## 論文 コンクリート隅角部擁壁のたて壁の終局耐荷力に関する研究

金田 一男<sup>\*1</sup>·伊良波 繁雄<sup>\*2</sup>·高嶺 哲夫<sup>\*3</sup>·山川 哲雄<sup>\*2</sup>

**要旨**:新潟県中越地震において,今までに経験のないプレキャストL型擁壁のたて壁やカル バートのウィングの被害が確認され,擁壁のたて壁の耐震設計も話題になっている。また, 既存のコンクリート隅角部擁壁のたて壁が劣化し,ひび割れが確認された場合,維持管理上 その耐荷力を評価する必要がある。本研究は,コンクリート隅角部擁壁のたて壁を二隣辺固 定二辺自由なコンクリート板としてモデル化し,塑性解析手法を用いて,三角形,台形およ び等分布荷重が作用する場合の板の崩壊機構や降伏線の発生位置を検討し,たて壁の終局耐 荷力の計算方法を示したものである。

キーワード:コンクリート板,隅角部擁壁,降伏線理論,塑性解析,終局耐荷力

### 1. はじめに

新潟県中越地震において、今までに経験のな いプレキャスト L 型擁壁のたて壁やカルバート のウィングの被害が確認され、擁壁のたて壁の 耐震設計も話題になっている<sup>1),2)</sup>。

一方,ため池,道路の切盛土斜面,宅地造成 などによく用いられるコンクリート擁壁構造物 の隅角部のたて壁は,面外に三角形や台形の分 布荷重(土圧)が作用し,構造解析が煩雑である ため設計基準や設計手法が明確にされていない のが現状である<sup>3),4)</sup>。

著者らは,擁壁構造物の隅角部のたて壁を二 隣辺固定二辺自由な等板厚のコンクリート板と してモデル化し,東らによって提案されたフー リエ級数による解析手法<sup>5)</sup>に基づき,三角形,台 形または等分布荷重を受ける二隣辺固定二辺自 由な板の弾性解を誘導し<sup>6)</sup>,そして,この手法を 局部土圧が作用する二隣辺固定二辺自由な板の 設計に適用した<sup>7)</sup>。さらに,擁壁のたて壁の断面 変化を考慮し,精度の高い立体要素である回転 自由度を有する四面体要素を用いた FEM 解析<sup>8)</sup> を行い,フーリエ級数による解析結果との整合 性を検証し、コンクリート擁壁構造物の隅角部 たて壁の設計手法を提案してきた<sup>9)</sup>。これまでの 研究は、許容応力度設計手法に限定され、二隣 辺固定二辺自由なコンクリート板の耐荷力の評 価に適用できない。

しかし,近年,既設擁壁構造物の維持管理に おいて,写真-1のように隅角部擁壁のたて壁に ひび割れが確認され,その耐荷力の評価が要求 されるケースもある。以上を背景に,コンクリ ート擁壁の隅角部のたて壁を二隣辺固定二辺自 由なコンクリート板としてモデル化し,三角形 や台形の分布荷重が作用した場合の終局耐荷力 の評価手法を確立することが必要と考えられる。



写真-1 隅角部擁壁たて壁のひび割れ

\*1 (株)ホープ設計 技術管理部設計部長 工修 (正会員)
\*2 琉球大学 工学部環境建設工学科教授 工博 (正会員)
\*3 (株)ホープ設計 取締役社長

過去の研究では、二隣辺固定二辺自由なコンク リート板に集中荷重や等分布荷重のような特殊 荷重または特殊な配筋条件下での終局耐荷力の 計算式が示されている<sup>10),11)</sup>。しかし、主に三角 形や台形の分布荷重(土圧)が作用するコンクリ ート擁壁構造物の隅角部のたて壁の設計には適 用できない。

