論文 超高層RC造住宅の内部粘性減衰と地震応答の評価

和泉信之*1·清水 隆*2·千田啓吾*3

要旨:超高層 RC 造建物の耐震設計では,一般に2段階の強さの地震動に対して地震応答解 析を行うが,その際,内部粘性減衰は剛性比例型とし,1次減衰定数は一定の慣用値を用い ることが多い。一方,超高層建物の微動レベルにおける減衰の観測値は,設計に用いる慣用 値より小さい傾向がある。そこで,超高層 RC 造住宅を対象として,内部粘性減衰の大きさ を変えた地震応答解析を行い,最大応答値の変化を検討した。その結果,1次減衰定数や減 衰設定方法の違い等,最大応答値に対する内部粘性減衰の影響を評価することができた。 キーワード:RC 造,減衰,地震応答解析,非線形解析,超高層建築物

1. はじめに

筆者らは,鉄筋コンクリート造(RC造)による高さ 60m 以上の建物(超高層建物)の耐震設
 計法について研究している^{1)等}。

一般に,超高層 RC 造の耐震設計では,レベル 1 (稀に発生する地震動)とレベル 2 (極めて稀 に発生する地震動)の2 段階の強さの地震動に 対して地震応答解析を行い,耐震安全性を検証 している²⁾。超高層 RC 造の地震応答解析では, 通常,数波の地震動波形を用いて多質点系非線 形振動解析を行う。その際,内部粘性減衰は剛 性比例型とし,1次減衰定数(h1)は RC 造では 設計慣用値として 3%程度を用いることが多い。

超高層建物の微動レベルにおける減衰の観測 値は、耐震設計に用いる慣用値より小さい傾向 が見られる。RC 造建物の1次減衰定数の観測値 は、1%から5%程度であり、1次固有周期が1.5 秒以上では、1%から2%程度である。また、観 測値の分析から、RC 造建物の高次モードの減衰 定数は、モード次数が高いほど大きくなる傾向 はあるが、剛性比例型と減衰定数一定型の中間 的な傾向が見られると指摘されている³⁾。

減衰定数の観測値の多くには、地盤による逸

散減衰の効果が含まれており,特別な観測シス テムの場合を除き,観測値から上部構造のみの 減衰を分離して評価することは難しい。さらに, 大地震の観測値を得る機会は少なく,比較的大 きな変形レベルの減衰定数を観測値から評価す ることは困難であろう。

一方,大地震時には部材が降伏して履歴減衰 が相対的に大きくなり,地震応答に与える減衰 定数の影響は小さいとも考えられる。

このように,地震応答解析では減衰定数の設 定が重要であるが,現状では建物の減衰定数に 関する定量的な根拠は明らかになっていない。

そのため、内部粘性減衰の設定を変えた場合 に、設計慣用値を用いた地震応答に比べて、ど のような違いが生じるのか、その変動幅を把握 することは、耐震設計上重要な課題である。

本研究では、内部粘性減衰について、1 次減衰 定数と減衰の設定方法という二つの観点から減 衰の大きさを変えて、粘性減衰エネルギーの割 合と最大応答値の変動を評価する。なお、本研 究において基本とする内部粘性減衰は、超高層 RC 造の耐震設計で多く用いられる瞬間剛性比 例型減衰とし、1 次減衰定数は 3%とする。

- *1 戸田建設(株)構造設計部グループ長 博(工)(正会員)
- *2 戸田建設(株)構造設計部
- *3 戸田建設(株)構造設計部 工修

2. 解析計画

2.1 解析対象建物

本解析では,現在建設されている超高層 RC 造 住宅の階数を概ね網羅するように,20 階建から 54 階建までの5 棟の建物¹⁾を対象とする(**表**-1)。この5 棟の構造特性は,超高層 RC 造住宅 の実例を参考として,現行の耐震規定²⁾を満足す るように設定する。

2.2 解析方法

減衰定数による地震応答の違いを検討するために、1次減衰定数の値を変えるケースAと減衰の設定方法を変えるケースBを計画する。

ケース A では、1 次減衰定数は、基本とする 3%を中心に、減衰定数の観測結果³⁾を参考にし て 1%から 5%まで変化させる。また、内部粘性 減衰は基本の瞬間剛性比例型とする。

ケース B では、減衰の設定方法は、剛性比例 型のほかに、レイリー型を用いる。これは、高 次減衰の観測値は前述したように剛性比例型よ り小さい傾向が見られるためである³⁾。剛性比例 型は、初期剛性比例型と瞬間剛性比例型とする。 瞬間剛性比例型は、初期剛性比例型に比べて、 ひび割れや降伏による剛性低下に応じて内部粘 性減衰を小さく評価する。また、剛性比例型の1 次減衰定数は、基本の3%とする。レイリー型の 1 次および2 次減衰定数は、3%とする。

