論文 透水・脱水工法を併用したコンクリート鉛直部材表層部の品質改善方 法に関する実験的研究

古市 護^{*1}·三島 直生^{*2}·畑中 重光^{*3}

要旨:透水型枠工法を用いたコンクリート部材上層部の品質改善手法として,真空脱水工法を併用した方法を採用し, 安定した品質改善効果を得るための方法について,小型試験体を用いた実験を行った。その結果,鉛直部材上部の品 質改善に対して真空脱水処理を併用することは有効であること,また,その品質改善効果には真空度が大きく影響す ることなどが明らかとなった。

キーワード:透水型枠,真空脱水処理,鉛直部材,品質改善,真空度,処理継続時間

1. はじめに

透水型枠工法は、側圧を利用してコンクリート中の余 剰水を型枠の外へ自然排水させる工法で、これによって コンクリート表層部の水セメント比が低下し,表層部が 緻密化するため, 強度をはじめとするコンクリートの品 質を向上させることができる。しかし、透水型枠工法に よる品質改善効果には図-1 に示す様に鉛直方向に分布 が有り, 側圧の大きい部材の下部では品質改善効果は大 きいが、側圧の小さい部材の上部では品質改善効果が小 さい^{1),2)}。コンクリート構造物の耐久性が最弱部でほぼ 決まると考えると,透水型枠工法により改善された品質 が上層部の 30cm 程度の弱部のために大幅に耐久性が低 下することになる。この問題を解決するには、図-1中の 矢印で示すような改善が必要となる。このため,筆者ら ³⁾は部材上部において、より品質改善効果を高めるため の数種類の改善方法を試みた。その結果、型枠上部表層 の品質改善には型枠上部のみに真空脱水処理を施す方 法が最も有効であることが明らかとなった。

本研究では,透水型枠工法においてコンクリート部材 上層部の品質改善手法として真空脱水処理を採用し,さ らに安定した品質改善効果を得るために,数種類の方法 を採用して,小型試験体を用いた各方法の改善効果につ いて検討を行った。

2. 型枠上部表層の品質改善方法の検討

表-1 に, 鉛直部材で真空脱水処理を行うことにより起 こると考えられる問題点とその改善方法について示す。 真空脱水処理を行うと, 脱水によりコンクリートの容積 が減少する。床スラブ等の水平部材では真空脱水処理を 行っている間, 大気圧により圧密されるが, 鉛直部材で は型枠の位置が固定されるため圧密が起こらない。この

*1 日本コンクリート工業(株) 修士(工学) (正会員) *2 三重大学大学院 工学研究科建築学専攻助教 博士(工学) (正会員) *3 三重大学大学院 工学研究科建築学専攻教授 工博 (正会員)

の強度改善のイメージ図³⁾

問題点	改善方法			
コンクリートの組 織が粗雑になる	 ・処理継続時間の早期化 ・再振動の併用 			
処理面が平滑 にならない	・型枠の改良			

写真-1 ろ過マットおよび立体網

ためコンクリートの組織 が粗雑になり,耐久性上 の問題が発生する可能性 が考えられる。この問題 を改善する方法としては 真空脱水処理時に振動締 固めを行い,コンクリー トを流動化させることが 有効であると考えられる。

また, コンクリートが 軟らかい打設直後に真空 脱水処理を行えば自重で ある程度締固められるよ うになることも考えられ る。

通常の真空脱水処理では、減圧空間をつくるためにポ リプロピレン製の立体網(写真-1)が用いられている。 このため側圧により立体網が変形し脱水面が平滑にな らない可能性があり、美観の低下やタイル施工時などの 不具合を生じることが予想される。このため、立体網を 使用しなくても真空脱水処理が行えるように型枠を改 良する。図-2に二重型枠の概要を示す。同型枠は、型枠 内に減圧空間を作ることにより、均一な品質改善効果と 良好な仕上がりを得られると考えられる。

3. 実験概要

3.1 実験要因および調合

実験要因を表-2 に示す。調合を表-3 に示す。処理方 法としては、不織布を用いた積層透水シート(孔径:約 0.1mm,孔間隔:約1.5mm)を型枠に貼り付けた透水型枠 と、写真-1に示す通常の真空脱水処理に用いられるろ過 マット(孔径:約 0.1mm,孔間隔:約 0.5mm)および立 体網を合板にそのまま貼り付けたもの〔図-2(a)参照〕 〔以下、真空脱水(立体網)〕,および,前述した型枠内 に減圧空間をもつ二重型枠に真空脱水処理に用いるろ 過マットを貼り付けたもの〔図-2(b)参照〕〔以下、真 空脱水(二重型枠)〕とした。処理開始時期に関しては, 打設直後を基本水準とし、通常の真空脱水処理で採用さ れているブリーディングがほぼ終了する打設後120分の 水準も行った。再振動は、真空脱水処理時に型枠面に振 動を与えた。真空度は真空ポンプに接続したバルブの開 閉により調節した。

