論文 付着割裂破壊を伴う低強度コンクリート RC 柱の炭素繊維シートに よる補強効果に関する実験的研究

雨宮 牧子*1・増田 安彦*2・田才 晃*3・楠 浩一*4

要旨:低強度コンクリートによる RC 柱に対する炭素繊維シートの有効性を検証するため, シート補強量をパラメータとする静的加力実験を行った。試験体は無補強の基準試験体,炭 素繊維シートをゼブラ状に巻いた補強試験体,柱全体にシートを3層巻いた補強試験体の計 3体とした。実験の結果から,コンクリート強度が低強度の範囲において,炭素繊維シート 補強による補強効果が確認された。

キーワード:低強度コンクリート,炭素繊維シート,付着割裂,耐震補強

1. はじめに

既存建築物の耐震診断基準¹⁾では, コンクリー トの強度の下限値を 13.5N/mm² とし, それ以下 (以下, 低強度コンクリートという)は耐震補 強の対象外としている。しかし, 低強度コンク リートによる建物は今なお存在し, その機能を 維持し続けることを強く求められるケースがあ る。これに対して何らかの耐震補強が可能とな れば, 解体するよりも経済的に有用性が高いと 思われる。

そこで本実験では付着割裂破壊を想定した低 強度コンクリート RC 柱に対して, 炭素繊維シー トによる補強を行うことで, その有効性の検討 を行う。

2. 実験概要

2.1 試験体概要

柱試験体諸元を表-1に,試験体配筋図を図-1に示す。試験体は,低強度コンクリートを使用 した RC 柱とし,炭素繊維による補強量をパラメ ータとする計 3 体を作製した。内訳は,無補強 基準試験体の LcB00,炭素繊維により補強を行 った LcB03 および LcB17 である。全試験体共に, 1970年以前に建設された RC 柱を想定している。 スケールは実大の 50%程度とし,試験区間の 断面は 400×400mm,内法スパン 800mm である。 主筋は異形棒鋼 20-D22 (SD295) とし,せん断 補強筋には同じく異形棒鋼を用い,2-D6@60 (SD295) とした。

図 - 1 試験体配筋図

*1 横浜国立大学大学院 工学府 社会空間システム学専攻 (正会員)
*2(株)大林組 技術研究所 (正会員) *3 横浜国立大学 大学院 工学研究院 教授 (正会員)
*4 横浜国立大学 大学院 工学研究院 准教授 (正会員)

2.2 材料特性

コンクリートは低強度の普通コンクリートと し、コンクリート強度の目標値を Fc=10N/mm²と した。強度を合わせることを主旨とし、単位セメ ント量を減らすため、混和材に石灰石微粉末を使

用した。図-2にLcB00 の材料試験結果におけ る応力度 - 歪度関係を, 表-2 にコンクリート の配合を示す。表-3 に材料特性を示す。

図 - 2 コンクリート応力度 - 歪度関係

表-2 コングリートの配合									
水セメン	水セメント比		セメント		混和材		水		
(%)		(kg/m^3)		(kg/m^3)		(kg/m ³)		
155	155			142		178			
細骨材①	細骨材②		粗骨材		混和剤		細骨材率		
(kg/m ³)	(kg/m³)		(kg/m ³)		(kg/m ³)		(%)		
633	27	1	934		1. 285		49.7		
混和材:石灰石微粉末 細骨材①:砕砂 細骨材②:砂 粗骨材:砕石 混和剤:AE減水剤									

表 - 3 材料特性

	試験体	LcB	00	L	cB03	LcB17				
コ圧縮	ンクリー 強度(N/m	8. 4		8.9		8.8				
ヤン	ゲ係数(N,	15247		17147		16700				
鉄筋種	ヤング係 (N/mm ²)	数 降() (N	伏強度 I/mm ²)	降t (9	犬歪 6)	引張強 (N/mm	〕度 1²)	破断歪 (%)		
D16	1.85×1	0 ⁵ 3 ⁻	17.67	0. 383		477.08		18.61		
D6	1.84×1	1.84×10^5 34		42 0.188		498.66		6 19.82		
炭素繊 維シー	目付量 (g/m ²)	設計厚 (mm)	[さ 規札	各引了 (N/m	長強) m ²)	度 規格	ヤ: (G	ング係数 oa)		
۲	F 200 0.11		1 3400				230			