本研究では,鉄筋コンクリート板の塑性解析手法<sup>12)</sup>を用い,三角形,台形および等分布荷重を 土圧比 *e* で一括的に表現し,さらに,これらの 荷重が作用する場合の二隣辺固定二辺自由なコ ンクリート板の崩壊機構や降伏線の発生位置を 仮定し,コンクリート擁壁構造物の隅角部たて 壁の終局耐荷力の計算式を誘導した。

#### 2. 解析モデル及び荷重の定義

**図**-1 は, *x* 方向に等分布, *y* 方向に台形分布 の荷重を受ける等板厚 *t* を持つ二隣辺固定二辺 自由なコンクリート板の解析モデルを示す。



図-1 二隣辺固定二辺自由なコンクリート板 の解析モデル

図-1 に示す座標系と荷重状態から,板の任意 位置における荷重 *P(x,y)*は,式(1)で定義する。

 $P(x,y) = P_2[e + (1-e)y/b]$  (1) ここでは、土圧比  $e = P_1/P_2$ とし、 $P_1=0$ の場合、 e = 0であるため、荷重の分布は三角形となる。  $0 < P_1 < P_2$ の場合、0 < e < 1.0であるため、荷重の 分布は台形である。また、 $P_1 = P_2$ の場合、e = 1.0となり、等分布荷重を意味する。

# 二隣辺固定二辺自由なコンクリート板の崩壊 機構

二隣辺固定二辺自由なコンクリート板は,高 次な不静定構造であるため,板の一部にひび割 れが発生しても直ぐに破壊する状態にならない。 所定の位置に一定本数の降伏線が生じ,これら の降伏線によって板が幾つかの小さい板塊に分 割され,さらに,これらの板塊が降伏線にそっ て剛体回転できる場合の機構が崩壊機構である。

二隣辺固定二辺自由なコンクリート板に関し, 過去の研究成果<sup>10),11)</sup>では,座標原点(0,0)に一 点集中荷重を作用する場合,板の抵抗曲げモー メントによって,タイプ1及びタイプ2の二種 類の崩壊機構が存在することを指摘している。 これを参考に,本研究においても,**表**-1に示す タイプ1及びタイプ2の崩壊機構を仮定して検 討を行う。さらに,図-1に示した荷重状態の非 対称性を勘案し,辺長比 k (=b/a)>1.0 および k $\leq 1.0 \circ 2$  ケースについてそれぞれ検討を行う。

表-1から分かるように、タイプ1の崩壊機構 は固定辺の交点 C から自由辺に向かって CE と いう正の降伏線が生じると同時に、固定辺にそ って BC, CD の2本の負の降伏線が生じるケー スである。ここでは、土圧作用面の裏側に引張 降伏が生じる場合の降伏線を正の降伏線、土圧 作用面に引張降伏が生じる場合の降伏線を負の 降伏線とそれぞれ定義する。これらの降伏線に よって分けられた板塊 I および板塊 II は、降伏 線にそって回転可能であり、崩壊機構を形成し ている。

一方、タイプ2の崩壊機構は自由辺ADまた
 はABから固定辺の始点BまたはDに向かって、
 EBまたはEDの正の降伏線を形成し、板塊Iは
 これらの降伏線を軸に回転するケースである。

二隣辺固定二辺自由なコンクリート板の形状, 荷重状態,支持条件から,タイプ1及びタイプ2 以外の崩壊機構は,存在しないか崩壊を至るま でに必要な崩壊荷重は**表-1**に示すタイプ1及び タイプ2よりも大きいと判断され,本研究の対 象外とする。