2.3 解析方法

解析モデルは、耐震設計の基本振動系モデル として多く採用されている等価曲げせん断モデ ルとする。このモデルは、骨組の静的非線形解 析結果に基づいた等価な曲げせん断ばね(曲げ ばね:弾性,せん断ばね:弾塑性)である。せ ん断ばねの復元力特性は、TAKEDA モデル⁴⁾と する(図-1)。また、基礎は固定とする。

2.4 検討用地震動

検討用地震動は, 平成 12 年建設省告示第 1461 号に基づく位相の異なる模擬地震動(告示波) である(表-2)。地震動は, レベル1(L1地震 動)とレベル2(L2地震動)の2段階の強さと し,各波形の基礎底位置の擬似速度応答スペク トルを図-2に示す。なお、表層地盤は第2種 地盤(東京都下丸子地域)を想定している。

表-1 超高層 RC 造建物の諸元

名称	U20	R28	T36	S45	S54
階数	20	28	36	45	54
軒高(m)	61.75	94. 03	114. 60	146.05	174. 20
dCb	0. 125	0. 095	0. 075	0.063	0. 055
T1(秒)	1. 32	1.99	2. 27	3.05	3. 49
Qc/\SigmaW	0. 055	0.044	0. 033	0. 025	0. 026
Qy/∑W	0. 248	0.178	0.145	0. 104	0. 098
ky/k1	0. 266	0. 272	0. 323	0. 335	0. 302
k3/k1	0.012	0.012	0. 021	0. 025	0.015

注)dCb:許容応力度設計用ベースシア係数,「1:1 次固有周 期, Qc,Qy:1 階層せん断力の第 1 折点,第 2 折点,ΣW:建 物全重量,k1,k3,ky: 1 階第 1 剛性,第 3 剛性,降伏点剛性

図-1 建物の復元力特性

表-2 検討用地震動

	· · · · · · · · · · · · · · · · · · ·				1.1.1.1.1
	レベル1の地震動		レベル2の地震動		継続
波形名称	最大加速度	最大速度	最大加速度	最大速度	時間
	cm/s^2	cm/s	cm/s ²	cm/s	sec
CODE-EL	89	11	349	55	60
CODE-HA	72	14	394	66	80
CODE-BCJ	76	11	330	54	120

3. 解析結果

3.1 エネルギー比率

R28 建物の累積エネルギーの時刻歴を図-3 に示す。減衰は瞬間剛性比例型(h1=3%)である。 内部粘性減衰エネルギー(減衰エネルギー)が 徐々に累積されている。地震動最終時刻におけ る減衰エネルギーの累積値が入力エネルギーの 累積値に占める比率(減衰エネルギー比率)を 図-4に示す。減衰エネルギー比率は、地震動 によらず、h1 が大きくなる程大きくなり、瞬間 剛性比例型に比べて、初期剛性比例型が大きく、 レイリー型が小さい。

3.2 最大応答値

R28 建物を一例として最大応答値を図-5~ 図-9に示す。L1 地震動による層せん断力を見 ると(図-5), 階によりやや異なるが, hl が小 さくなる程大きくなり、高次モードの影響が強 くなる。上層階では、h1=3%に比べて、 1%では 約20%増大,5%では約15%減少している。また, 瞬間剛性比例型に比べて、初期剛性比例型はあ まり違いがないが, レイリー型は上層階や下層 階において高次モードの影響が見られる。上層 階では,層せん断力は瞬間剛性比例型に比べて, レイリー型では約15%増大している。図中には、 比較のため,許容応力度設計用層せん断力を示 すが, 各応答値に対して余裕がある。これは, 超高層建物の耐震設計では、L1 地震動として、 告示波とともに、従来からの設計との連続性等 を考慮して、告示波より強い標準波(最大速度 値を増幅した観測波)に対しても検討している ためである。L1 地震動による層間変形角を見る と(図-6),層せん断力の比較で見られた高次 モードの影響がより明らかである。層間変形角 は、上層階では、h1=3%に比べて、1%では約55% 増大,5%では約15%減少している。また、上層 階では,瞬間剛性比例型に比べて,レイリー型 では約55%増大している。

L2 地震動による層間変形角を見ると(図-7), h1 が小さくなる程大きくなり,最大値は h1=3% に比べて,1%では約30%増大,5%では約25%

減少している。また,L1 地震動に比べて剛性低 下による減衰評価の影響が見られ,瞬間剛性比 例型は初期剛性比例型より大きい。レイリー型 は,高次モードの影響が表れている。上層階で は,瞬間剛性比例型に比べて,初期剛性比例型 では約 25%減少し,レイリー型では約 15%増大 している。図中には,L2 地震動に対する一般的 な許容変形角である 1/100 を示す。各応答値は 1/100 以下であるが,高次モードの減衰評価の不 確実性を考慮すると,上層階の応答変形には余 裕を持たせたい。