2.3 補強方法

LcB03 試験体および LcB17 試験体には,柱に 炭素繊維巻き付けによる補強を施した。試験体 補強詳細図を図-3 に示す。

炭素繊維を巻く柱は,隅角部をR=30程度の面 取りする必要がある。本実験では試験体製作段 階で,試験体 LcB03・LcB17 に R 面木を埋め込 み,面取りを行った。

LcB03 試験体は,まず下地調整としてディス クサンダーで柱表面を研磨した後,柱表面にプ ライマーを塗布し,その上より炭素繊維をゼブ ラ状に巻きつけて付着させ,炭素繊維シートに エポキシ樹脂を塗布・含浸させた。その後さら に柱表面にエポキシ樹脂を塗布した。

LcB17 試験体は,LcB03 と同様の手順で,柱 表面にプライマー塗付後,(柱全域に)炭素繊維 を1層巻き,1層目炭素繊維の表面にエポキシ 樹脂を塗布し,2層目・3層目も同様の手順で炭 素繊維を巻きつけ,その上からエポキシ樹脂を 塗布した。

2.4 加力方法

加力は図-4で示す加力装置を用いて行った。 試験体に定軸力(軸力比 η =0.34)を載荷した 状態で上下スタブを平行に保ちながら,柱部分 に逆対称せん断力を加える,静的正負交番繰り 返し載荷とした。加力履歴は,まず荷重制御で 載荷パス±100kNを目標とし,その後は変位制 御として層間変形角 R=±1/2000, R=±1/1000を 1サイクル, R=±1/500, R=±1/250, R=±1/125, R=±1/83, R=±1/50, R=±1/250, R=±1/25, R= ±1/15 (rad.)を2サイクルとし,載荷を行った。 最大耐力の 80%以下となったサイクルの正負 1 回目のサイクルで水平加力を終了した。

計測項目は,水平荷重,水平変形,鉛直変位, 全体および部分の曲げとせん断変形,鉄筋およ び炭素繊維シートの歪とした。

3. 実験結果

3.1 破壊経過

各試験体の荷重 - 変形関係を図-5 に,最大耐 力近傍・最終破壊状況の写真を写真-1 に示す。 写真中の白線は炭素繊維シートの浮き上がりを 示す。また,**表-4**に実験結果一覧を示す。

LcB00 は, R=1/2000(rad.)で曲げひび割れ・せ ん断ひび割れが発生した。続いて R=1/500(rad.) サイクル中,主筋配列面に沿う付着ひび割れが 発生した。R=1/250(rad.)で正負ともに最大耐力に 達し,荷重変形関係上スリップが生じ始めた。 R=1/125(rad.)で主筋の圧縮降伏・フープの降伏が 生じると共に,柱頭・柱脚付近の付着ひび割れ が顕著に開き,除荷時にもその開きは戻らず以 降耐力低下するが,その低下の勾配は緩やかで あった。R=1/50(rad.)で主筋の引張降伏が確認さ れ正負とも最大耐力の 80%以下となった。

LcB03 は, R=-1/2000(rad.)サイクルで負側曲 げひび割れ, R=±1/1000(rad.)で正側曲げひび割 れ・正負せん断ひび割れが発生し, R=1/500(rad.) サイクル中, 主筋配列面に沿う付着ひび割れが 発生した。続いて R=1/250(rad.)で上下危険断面 寄りの炭素繊維シートに浮きが生じた。 R=1/125(rad.)で正負共に最大耐力に達して LcB00 と同様スリップが顕著となった。以降炭 素繊維シートの隙間からコンクリートが剥落し 始め, R=1/83(rad.)で主筋の圧縮降伏, R=1/50 で主筋の引張降伏が確認され LcB00 と同様緩や かに耐力低下した。R=1/36(rad.)で正負とも最大 耐力の 80%以下となった。炭素繊維シート破断

