論文 簡易な接合方法を用いた履歴型ダンパーの構造性能に関する 基礎研究

藤本 利昭¹•稻井 栄一^{*2}•李 柱国^{*2}

要旨:本研究は, RC 造建築物に適用する間柱形式の履歴型ダンパーを研究対象とし, ダン パーと根巻き RC 部との接合方法(頭付きスタッド,ベースプレート)ならびに根巻き RC 部の応力状態を要因とした構造実験を行った。実験結果より,接合方法および根巻き RC 部 の応力状態の違いがダンパーの変形成分,応力伝達メカニズム,構造性能に及ぼす影響を明 らかにするとともに,提案した簡易な接合方法を用いた構法が,ダンパーの性能を十分有す ることを明らかにした。

キーワード:鋼材ダンパー,低降伏点鋼,接合方法,根巻き RC 部

1. はじめに

近年,超高層 RC 造建築物への制震技術の適用 が増加している。特に,図-1 に示すような低降 伏点鋼を用いたせん断型履歴ダンパーの上下部 を RC で根巻きする間柱型ダンパーが多く採用 されている。このような制震ダンパーを RC 造建 築物に設置する場合,接合方法により制震ダン パーの性能が大きく左右されることから,文献 1),2)等に見られるように,種々の接合方法が提 案されている。しかしながら,これらダンパー は接合方法が煩雑であり,充分合理的な構法と はなっていない。

本研究では、文献 3)に示された頭付きスタッ ド(以下、スタッド)ならびにベースプレート による簡易な接合方法を適用した間柱型せん断 ダンパーの構造性能について載荷実験に基づき 検証した。

2. 載荷実験

2.1 試験体

表-1 に試験体一覧を,図-2 に試験体形状を示 す。試験体は図-1 の間柱型ダンパーの 1/2 縮小 模型試験体である。試験体上下には,躯体の梁 を模したスタブを取り付けている。また,試験 体中央部の H 形鋼が履歴ダンパー部分であり, 根巻き RC 部に埋め込まれている。

試験体 No.3, No.4 が,本論文で提案するダンパー パー試験体である。H 形断面を有するダンパー

図-1 間柱型ダンパー

表 - 1 試験体一覧

試験	根巻き	銰	埋め込	ベース	頭付き	主故	p _t	せん断	p _{we} [⋇]	上部横補	下部横補 強筋	
体	RC 断面	ダンパ−部 埋め込み部		み深さ	プレート	スタット゛	土肋	(%)	補強筋	(%)		
No. 1	b × D=	H_200 × 7	5 2 5 5 2 8	200mm	無し	12-Φ13	16-D16	1.06	4-RB6. 2@40	1.33	2-RB6. 2, 2	2-RB6. 2, 2
No. 2	300mm	11-200 ~ 7	3 ~ 3. 3 ~ 0	300mm	t=12mm	無し	16-D16	1.06	4-RB6. 2@40	1.33	2-RB6. 2, 2	2-RB6. 2, 2
No. 3	×	300×100 300×100		200mm	4 年1	1212	16-D16	1.06	4-RB6. 2@40	1.33	2-RB6. 2, 3	2-RB6. 2, 3
No. 4	500mm	×4.5×9	× 6. 5 × 9	3001111		12-413	20-D16	1.32	4-RB6. 2@35	1.71	2-RB6. 2, 3	-
					×	く:ダンパ	-のフランジ	の外	側を根巻きR	C の有	i効幅として	〔算定した値

*1 安藤建設技術研究所 振動・基礎研究室 博士(工学) (正会員)

*2 山口大学大学院理工学研究科 助教授 博士(工学) (正会員)

は、根巻き RC 部に 300mm (H 形鋼のせいの長 さ)埋め込み、フランジにスタッドを設置して いる。ダンパー中央部はウェブを切り取り、No.3 は LY100, No.4 は LY225 の低降伏点鋼を隅肉溶 接で取り付けている。

試験体 No.1, No.2 は, No.3, No.4 とほぼ同程 度のせん断力で根巻き RC 部の応力条件が厳し くなるように,H 形鋼の断面を小さくし,普通 鋼 (SS400)を用いて,根巻き RC 部の長さを短 くした試験体である。ダンパー部が長くなるた め,鉄骨と根巻き RC 部の切り替え部には大きな モーメントが作用する。No.1 は,ダンパーを根 巻き RC 部に 200mm (H 形鋼のせいの長さ)埋 め込み,フランジには No.3, No.4 と同数のスタ ッドを設置している。No.2 は,文献 3)の実験結 果を基に,構造性能が優れていると考えられる ベースプレート形式とした。ダンパーの根巻き RC 部への埋め込み深さは 300mm (H 形鋼のせい の 1.5 倍)とし,上下端部にベースプレートを設 けている。なおスタッドは設けていない。