3.2 試験体概要

図-3 に試験体の概要を示す。本実験では壁型枠上層部 の側圧の小さい領域を想定し、240(幅)×300(高さ) ×150(厚さ)mm とした。ただし、この場合、実際の壁 型枠において発生すると考えられる下方のコンクリー

要因	水準			
処理方法	無処理,透水型枠工法,			
	真空脱水処理(立体網),			
	真空脱水処理(二重型枠),			
処理開始時期	<u>打設直後</u> , 打設後120分			
再振動	有, <u>無</u>			
真空度(%)	30, 45, <u>60</u>			
計)下線却は其本水淮なテオ				

註)下緑部は基本水準を示す。

表−3 調合表

Fc	W/C	s/a	単位質量(kg/m ³)					
(MPa)	(%)	(%)	W	C	S	G		
20	65	56	185	285	993	801		
						丛土		

註) Fc:目標圧縮強度,W/C:水セメント比,s/a:細骨材率,
 W:水,C:セメント,S:細骨材,G:粗骨材(5-13mm),

トからのブリーデ

ィングの影響は無視している。コンクリートは2層で打 設し、棒状バイブレータ(振動数:12000-14000vpm)を 用いて各層 10 秒間の締固めを行った。処理面は透水型 枠工法,真空脱水処理ともに片側1面のみとした。脱型 は材齢2日に行い,その後,湿布養生を行った。真空脱 水処理の処理継続時間は5分間である。

3.3 測定項目

(1) 処理表面の仕上がり

脱型後、処理表面の仕上がりを目視により観察した。 (2) 圧縮強度

圧縮強度の測定は、図-3,4に示す位置でφ50×150mm のコアを採取し、表層 5mm をカットし、次に長さ 70mm ずつ2層にカットして, 圧縮強度用の試験体とした。測 定材齢は28日である。

(3) 表層部空隙面積

40

35

30

25

20

0

(処理面)

圧縮強度 (N/mm^2)

表層部空隙面積の測定面は, 圧縮強度用の試験体作成 時にカットした表層 5mmの試験体のカット面で行い、カ ット面に着色したせっこうを塗布し、せっこうの硬化後 に塗布面を#320の耐水ペーパで研磨して測定面を仕上 げた。次に、測定面をスキャナで取り込み(取込解像度: 400pixels), 測定面中央の 28×33mm をデジタル画像計 測・解析ソフトを用いて2値化し,空隙の面積を自動計 測させた。空隙面積の計測範囲は 0.078mm²以上である。

3.4 実験結果および考察

以下に示す圧縮強度は, 鉛直方向の分布において明確 な傾向が見られなかったため、試験体高さで平均したも のを示す。

60

60

90

90

120

コア2

120

150

150

図-5 圧縮強度

ば、二重型枠よりも立体網を使用して真空脱水処理を行った方が、表面の見た目は良好であった。これは二重型 枠の透水用の穴(φ5mm)の跡が残ること、および、真空 脱水時の圧力により型枠が変形してしまったことなど による。一方、立体網を使用したものは、2. で問題点と して挙げた処理面が平滑にならないという結果も顕著 には見られなかった。

(2) 圧縮強度分布

図-5 に各処理方法が圧縮強度に及ぼす影響について 示す。同図(a)~(d)によれば、コア1(処理面近傍)の 圧縮強度は、透水型枠工法および真空脱水処理ともに無 処理よりも大きくなった。コア2(処理と反対面)の圧 縮強度は無処理とほぼ同じであった。このことから透水 型枠工法および真空脱水処理の効果は、処理面から約 100mm 以上離れた範囲までは及ばなかったといえる。

図-5(b)に示す処理開始時期の影響に関しては,顕著 な差異は見られなかった。

図-5(c)には再振動の影響を示す。ここで,再振動無 しの二重型枠を用いた試験時に,二重型枠の機密性が悪 く,所定の真空度が得られなかったため,立体網を用い た試験体の結果との比較を示す。図によれば,再振動に よる圧縮強度の改善効果はほとんど見られない。

