100			
C3	4000	100			8
05	4900	100		0	<u> </u>
	5900	80			8
	6500	100			12(
	6900	80		0	
	1200	45		-	100
	2000	45			
	2600	45			
C4	3200	100			8
	3500	80			9€
	4600	80	図-2	C1	柱のコア
	5200	100			
	6500	80	採取位置	(単	位:mm)
	7200	100			

表-1 コア採取位置

採取したコアを用い、JIS A1107 および JIS A1149 に従い, 圧縮強度試験および静弾性係数 試験を実施した。コアの直径については、 ϕ 100mm と ϕ 45mm の2種類とし, **表**-1 に示す位 置に対しそれぞれの径のコアを採取した。ここ で、 ϕ 45mm のコアビットは、配筋が密な箇所に 対して用いたもので、使用するコア径のは事前 に RC レーダーにより鉄筋の位置を確認した上 で選択した。

3.2 テストハンマー反発度の測定

テストハンマー反発度の測定箇所は,前述し たコア採取箇所に準じた。また,テストハンマ ーには表-2 に示す製造メーカーおよび点検方 法の異なる2種類(ハンマーA,ハンマーB)を 使用し,圧縮強度の推定精度の機種による比較 を行うこととした。なお,事前のテストアンビ ルによる点検結果は,両者とも良好であった。 また,測定方法は,「JSCE-G 504-1999 硬化コン クリートのテストハンマー強度の試験方法」²⁾ に従い,同一箇所におけるハンマーA,Bの打撃 箇所は図-3に示す通りとした。

表-2 使用したテストハンマーの点検方法

	点検方法
ハンマーA (A 社製)	A 社製の 標準アンビル(反発度 80) 低反発アンビル(反発度 30) を用いた2点による点検
ハンマーB (B 社製)	B 社製の 標準アンビル(反発度 80) のみを用いる点検

図-3 1箇所あたりのテストハンマーの打撃点

4. 調査結果

4.1 コアの圧縮試験結果

表-3 に採取したコアの圧縮試験より得られた、圧縮強度 f_c 静弾性係数Eを示す。柱ごとの平均値による比較では、C1 柱が $f_c = 31.4$ N/mm² と最も小さく、その他の柱は $f_c = 36$ N/mm² 程度でほぼ同じであった。

なお, φ45mm コアの強度は, **表**-4 に示す通 りφ100mm コアの強度に比べ若干高めであった ため, その比の平均値 0.938 を乗じて補正した。

また,図-4に圧縮強度 f_cと静弾性係数 E の 関係について示す。図中には,コンクリート標 準示方書 [構造性能照査編] に示された関係も 併せて示した。本高架橋のコンクリート静弾性 係数は,コンクリート標準示方書に示された同 一圧縮強度の値を全て下回った。

図-4 圧縮強度と静弾性係数の関係

4.2 テストハンマー反発度の測定結果

柱の高さ方向ヘテストハンマー反発度を測定 した結果を表-5に示す。表-5より平均値を見 ると,ハンマーBの反発度はハンマーAに比べ2 ~3程度大きい値が得られる傾向にある。

また,図-5には,柱の地上1m位置における テストハンマーの反発度を,橋軸方向に連続し てハンマーAにより測定した結果を示した。高 さ方向の測定を行った柱の反発度については白 抜きのプロットで示しており,これに対応する コアの圧縮強度についても図中に示した。図-5 に示す測定結果は最大値51.1,最小値44.1,平 均値48.0,標準偏差2.1であった。

表-3 コアの圧縮試験結果

柱	測定		圧縮強度	静弹性係数
No.	箇所数		$f'_{\rm c}({\rm N/mm}^2)$	$E (kN/mm^2)$
<u>C1</u>	9	最大値	43.7	25.8
		最小値	22.2	17.1
CI		平均值	31.4	20.7
		標準偏差	5.8	3.2
	8	最大値	42.7	30.0
C^{2}		最小値	20.5	14.7
C2		平均值	36.6	24.4
		標準偏差	7.1	4.9
	8	最大値	45.4	27.3
C2		最小値	30.5	18.8
CS		平均值	36.3	23.2
		標準偏差	5.7	2.5
C4	8	最大値	51.5	26.1
		最小値	29.8	16.9
		平均值	36.5	20.8
		標準偏差	7.5	2.9
全 体	33	最大値	51.5	30.0
		最大値	20.5	14.7
		平均值	35.1	22.2
		標準偏差	6.7	3.7

表-4 ϕ 45mm コアに対する強度の補正

柱	高さ位置	圧縮強度 $f'_{c}(N/mm^2)$		強度比
No.	H (mm)	φ100	φ45	$f_{\phi 100} / f_{\phi 45}$
C4	1200	33.8	35.4	0.955
			35.0	0.966
			37.8	0.894
	1800	32.5	34.7	0.937
平均				0.938