表-1 二隣辺固定二辺自由なコンクリート板の崩壊機構

表-2 二隣辺固定二辺自由なコンクリート板の崩壊荷重に関する諸計算式

| 辺長比       | k = b / a > 1.0                                                                                                                                                                               |     | $k = b / a \leq 1.0$                                                                                                                                                   |      |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| タイプ1の崩壊機構 | $W = \frac{aP_2}{24b} [6b^2(1+e) - 4by_2 + (1-e)y_2^2]$                                                                                                                                       | (2) | $W = \frac{bP_2}{24} [4a + 8ea - (1 + 3e)x_2]$                                                                                                                         | (10) |
|           | $U = \frac{1}{ay_2} [by_2 M_{ax} + y_2^2 m_x + a^2 (M_{by} + m_y)]$                                                                                                                           | (3) | $U = \frac{1}{bx_2} [b^2 (M_{ax} + m_x) + ax_2 M_{by} + x_2^2 m_y]$                                                                                                    | (11) |
|           | $P_{2} = \frac{24b}{a^{2}} \frac{bM_{ax}y_{2} + m_{x}y_{2}^{2} + a^{2}(M_{by} + m_{y})}{[6b^{2}(1+e)y_{2} - 4by_{2}^{2} + (1-e)y_{2}^{3}]}$                                                   | (4) | $P_{2} = \frac{24}{b^{2}} \frac{[b^{2}(M_{ax} + m_{x}) + ax_{2}M_{by} + x_{2}^{2}m_{y}]}{[(4a + 8ea)x_{2} - (1 + 3e)x_{2}^{2}]}$                                       | (12) |
|           | $(1-e)m_{x}y_{2}^{4} + 2(1-e)bM_{ax}y_{2}^{3} -[4b^{2}M_{ax} + 6b^{2}(1+e)m_{x} - 3a^{2}(1-e)(M_{by} + m_{y})]y_{2}^{2} -8a^{2}b(M_{by} + m_{y})y_{2} + 6a^{2}b^{2}(1+e)(M_{by} + m_{y}) = 0$ | (5) | $ \left. \begin{array}{l} a[(1+3e)M_{by} + 4(1+2e)m_{y}]x_{2}^{2} \\ + 2(1+3e)b^{2}(M_{ax} + m_{x})x_{2} \\ - 4a(1+2e)b^{2}(M_{ax} + m_{x}) = 0 \end{array} \right\} $ | (13) |
| タイプ2の崩壊機構 | $W = \frac{aP_2}{24b} [4eby_1 + (1-e)y_1^2]$                                                                                                                                                  | (6) | $W = \frac{P_2 b}{24} (3e+1)x_1$                                                                                                                                       | (14) |
|           | $U = \frac{1}{m_x} (y_1^2 m_x + a^2 m_y)$                                                                                                                                                     | (7) | $U = \frac{1}{bx_1} (b^2 m_x + m_y x_1^2)$                                                                                                                             | (15) |
|           | $P_{2} = \frac{24b}{a^{2}} \frac{(y_{1}^{2}m_{x} + a^{2}m_{y})}{[4eby_{1}^{2} + (1-e)y_{1}^{3}]}$                                                                                             | (8) | $P_2 = \frac{24}{b^2(3e+1)} \frac{b^2 m_x + x_1^2 m_y}{x_1^2}$                                                                                                         | (16) |
|           | $(1-e)m_xy_1^3 + 3(1-e)a^2m_yy_1 + 8ea^2bm_y = 0$                                                                                                                                             | (9) | $-\frac{48m_x}{(3e+1)x_1^3} = 0$                                                                                                                                       | (17) |
| 記号        | $W$ :外力による仕事, $U$ :内力による仕事, $P_2$ :作用荷重 $P(x, y)$ の最大値, $x_1, x_2, y_1, y_2$ :各タイプの崩壊機構の降<br>伏線始点位置, $m_x, m_y, (M_{ax}, M_{by})$ :x, y方向の正(負)の降伏線における抵抗曲げモーメント.                              |     |                                                                                                                                                                        |      |

#### 4. コンクリート板の塑性理論による解析

コンクリート板の塑性理論に基づき<sup>12)</sup>, **表**-1 に 示す崩壊機構に対し仮想仕事式を適用すると,理論 上の崩壊荷重が求められる。タイプ1及びタイプ2 の崩壊機構は考えられる唯一な崩壊機構であれば, さらに,これらの崩壊機構に対する崩壊荷重の最小 値が存在すれば,この崩壊荷重の最小値は二隣辺固 定二辺自由なコンクリート板の終局耐荷力となる。