根巻き RC 部の主筋は, No.1, No.2, No.3 が 16-D16, No.4 が 20-D16 とし, 全てプレート定着 とした。根巻き RC 部には, せん断補強筋の他に, No.1, No.2, No.3 ではダンパーとの切り替え部 近傍とダンパー端部に横補強筋を集中的に配し ているが, No.4 では合理性を高めるため, ダン パー端部の横補強筋を省略した。

試験体に用いた材料の試験結果を表−2,表−3, 表-4に示す。

表-2 コンクリートの材料試験結果

試除体	圧縮強度	$\sigma_{\rm B}$ (N/mm ²)	ヤング係数 E。(kN/mm?)								
山山河大中	下柱	上柱	下柱	上柱							
No.1	41.8	42.9	26.7	26.5							
No.2	42.7	43.0	26.5	26.8							
No.3	42.8	43.9	26.5	26.7							
No.4	34.9	38.1	24.4	24.5							

表-3 鉄筋の材料試験結果

	降伏応力	引張強さ	降伏	破断	
種類	σ_{y}	σ_{t}	ひずみ	伸び	
	(N/mm ²)	(N/mm ²)	ε,(%)	ε _t ‰	
RB6.2(No.1~3)	882	898	0.473	12.4	
RB6.2(No.4)	872	892	0.464	13.3	
D16(No.1~3)	374	568	0.195	21.6	
D16(No.4)	373	572	0.193	22.0	

表-4 鋼材の材料試験結果

		板厚 降伏応力 引張引		引張強さ	降伏	破断
使用箇	所	t	σ_{y}	$\sigma_{ m t}$	ひずみ	伸び
		(mm)	(N/mm ²)	(N/mm ²)	ε _ν (%)	ε _t (%)
	No.1,2	7.57	286	434	0.139	38.2
フランシ゛	No.3	8.63	330	465	0.156	39.6
	No.4	8.27	281	428	0.139	37.7
д -э,	No.1,2	5.20	296	433	0.145	37.6
·ノ⊥ノ (十田 ンス エュ エバ)	No.3	6.43	429	520	0.206	29.0
(正元のとい)	No.4	6.13	326	450	0.155	37.4
ל ז דַע	No.3	4.58	91.3	253	0.054	58.7
(ダンパー部)	No.4	4.43	214	317	0.107	38.7

2.2 載荷方法及び計測計画

載荷装置を図-4 に示す。載荷は逆対称加力と し,変位制御による正負交番載荷とした。載荷 サイクルは部材角 R(水平変位/内法高さ)が 1/1000, 2/1000(rad.)で各1回, 3/1000, 5/1000, 7.5/1000, 10/1000, 15/1000(rad.)で各2回, 7.5/1000, 20/1000, 30/1000(rad.)で各1回繰り返すことにし た。なお、軸力は作用させていない。

測定項目は水平ジャッキの荷重,水平変位, RC 部における回転角と水平変形,H 形鋼の抜け 出し等である。また, RC 部の主筋及びせん断補 強筋, H 形鋼のフランジ及びウェブにはひずみ ゲージを貼付し、ひずみを計測した。

3. 実験結果

3.1 荷重変形関係及び破壊経過

写真-1 に最終ひび割れ状況を、図-5 に試験体 のせん断力 Q(水平ジャッキの荷重)-部材角 R

No. 1

No. 2 写真-1 最終ひび割れ状況

関係を示す。

根巻き RC 部のひび割れは, 全試験体ともにダ ンパーとの切り替え部上下面のフランジ付け根 のひび割れ、スタブ付け根の曲げひび割れ、せ ん断ひび割れの順に発生した。

No.1 は, 部材角 R=3/1000 で鉄骨フランジが降

図-4 載荷装置

No. 3

伏した。その後ひび割れの増加とともに鉄骨の 抜け出しが顕著となり, R=15/1000 で最大耐力に 達し,抜け出し破壊により耐力が低下した。

No.2はR=3/1000で鉄骨フランジが降伏した後 も耐力は上昇し, R=30/1000においても耐力低下 は認められなかった。

No.3 は R=1/1000 でダンパーのウェブ(LY100) が, No.4 は R=2/1000 でダンパーのウェブ(LY225) がせん断降伏した。No.3, No.4 試験体ともにせ ん断降伏後も耐力は上昇し, R=30/1000 において も耐力低下は認められなかった。

なお,いずれの試験体も主筋,補強筋は降伏 していない。

3.2 変形性状

図-6 に試験体の部材角に伴う各部の変形割合 の変化を示す。No.1 では、頂部コンクリートの 損傷が激しく、ダンパーの変形とダンパーの抜 け出しによる変形とが分離できなかったが、破 壊形状からは、ダンパーの抜け出しによる変形 が卓越しているものと考えられる。