表-5 テストハンマー反発度の測定結果

柱	測定		反発度Ro	
No.	箇所数		ハンマーA	ハンマーB
C1	9	最大値	48.7	49.8
		最小値	41.5	45.2
CI		平均值	45.3	47.7
		標準偏差	2.5	1.4
	8	最大値	49.7	52.9
C^{2}		最小值	42.3	44.4
02		平均值	46.5	49.4
		標準偏差	2.8	3.4
	8	最大値	48.1	51.2
C2		最小値	43.9	45.6
CS		平均值	45.6	48.2
		標準偏差	1.5	1.9
	8	最大値	50.8	52.3
C4		最小値	44.8	48.4
C4		平均值	47.8	50.7
		標準偏差	1.8	1.5
全 体	33	最大値	50.8	52.9
		最小値	41.5	44.4
		平均值	46.3	49.0
		標準偏差	2.4	2.4

5. コンクリート強度分布に関する考察

5.1 柱高さ方向の強度分布

図-6 に採取したコアの圧縮試験強度の柱高 さ方向の分布を示す。

圧縮強度は、図中に一点鎖線で示した打継位 置1の直上で大きく、打継位置2の直下で小さ い傾向が見られ、その強度比(打継位置2直下 /打継位置1直上)は最小で0.5程度であった。 これは、打継位置の直下ではブリーディング等 により強度が低下し、最深部では自重による圧 密効果で強度が増加するという、既往の報告¹⁾ と同様の傾向である。特に強度の低かった C1、 C2の打継位置2の直下では、設計基準強度 f_{ck} =27 N/mm²の75%程度の強度となっている。

また,打継位置直上,直下以外の中間部の強 度分布形状にも,下方ほど強度が大きい傾向の 見られる場合が多い。

5.2 柱高さ方向のテストハンマー反発度分布

図-7(a) (b) に、テストハンマー反発度の柱高 さ方向分布を示す。ハンマーA とハンマーB との 比較では、両者は概ね相似形をなしている。ま た、反発度の高さ方向分布には、若干ではある が、打継位置の直下で小さく下方に向かって大 きくなる傾向が見られる。

テストハンマー反発度による圧縮強度の推定 に関する検討

ここでは、本調査結果に基づき、テストハン マー反発度 Roにより推定した圧縮強度の推定誤 差について検討する。圧縮強度の推定値 f_Rは、 本調査で得られた反発度とコア圧縮強度の関係 から最小二乗法で線形回帰により算定すること とした。

図-8 にテストハンマー反発度 Ro とコアの圧 縮強度の関係を示す。各々のハンマーに対する 線形回帰式は式(1),(2)の通りである。

図-5 柱の地上 1m 付近におけるテストハンマ 一反発度の線路方向連続測定結果

図-6 柱高さ方向の圧縮強度分布

ハンマーA	$f_{\rm R} = 1.4 \cdot Ro - 32.0$	(1)
• • • •	·) K 1.1 110 0 <u>–</u> 10	(- /

$$\gamma = B : f_{R} = 1.9 \cdot Ro - 55.6$$
 (2)

次に,式(1),(2)に示した推定式により算 定した,圧縮強度の推定値*f*_Rについて,算定結 果を**表-6**に示す。

図-9(a) (b) には、C1 柱および C4 柱における 推定値f_Rとコア強度f_cの高さ方向分布を示した。 推定値とコア強度の差は、打継位置1の直上お よび打継位置2の直下において非常に大きく 15N/mm²程度生じており、その他の部位につい ては 5N/mm²程度以下となっている。図-10 に は、推定値とコア強度との関係を示した。これ より、コア強度に対する推定値の誤差は、一部 を除き±20%の範囲におさまっている。図-10 において推定誤差が±20%の範囲から外れてい るデータは、前述した通り、打継位置1の直上 でコア強度が非常に大きくなっている箇所、お よび打継位置2の直下でコア強度が非常に小さ くなっている箇所に対するものである。

また, ハンマーA とハンマーB とで, 推定精度 に大きな差は見られなかった。

図-8 テストハンマー反発度と圧縮強度の関係

表-6 圧縮強度推定値のまとめ (N/mm²)

	コアの圧縮	推定值	直 f'R
	強度 f'。	ハンマーA	ハンマーB
最大値	51.5	41.6	42.3
最小値	20.5	28.2	26.6
平均值	35.1	35.1	35.1
標準偏差	6.7	3.4	4.4

図-9 圧縮強度推定値の柱高さ方向分布

7. まとめ

建設後 28 年が経過した既設鉄道 RC ラーメン 高架橋の柱部材 4 本に対し,33 箇所のコア採取 による圧縮強度試験,およびテストハンマー反 発度の測定を行った。その結果を以下にまとめ る。

- (1) 柱高さ方向のコンクリート強度分布は,打継 位置の直下ではブリーディングの影響によ り強度が小さく,設計基準強度を下回る場 合もあること,最深部では自重による圧密 効果で強度が大きくなる傾向が確認された。 また,上下の強度比は最小で 0.5 程度であっ た。
- (2)本調査結果の線形回帰式を用いて、テストハンマーの反発度による圧縮強度の推定を行った結果、推定誤差は概ね±20%程度の範囲であったが、打継位置の直上や直下において、コンクリート強度が著しく高いまたは低い場合には、推定精度がさらに低下する。

参考文献

- 日本建築学会:構造体コンクリート強度に関 する研究の動向と問題点, Vol.17, No.5, pp.77-94, 1987.11
- 2) 土木学会:コンクリート標準示方書[規準編] 土木学会規準および関連規準, pp234~246, 2005.3