**表**-1 に示す各崩壊機構に対し,正の降伏線 CE (タイプ1)と,EB またはED(タイプ2)のx,y方向 における抵抗曲げモーメントをそれぞれ $m_{x},m_{y}$ と, 負の降伏線 BC,CD の抵抗曲げモーメントをそれぞ れ $M_{ax},M_{by}$ と定義する。崩壊機構に仮想変位(座標原 点に $\delta$ =1 とする)をそれぞれ与えれば,式(1)で示さ れる荷重P(x,y)のなす外力仕事Wと抵抗モーメント によってなされる内力仕事Uが等しいことから,各崩 壊機構の作用荷重が**表**-2 の式(4)および式(12)の ように $P_{2}$ を用いて表すことができる。

さらに、各崩壊機構の作用荷重  $P_2$ を最小とするように、**表**-1 中の各崩壊機構に示す $x_1$ ,  $x_2$ ,  $y_1$ ,  $y_2$ に対してそれぞれ微分し、また、これらの微分  $dP_2/dx_1 = 0$ ,  $dP_2/dx_2 = 0$ ,  $dP_2/dy_1 = 0$ ,  $dP_2/dy_2 = 0$ とすると、 $x_1$ ,  $x_2$ ,  $y_1$ ,  $y_2$ に関する計算式がそれぞれ 求められる。例えば、辺長比k > 1.0 でタイプ 1 の崩 壊機構の場合は、**表**-2 中の式(5)のように $y_2$ に関す る 4 次の方程式が導かれる。以上の手順で求められ た結果をまとめると**表**-2 に示すとおりである。

なお,各降伏線における単位幅当たりの抵抗曲げモ ーメント m は,鉄筋量が釣合い鉄筋比以下の場合, 近似的に式(18)によって求めることができる。

$$m = nA_s f_y jd = \frac{1}{s} A_s f_y jd \qquad (18)$$

ここに、n:単位幅当たりの鉄筋本数、 $A_s:$ 鉄筋1本 当たりの断面積、 $f_y:$ 鉄筋の降伏応力度、jd(=z):アーム長、d:板断面の有効高さ、s:鉄筋配置間隔。

- 4.1 タイプ1の崩壊機構の終局耐荷力に関する 検討
- (1) 辺長比 k >1.0 の場合
- 表-2 中の式(5)は、4 次の多項式であるため、y2

の解は容易に求めることはできない。一つの特例と して、土圧比 e=1.0 の等分布荷重が作用し、板の各 降伏線における抵抗曲げモーメントがすべて等しい 場合、y2の解が式(19)のようになり、文献 11)の結 果と一致している。

$$y_2 = \frac{-a^2 + a\sqrt{a^2 + 6b^2}}{2b} \tag{19}$$

次に、一般的な場合を考える。各降伏線における 抵抗曲げモーメントの比として、 $\alpha = m_y / M_{by}$ 、  $\beta = M_{ax} / M_{by}$ 、 $\gamma = m_x / M_{ax}$ および $Y = y_2 / b(Y : 降伏線$ 位置関数)と定義する。辺長比k > 1.0の場合、抵抗曲 げモーメント比は $\alpha = \beta = \gamma = 1.0 \sim 0.5$ の範囲で変化 するため、ここでは、 $\alpha = \beta = \gamma = 1.0$ と $\alpha = \beta = \gamma = 0.5$ の2ケースについて式(4)および式(5)を図で示す。