一方 No.2, No.3, No.4 ではダンパーの変形が 全体変形の約 80%と大きく, RC の変形は僅かで ある。No.3 と No.4 では, ダンパーに LY100 を 用いた No.3 は, LY225 を用いた No.4 に比べ早 期にせん断降伏による剛性低下が生じたことか ら, 部材角の小さな段階からダンパーの変形割

合が大きくなっている。また, No.2, No.3, No.4 では抜け出しによる変形は僅かで, 終始一定の 割合であった。

4. 根巻き RC 部の応力伝達と耐力

4.1 根巻き部における応力伝達

図-7 に R=10/1000(rad.)におけるダンパーの負 担モーメントの高さ方向の分布を示す。図の横 軸は RC 材端断面のモーメントで基準化して表 している。

スタッドを設けた No.1, No.3, No.4 では, RC との切り替え部から材端に向かって負担モーメ ントが徐々に減少している。ダンパー端部にベ ースプレートを持つ No.2 では埋め込み部でほぼ 一定のモーメントを負担している。

図-8 に R=10/1000(rad.)におけるダンパーの負担せん断力の高さ方向の分布を示す。図の横軸は試験体せん断力で基準化して表している。

負担せん断力は,材端に近づくにつれ減少し ている。ダンパーの抜け出しにより破壊した

No.1 の鉄骨端部には大きな負のせん断力が生じている。

図-9 に、根巻き RC 部のコーナー部主筋、お よび補強筋の高さ方向のひずみ分布を示す。 No.2, No.3, No.4 の主筋のひずみは、材端から 切り替え部に向かって直線的に減少しているが、 No.1 では、ほぼ一定のひずみ分布となっている。 No.1 はダンパー(スタッド)の抜け出しによる コンクリートのコーン状破壊に対して主筋の定 着プレートが抵抗したため、主筋が純引張に近 い応力状態になったものと考えられる。また補 強筋は、No.1, No.2 では、材端から切り替え部 に向かってひずみが増加しており、特に No.1 の ひずみが大きい。一方 No.3, No.4 のひずみは僅 かであり、ダンパー端部の集中補強筋を省略し た影響は認められない。

文献 3)で述べられているように、ベースプレ

ートや,スタッドによりモーメントに抵抗でき る場合には,RC部に入力するせん断力はほぼ試 験体のせん断力に等しくなるが,ベースプレー トが無く,またスタッドの耐力が不十分な場合 には,試験体のせん断力よりRC部に入力される せん断力が大きくなるものと考えられる。

4.2 根巻き RC 部の耐力

表-5 に実験値と試験体各部の計算耐力を比較 して示す。表中の数値は,全て試験体の水平力 に換算した値である。ここで,根巻き RC 部の終 局曲げ耐力 Q_{mu} は, ACI のストレスブロック法 により,終局せん断耐力 Q_{su} は文献 4)の A 法に よる値である。なお Q_{su} は,ダンパーのフランジ の外側を有効幅として算定した。また,No.3, No.4 のダンパーの終局せん断耐力 Q_{dsu} は,文献 5)の式により求めた。

本実験では,全ての試験体で根巻き RC 部の曲 げ耐力およびせん断耐力が,ダンパーの耐力に 対して大きく上回るように設計している。特に せん断耐力は,前節で述べたように試験体のせ ん断力より RC 部に入力されるせん断力が大き くなるおそれがあったことから,RC 部の曲げ耐 力に対して余裕を持たせている。実験結果から も,低降伏点鋼を用いたダンパーのひずみ硬化 による耐力上昇は顕著であり,実際の設計にお いても充分余裕を持った設計をすることが肝要 である。なお,ひび割れ耐力がダンパーの耐力

表-5 耐力一覧(Unit:kN)

試		実験値				計算耐力									
験		0	0	0	0										
体		Q _{mc}	U _{sc}	Q ₁₀₀	Q _{max}	Q_{mc}	$Q_{\rm sc}$	Q _{mu}	Q_{su}	$\mathbf{Q}_{\mathrm{std}}$	Q_{anc}	Q_{dmy}	Q_{dmu}	Q_{dsy}	\mathbf{Q}_{dsu}
No.1	正側	125	145	162	174	106	218	467	706	227	145	152	179	164	_
NO. 1	負側	-117	-140	-160	-160	100	210	407	730	007	145	152	170	104	
No 2	正側	81	162	184	227	107	219	467	801	I	246	152	178	164	-
NU. Z	負側	-86	163	-186	-241										
No 3	正側	94	221	202	268	106	196	467	716	848	445	664	609	68	277
NO. 5	負側	-100	-205	-206	-280	100									
No. 4	正側	86	241	241	302	101	174	548	600	735	401	545	579	155	301
NU. 4	負側	-100	-244	-244	-313	101									