最大耐力時 最大耐力の 80% LcB00

最大耐力時 最大耐力の 80% LcB17

LcB03 写真 - 1 最大耐力近傍(左)と最終破壊状況(右)

最大耐力時 最大耐力の 80%

表 - 4 実験結果一覧

	LcB00	LcB03	LcB17						
Q _{MAX} (kN)	+193/-181	+222/-216	+277/-259						
_{ave.} Q _{MAX} (kN)	187	219	268						
δ_{QMAX} (mm)	5.0	10.0	10. 0						
$R_{QMAX}(rad.)$	$\pm 1/250$	$\pm 1/125$	$\pm 1/125$						
耐力上昇率		1.17	1.43						
R _{080%}	±1/50	$\pm 1/36$	$\pm 1/36$						
Q _{mu} (kN)	884	893	891						
Q _{sumin} (kN)	284	318	393						

Q_{MAX}:最大耐力 _{ave}.Q_{MAX}:最大耐力の正負平均値 δ_{QMAX}:最大耐力時の変形 R_{Q80%}:最大耐力の80%以下となった時の層間変形角 R_{OMAX}:最大耐力時の層間変形角 Q_{mu}:文献⁵⁾による曲げ終局強度 Q_{sumin}:文献⁵⁾によるせん断強度

は実験終了まで生じず、隅角部のシートの接着 は実験後も維持されていた。

LcB17は、R=1/1000(rad.)で正負とも炭素繊維 シートの隙間でせん断ひび割れが確認されたが、 正負共に最大耐力に達する R=1/125(rad.)まで炭 素繊維シートの浮きも確認されず、目立った損 傷は無かった。以降のサイクルではLcB00・03 と同様スリップが顕著となり、また、主筋配列 面の上下危険断面と正面中央部から炭素繊維シ ートに浮きが生じ始めた。以降 R=1/83(rad.)で主 筋の圧縮降伏、R=1/50(rad.)で主筋の引張降伏が 確認され LcB00・LcB03 と同様緩やかに耐力低 下し、R=1/36(rad.)で正負とも最大耐力の 80%以 下となった。炭素繊維シート破断は実験終了ま で生じず、隅角部のシートの接着は実験後も維 持されていた。

3 体を比較すると、ゼブラ補強を施した LcB03 の最大耐力は 20%程度、シート 3 層による補強 を施した LcB17 は 45%程度、基準試験体 LcB00 の最大耐力を上回った。また、シート補強量の 増加に伴い、最大耐力以降の耐力低下も緩やか となり、変形能力にも向上が見られた。

3.2 付着応力度分布

各試験体主筋の付着応力度分布を図-6 に示 す。主筋の歪度は,柱頭柱脚のほかスパン内 3 点の計 5 点で計測した。安定して歪の計測がで きた 3 区間を,各計測点間の付着応力度を一定 と仮定して図示した。また,いずれの試験体も 主筋降伏前である最大耐力までのサイクルにつ いて示している。代表例として,図に示した断 面内隅角部(ou.)及び中央部の主筋(in.)について 示した。図には文献³⁾による付着強度 $\tau_{bu}(\vec{x}(1))$, 文献⁴⁾による補強効果を考慮した付着強度 $\tau_{bu(CF)}(\vec{x}(2))$ も示した。

$$\tau_{bu} = \alpha_t \left\{ (0.086b_i + 0.11) \sqrt{\sigma_B} + k_{st} \right\}$$
(1)

$$b_i = \min(b_{si}, b_{ci})$$

$$b_{si} = (b - N_1 d_b) / (N_1 d_b)$$

$$b_{ci} = \left\{ \sqrt{2} (d_{cs} + d_{ct}) - d_b \right\} / d_b$$

$$k_{st} = \begin{cases} (56 + 47N_w / N_1) (b_{si} + 1) p_w \\ (b_{ci} \ge b_{si} \mathcal{O} \ge \mathfrak{E}) \\ 146A_w / (d_b s) \\ (b_{ci} < b_{si} \mathcal{O} \ge \mathfrak{E}) \end{cases}$$