抵抗曲げモーメントの比*α*, *β*, *γ*と降伏線位置関数 *Y*を式(5)に代入すると式(20)が得られる。

 $(1-e)\beta\gamma Y^4 + 2(1-e)\beta Y^3$ 

 $-[4\beta + 6(1+e)\beta\gamma - 3(1-e)(1+\alpha)/k^{2}]Y^{2}$ 

 $-8(1+\alpha)Y/k^2 + 6(1+e)(1+\alpha)/k^2 = 0$  (20) 式(20)の左辺を f(Y)とし、f(Y)と降伏線位置関数 Y との関係は、土圧比 e = 1.0,抵抗曲げモーメント比  $\alpha = \beta = \gamma = 1.0$ の場合、図-2 のようになる。同図 から分かるように、Y は、f(Y)曲線が 0 軸と交わる 点の値を取れば、この値は式(20)の解となる。また、 各土圧比 e に対し、 $\alpha = \beta = \gamma = 1.0$ の場合、降伏線 位置関数 Y と辺長比 k との関係を整理すると図-3 のようになる。同図から、辺長比 kの増大に従って、 各土圧比 e に対応する Y の値は規則性の変化が見ら れるものの、全体的に見て減少する傾向である。さ らに、図-3 に示す降伏線位置関数 Y の値を表-2 中の式(4)に代入し、崩壊荷重  $P_{2col}$ と辺長比 k との



図-2 各辺長比kにおけるf(Y)とYの関係



図-3 各土圧比eにおけるY とkの関係



図-4 各土圧比 e における P<sub>2col</sub> と k の関係

関係を示すと図ー4 a)のようになる。同様に,抵抗 曲げモーメント比 $\alpha = \beta = \gamma = 0.5$ の場合,崩壊荷重  $P_{2col}$ と辺長比kとの関係は図ー4 b)のようになる。

(2) 辺長比 *k* ≦1.0 の場合

**表-2**中の式(13)は、関数*x*2の二次方程式である ため、式(21)を満足する場合に有意な解がある。

 $[(1+3e)M_{by} + 4(1+2e)m_{y}] \cdot (1+2e)(M_{ax} + m_{x}) > 0$ (21)

抵抗曲げモーメント比α=β=γ=1.0およびα=β= γ=0.5の2ケースを例とすると,**表-2**中の式(13) の解は式(22)および式(23)でそれぞれ与えられる。 さらに,式(22)および式(23)を各土圧比*e*と辺長比 *k*に関して整理すると図-5が得られる。

$$\frac{x_2}{a} = \frac{-2(1+3e)k^2}{(5+11e)} + \frac{2k\sqrt{(1+3e)^2k^2 + 10 + 42e + 44e^2}}{(5+11e)}$$
(22)

$$\frac{x_2}{a} = \frac{-3(1+3e)k^2}{4a^2(3+7e)} + \frac{k\sqrt{(1+3e)^2k^2(1.5)^2 + 12\cdot(3+7e)\cdot(1+2e)}}{2a^2(3+7e)}$$
(23)



図-5 から分かるように、辺長比 k の増大に従っ て  $x_2/a$  の値が増大する傾向である。また、辺長比 kが小さい場合では、 $x_2/a$  への土圧比 e の影響は極め て小さいことも理解される。

図-5 に示す結果をそれぞれ表-2 中の式(12)に 代入し,抵抗曲げモーメント比 $\alpha = \beta = \gamma = 1.0$ および  $\alpha = \beta = \gamma = 0.5$ の場合の崩壊荷重 $P_{2col}$ と辺長比kとの 関係を図-6 に示す。同図 a)と b)の比較から分かる ように,抵抗曲げモーメント比 $\alpha = \beta = \gamma = 1.0$ および  $\alpha = \beta = \gamma = 0.5$ の崩壊荷重 $P_{2col}$ はほぼ同じ結果である。

以上の現象は、土圧比 e によって正の降伏線 CE の位置が若干変化するが、板のトータルな抵抗曲げ モーメントはさほど変わらないため、二隣辺固定二 辺自由なコンクリート板の崩壊荷重 P<sub>2col</sub>には、抵抗 曲げモーメント比の影響が少ないことと理解される。