※ Q_{mc}, Q_{sc}: 根巻き RC の曲げひび割れ, せん断ひび割れ耐力

(Q_{sc}の実験値は、せん断ひび割れが発生した加力サイクルの最大荷重を表示),

Q₁₀₀:R=1/100時せん断力,Q_{max}:最大耐力,Q_{mu},Q_{su}:根巻きRCの終局曲げ耐力,終局せん断耐力⁴⁾,

Q_{std}: (1) 式によるスタッドのせん断耐力⁶⁾, Q_{anc}: (2) 式による頭付きアンカーのせん断耐力⁶⁾,

Q_{dmv}, Q_{dmu}: ダンパーの降伏曲げ耐力, 終局曲げ耐力,

Q_{dsy}, Q_{dsu}: ダンパーの降伏せん断耐力, ダンパーの終局せん断耐力⁵⁾

を上回るように設計することは困難であり,間 柱型ダンパーの根巻き RC 部のひび割れは不可 避であると考えられる。

4.3 スタッド接合部の耐力

スタッド接合部の耐力評価法として,文献 6) に(1)式に示すスタッドコネクタのせん断耐力式 がある。

$$Q = n \cdot 0.5_{sc} a \sqrt{F_c \cdot E_c} \tag{1}$$

ここで, *n*:スタッドの本数, *sca*:スタッドの断 面積, *F_c*, *E_c*:コンクリートの圧縮強度およびヤ ング率

ダンパーが抜け出し破壊した No.1 は, ダンパ ーの断面せいが小さいため, フランジからスタ ッドに作用するせん断力が大きくなり, スタッ ドに対して厳しい応力状態となるが, 表-5 に示 すように実験による最大耐力は, (1)式によるせ ん断耐力 Q_{std}の 1/2 程度である。そこで No.1 で は鉄骨の抜け出しによりコンクリートがコーン 状破壊をしたことから, 図-10 に示す破壊形状を 仮定し, 文献 6)に示された頭付きアンカーのせ ん断耐力式(2)を基にスタッドの耐力を検討した。

$$Q = \sqrt{F_c} \cdot A_c$$
(2)
ここで、 A_c : コンクリートの有効投影面積

なお, No.2 はベースプレートをスタッドと見 なして同様に評価した。

表-5 に示すように,(2)式から求めたスタッドの耐力 Qancは,全ての試験体で(1)式に比べ小さ

図-10 仮定した有効投影面積

く, No.1 では最大耐力を下回っている。一方 No.2, No.3, No.4 では,最大耐力に対して(2)式による スタッドの耐力が上回っており,破壊が生じな かったものと考えられる。以上のことから,(2) 式はスタッド接合部耐力の評価指標になるもの と考えられる。

5. まとめ

簡易な接合方法を用いた履歴ダンパーの実験 から以下の知見が得られた。

- 低降伏点鋼を用いたダンパーの耐力上昇は 顕著であり、根巻き RC 部の設計では耐力に 充分余裕を持たせることが重要である。
- スタッド接合部は、少なくとも(2)式による耐力を満足するように設計する必要がある。
- 3) 試験体 No.4 実験結果から、スタッドの耐力が十分であれば、ダンパー端部の集中補強筋は省略可能と考えられる。
- ベースプレート形式は、スタッド形式に比べ 根巻き RC 部の応力条件が厳しい場合にも充 分な性能を有している。
- 5) 本実験に採用した簡易な接合方法を用いて も,根巻き RC 部の変形は僅かであり,間柱 型ダンパーとして充分な構造性能を発揮す ることが明らかとなった。

参考文献

- 安田聡,原孝文ほか:極低降伏点鋼を用いた RC構造用間柱型制振部材の開発,日本建築学 会大会学術講演梗概集,B-2,pp.1073-1074, 2001.9
- 2) 渕上克志,都祭弘幸ほか:極低降伏点鋼を用 いた超高層 RC 建物対応鋼材ダンパーの開発, 日本建築学会大会学術講演梗概集 C-2, pp.783-784, 2001.9
- 3)木田貴史,稲井栄一,松浦恒久:履歴ダンパ ーと RC 部材の接合方法に関する実験的研究, 日本コンクリート工学協会年次報告集,2006.7
- 4)日本建築学会:鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説,1990
- 5) 松浦恒久,伊藤嘉朗,稲井栄一:低降伏点鋼 を用いた制震間柱の構造性能に関する研究 その2 実験結果の検討,日本建築学会大会学 術梗概集, pp.611-612, 2001 年
- 6)日本建築学会:各種合成構造設計指針・同解 説,1985