L2 地震動による層せん断力を見ると(図-8), 中間階では h1 が小さくなる程大きくなり,最大 値は h1=3%に比べて,1%では約 15%増大,5% では約 5%減少している。また,瞬間剛性比例型 に比べて,初期剛性比例型は全階で小さいが, レイリー型は上層階では大きく,下層階では小 さい。L2 地震動による転倒モーメントを見ると (図-9),層せん断力の比較に比べて,h1 が小 さくなる程大きくなる傾向が明瞭である。また, レイリー型は,剛性比例型に比べて高次モード の影響が大きい。

4. 解析結果の考察

4.1 減衰評価による減衰エネルギー比率の違い

減衰定数の違いによるL2地震動の減衰エネル ギー比率の比較を図-10に示す。棟による比率 の違いがややあるが、1次固有周期に対する傾向 は明瞭には見られない。減衰エネルギー比率の 平均値は、h1=1%では約33%、3%では約55%、 5%では約65%であり、1次減衰定数が大きくな る程、大きくなることがわかる。

減衰設定の違いによるL2 地震動の減衰エネル ギー比率の比較を図-11 に示す。棟による比率 の違いがややあるが,減衰定数の違いによる比 較と同様に、1 次固有周期による違いはあまり見 られない。減衰エネルギー比率の平均値は、瞬 間剛性比例型の約 55%に対して、初期剛性比例 型では 65%程度と大きく、レイリー型では 46% 程度と小さいことがわかる。

図-11 減衰設定の違いによる減衰エネルギー

比率の比較(ケース B. L2 地震動)

4.2 減衰評価による最大応答値の違い

ベースシア係数(CB),転倒モーメント(OTM) および全体変形角(TR)について,基本の瞬間 剛性比例型(h1=3%)の応答値に対する各減衰の 応答値の比率(応答増減比)を検討する。ここ では,応答増減度合の平均的な傾向を見ること として,応答増減比は3波の平均値とする。な お,全体変形角は,建物頂部の水平変位を建物 高さで除した変形角である。

 1 次減衰定数の違いによる応答増減比を図ー
 12 に示す。L1 地震動では、h1=1%の場合には、 CB は最大 11%、TR は最大 17%程度増加する。
 L2 地震動では、h1=2%の場合には、CB、OTM、 TR とも最大 10%程度の増加である。

減衰設定の違いによる応答増減比を図-13 に 示す。初期剛性比例型では、L2 地震動の応答増 減比がL1 地震動に比べて小さい。また、レイリ 一型では、高次モードの影響により、OTM はL2 地震動では10%程度減少する。

5. まとめ

現行の耐震規定を満足する超高層 RC 造住宅 を対象とした内部粘性減衰を変えた地震応答解 析から,得られた知見を以下に示す。

(1) 超高層 RC 造住宅の耐震設計で慣用的に 用いられている内部粘性減衰(瞬間剛性比例型, 1 次減衰定数 h1=3%)の場合,累積減衰エネルギ ーの入力エネルギーの累積値に占める平均的な 比率は,本解析の範囲では 55%程度である。

(2) 設計慣用減衰(瞬間剛性比例型, h1=3%) を基本ケースとして,内部粘性減衰の大きさを 変えた場合について,応答値の増減程度を応答 増減比として示した。

(3) h1=2%(瞬間剛性比例型)の場合,基本 ケースに比べて,L2地震動の応答値を平均的に 見ると、ベースシア係数,転倒モーメントおよ び全体変形角が最大10%程度増加する。

(4) レイリー型(h1=h2=3%)の場合,基本 ケースに比べて,高次モードの影響により,上 層階では層間変形角が増大するが,転倒モーメ ントは減少傾向が見られる。

謝辞

本論文の作成には,藤堂正喜博士はじめ戸田 建設研究開発プロジェクト各位のご協力を頂い た。ここに記して感謝の意を表する。

参考文献

- 1)和泉信之ほか:コンクリートの実強度を考 慮した超高層 RC 造建物の地震応答,第12 回日本地震工学シンポジウム,pp.878-881, 2006
- 2)国土交通省住宅局建築指導課:建築物の構造
 関係技術基準解説書, pp.327-331, 2001
- 3)日本建築学会:建築物の減衰, pp.126-143, 2000
- 4)Takeda, Sozen and Nielsen: Reinforced Concrete Response to Simulated Earthquakes, Journal, Structural Division, ASCE, Vol.96, No.ST12, pp.2557-2573, 1970