ここで, σ_B:コンクリート圧縮強度, p_w:帯 筋のせん断補強筋比

$$\tau_{bu(CF)} = \tau_{co} + \tau_{st}$$
(2)

$$\tau_{co} = (0.117b_i + 0.163)\sqrt{\sigma_B}$$

$$\tau_{st} = 9.51 \frac{b \cdot p_w'}{N \cdot d_b} \sqrt{\sigma_B}$$

$$\Box \Box \nabla, b_i = (b - \sum d_b) / \sum d_b$$

$$p_w' = p_{ws}' + \kappa E_{fd} / E_s \cdot p_{wf}$$

$$\kappa = 3 - 500 E_{fd} / E_s \cdot p_{wf}$$

但し, $E_{fd} / E_s \cdot p_{wf} > 0.003$ ()場合, $\kappa = 1.5$

ここで、p_{ws}':帯筋のせん断補強筋比, p_{wf}:炭素 繊維シートによるせん断補強筋比, E_s:帯筋ヤン グ係数, E_{fd}:炭素繊維シートヤング係数

無補強試験体 LcB00 は,最大耐力時である R=1/250(rad.)で無補強時の付着割裂強度計算値 τ_{bu} と同程度の値であり,付着割裂破壊してい る状況とよく対応している。ゼブラ補強を施し た LcB03 及びシート 3 層による補強を施した LcB17 は,LcB00 と同様最大耐力時である R=1/125(rad.)で無補強時の付着割裂強度計算値 τ_{bu} 及び補強効果を考慮した付着強度計算値 $\tau_{bu(CF)}$ を上回った。

各試験体の付着応力度分布形状を比較すると, 無補強試験体 LcB00 は R=1/500(rad.)で柱脚部よ り柱中央部の付着応力が大きい。R=1/250(rad.)

でその傾向はさらに顕著になり、中央部の付着 応力度が上昇しているのに対して柱脚部の応力 度は低下している。これは、R=1/500(rad.)時点で 柱脚部に付着割裂ひび割れが入って付着が失わ れ始め、その領域が徐々に中央部へと進展して いったために中央部での応力負担が大きくなっ たためであると考えられる。

補強を施した LcB03・LcB17 は R=1/500(rad.) では柱中央部より柱脚部の応力が大きい値とな っているが、変形が進むにつれて柱中央部の応 力が柱脚部を上回る傾向が見られた。これより、 LcB00 と同様、柱脚部から付着が失われていっ たと考えられる。加えて、全試験体とも中筋よ り隅筋の方が応力をより多く負担する傾向があ り、それは補強量の増大に伴って顕著となった。

3.3 せん断・曲げ変形割合

各試験体の曲げ変形成分・せん断変形成分を,

変位計を用いて,水 平・鉛直・斜め各方 向変位を計測した 値より算出した。曲 げ変形 - せん断変 形の割合を図-7 に 示す。

各試験体の変形 成分割合は,全サイ クルに渡りせん断 変形割合が大半を

占めており,また変形が進むにつれてせん断割 合がやや増加していく傾向がある。

各試験体を最大耐力時(グラフ上点線枠囲み サイクル)について比較すると,無補強試験体 LcB00は,曲げ変形成分が15%程度であったの に対し,ゼブラ補強を施したLcB03は17%程度, シート3層による補強を施したLcB17は20%程 度であり,補強によってせん断変形の抑制効果 が得られたと考えられる。

これまでの現象から破壊モードについて考察 すると,破壊経過や荷重-変形関係,付着応力 度分布より,最大耐力決定要因としては付着が 失われたためであると考えられるが,せん断破 壊も混在した複雑な破壊を呈した。