## 4.2 タイプ2の崩壊機構の終局耐荷力に関する 検討

表-2 中の式(9)において、土圧比  $e \ge y_1$ の適用 範囲は、それぞれ0 $\le e \le 1.0 \ge 0 < y_1 \le b$ であるため、 式の左辺が常に0 より大きい。この場合、考えられ る板の崩壊機構は $y_1=b$ の場合に発生し、その時の崩 壊荷重 $P_{2col}$ は式(24)で与えられる。

 $P_{2col} = 24(b^2m_x + a^2m_y)/[a^2b^2(1+3e)]$ (24)

一方, **表**-2 中の式(17)の成り立つ条件としては,  $x_1 = \infty$ であるため,  $x_1$ の適用範囲 $0 < x_1 \le a$ において, 考えられる板の崩壊機構は $x_1 = a$ の場合に発生され, この場合の崩壊荷重 $P_{2cal}$ は式(24)と同じくなる。

式(24)に示す崩壊荷重 *P<sub>2col</sub>* と**図ー4**, **6** に示す崩壊 荷重 *P<sub>2col</sub>* と比較し,その小さい方が二隣辺固定二辺 自由なコンクリート板の真の崩壊荷重である。

### 5. おわりに

本論文で得られた知見を以下に示す。

(1) 三角形,台形および等分布荷重が作用する二隣 辺固定二辺自由なコンクリート板の崩壊機構は,表 -1に示すタイプ1とタイプ2の各々2種類に分類す ることができる。 (2) タイプ1の崩壊荷重  $P_{2col}$ は、 $\alpha = \beta = \gamma = 1.0, 0.5$ の場合、辺長比 e に応じて、図ー4 と図ー6 で、タイ プ2の崩壊荷重  $P_{2col}$ は式(24) でそれぞれ求められる。 タイプ1 とタイプ2 の崩壊荷重を比較し、その小さ な方は二隣辺固定二辺自由なコンクリート板の真の 崩壊荷重  $P_{2col}$  である。

 (3) 実務上では、関係基準<sup>3,4</sup>に基づいて式(1)に示 す荷重 P(x, y)の P<sub>2</sub>の値を求め、真の崩壊荷重 P<sub>2col</sub> と比較することにより、二隣辺固定二辺自由なコン クリート板の耐荷力の有無を判断できる。

## 参考文献

- 右城 猛:南海地震に備えた擁壁の設計法,平 成16年度高知県土木技術職員研修資料。
- 例えば、山本一敏・佐藤 成:2004 年新潟県中 越地震・被害調査速報(その2),2004.11
- 3) 日本道路協会:道路土工 擁壁工指針, 1999.3
- 4) 農林水産省構造改善局建設部設計課:土地改良
   事業標準設計,第9編 擁壁, pp.62-67, 1993
- 5) 東 洋一,小森清司:平板構造,建築構造学大系 11, pp.99-108, 1963
- 6)金田一男ほか:土圧を受ける二隣辺固定二辺自由板の解析解とその応用,構造工学論文集 Vol.50A,
   pp.1025-1034,2004
- 7) Kaneda, K. Iraha, S Takamine, T. Shimabuku K : An analytical study of rectangular plates under triangularly distributed regional loads, Journal of Applied Mechanics, JSCE, Vol. pp.17-248, (August 2005),
- 8) 松原 仁ほか:回転自由度を有する四面体要素を 用いたフリーメッシュ法, 土木学会論文集, No. 766/1-68, pp.97-107, 2004.7
- 9) 金田一男ほか: コンクリート隅角部擁壁のたて 壁の設計について、コンクリート工学年次論文集, Vol. 28, No. 2, pp.7-12, 2006

10)土木学会:構造力学公式集, pp.353~356, 1986

- 11)Sawczuk, A . and Jaeger, T. : Grenztragfahigkeits-Theprie der Platten, Springer-Verlag, pp.244-369, 1963
- 12)田辺忠顕ほか 共著:コンリート構造,朝倉書店, pp.190-200, 1992