4 付着強度の検討

計測された各試験体主筋の付着応力度を**表**-5に、実験値と計算値の比較を図-8に示す。 なお、いずれの試験体も、最大耐力を発揮した 時の正側・負側の平均値を示している。また、 図・表には文献²⁾による付着強度 $\tau_{bu①}(式(1))$ 、 文献³⁾による付着強度 $\tau_{bu②}$, 文献⁴⁾による補強 効果を考慮した付着強度 $\tau_{bu(CF)}(式(2))$ も示した。

表-5 各試験体主筋の付着応力度

			計算値(N/mm ²)					実験値(N/mm ²)					
		-	7	7	強度増大率		4	7	-	強度増大率			
r۲w	rPw rOwy	ι _{bu}	ι _{bu} ②	υ _{bu} (CF)	$ au_{ m bu(CF)}/ au_{ m bu(1)}$	$ au_{ m bu(CF)}/ au_{ m bu2}$	in ⁶ bu	ou ^L bu	ave ^L bu	in T bu	$_{ m ou}$ $ au$ $_{ m bu}$	$_{\rm ave} au _{\rm bu}$	
LcB00	0.00			-	-	-	1.14	1.66	1.29	-	-	-	
LcB03	0.50	1.21	1.25	1.31	1.08	1.05	1.18	1.78	1.35	1.03	1.08	1.05	
LcB17	2.68			1.53	1.26	1.22	1.30	2.33	1.58	1.14	1.40	1.22	

 $\tau_{bu(1)}$: 文献²⁾による付着強度 $\tau_{bu(2)}$: 文献³⁾による付着強度 $\tau_{bu(3)}$: 文献⁴⁾による付着強度

 $\sin \tau_{bu}$, $\cos \tau_{bu}$: 中筋、隅筋の最大耐力時付着応力度 $\operatorname{ave} \tau_{bu}$: 一列に配された主筋の最大耐力時平均付着応力度

(1) 実験値と計算値の比較

無補強試験体 LcB00 の付着応力度 ave τ bu は, 無補強時の付着割裂強度 τ bu① · τ bu② と同程度の 値であった。ゼブラ補強を施した LcB03 の付着 応力度 ave τ bu は,補強効果を考慮した付着強度 τ bu(CF)を 3%程度上回る結果となった。また,シ ート 3 層による補強を施した LcB17 は無補強時 の付着割裂強度 τ bu① · τ bu② を 35%程度上回り, 補強効果を考慮した付着強度 τ bu(CF)を 4%程度 上回った。

以上のことから,無補強試験体については, コンクリート強度が 9N/mm² と低強度の範囲で あっても既往の計算式で評価可能であると考え られる。また,炭素繊維シートによる補強を施 した試験体についても,LcB03,LcB17共に計算 結果は概ね実験結果と対応していた。

(2) 炭素繊維シート補強量による比較

3 体を比較すると,基準試験体の付着強度を LcB03では5%,LcB17では24%上回った。また, 補強による強度増大率は中筋より隅筋の方が大 きい傾向があった。

5 まとめ

低強度コンクリートによる RC 柱試験体 3 体 に対する静的加力実験により,以下の知見を得 た。

- (1) 試験体は付着が失われたために耐力低下し たが, せん断破壊も混在した複雑な破壊を 呈した。
- (2) 炭素繊維シートにより補強した試験体は、 無補強試験体と比較して性能が改善されて おり、補強効果があることがわかった。
- (3) 無補強試験体の実験結果より、コンクリート強度が Fc=9(N/mm²)程度の低強度の範囲においても既往の計算式^{1),2)}で付着強度の評価は可能であった。
- (4) 炭素繊維シートによる補強を施した試験体 は、付着割裂強度の上昇を図ることが可能 であり、既往の計算式³⁾での評価が可能であ った。

参考文献

- 日本建築防災協会:既存鉄筋コンクリート造 建物の耐震改修設計指針・同解説, pp.162-170
- 2) 日本建築学会:鉄筋コンクリート造建物の靱 性保証型耐震設計指針・同解説, pp.175-177
- 日本建築学会:鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説, pp.135-141
- 日本建築学会:連続繊維補強コンクリート系 構造設計施工指針案, pp.292-294