図-5(d)に示す真空度の影響からは、真空度が大きい ほど、処理表面近傍のコア1において圧縮強度が大きく なる傾向が見られる。

(3) 圧縮強度と真空度の関係

図-6 に圧縮強度と真空度の関係について示す。なお, 透水型枠工法は、側圧を「コンクリート密度×型枠中央 部の高さ」と仮定し、圧密圧力と同様に考えることので きる真空度 4)に換算してプロットしたものである。また, 無処理の強度レベルがほぼ同じ透水型枠工法に関する 既往の研究³⁾の実験結果も併記する。同図によれば,真 空脱水処理のコア1の圧縮強度は,真空度が高くなるに つれて上に凸の曲線で増加している傾向が見られた。ま た,低真空度の領域において,同じ真空度で透水型枠工 法と真空脱水処理を比較すると、透水シートのほうが、 ろ過マットと比べて透水性は小さいにもかかわらず,透 水型枠工法のほうが圧縮強度は大きくなった。これは処 理継続時間が影響していると考えられる。真空脱水処理 の処理継続時間が5分間であるのに対して、透水型枠工 法は余剰水が排出されなくなるまで継続して行われる。 このため、低真空度の領域の圧縮強度は処理継続時間の 長い透水型枠工法のほうが圧縮強度が大きくなったと 考えられる。

図-7 に,高さ 100cm の壁部材に対する圧縮強度の改善 を示す。なお,無処理および透水型枠工法は本実験とほ ぼ同じ強度レベルの既往の研究³⁾の実験結果である。同

上層部圧縮強度の改善効果

図によれば、真空度 51%以上の試験体では透水型枠工法 と比べて上層部の圧縮強度が大きく改善されており、透 水型枠工法の中~下層部と同程度にまで改善されてい る。このことから、型枠上層部において真空度 50%程度 で真空脱水処理を行うことにより、図-1 で示したような 充分な改善効果を得ることが可能である。

(4) 表層部の空隙面積

写真-3 および図-8 に測定面の写真および2値化画像 の例を示す。図-9 に空隙面積率と真空度の関係を示す。 空隙面積率は測定面積(28×33mm)に占める空隙総面積 の百分率である。同図によれば、一部の試験体を除いて 真空度が高くなるに従い空隙面積率が大きくなる傾向 が見られた。これは、真空度が高くなると排水量が増加

し、コンクリートの容積はより小さくなるため、表-1 で 問題点として挙げた、コンクリートの組織が粗雑になる という傾向が、真空度が高くなるほど現れ易くなったた めと考えられる。

また,この空隙の解消を目指して行われた再振動の結 果においても,顕著な空隙の低減効果は見られなかった。 これは,再振動を真空脱水処理の終了と同時に終了して しまったために,充分な再振動による充填効果が得られ なかった可能性も考えられる。

以上の結果からは,鉛直部材に対して真空脱水処理を 行う際には,空隙の発生を抑えるために,必要な圧縮強 度の改善効果の得られる最低限の真空度に管理するこ とが重要となると考えられる。

4. まとめ

本実験の結果,鉛直部材上部の品質改善に対して,真 空脱水処理は有効であるとの結果が得られた。また,そ の品質改善効果からは,真空度が大きく影響するという 知見が得られた。しかし一方で,処理により空隙量が増 加する場合があることも明らかとなったため,最適な処 理方法に関してさらに検討を進める必要がある。

また本研究では、実大試験体を用いた実験の前段階と して小型試験体を用いた。しかし、小型試験体では実大 試験体の場合に発生する下部からのブリーディングの 影響のため、鉛直部材上層部を完全に再現できていると はいえないため、今後、実大試験体を用いた実験により 検証を行う予定である。

また,実施工において鉛直部材に真空脱水処理を適用

することは、あまり施工性が良いとは言えないため、施 工性についても検討する予定である。

謝辞

本研究は,韓国建設技術研究院との共同研究の一環と して行われたものである。また,本研究に際して,野々 目洋氏(戸田建設株式会社),村松明夫氏(ベストフロ アー工業会),山口武志氏(山口技研),和藤浩氏(三重 大学技術員),畑中研究室の諸氏のご助力を得た。付記 して謝意を表する。

参考文献

- 竹田宣典,平田隆祥,十河茂幸,芳賀孝成:透水シートを用いた型わくによるコンクリート表面の品質 改善,コンクリート工学年次論文集,Vol.11,No.1, pp.683-688,1989
- 2)前田哲宏,松田孝允,三島直生,畑中重光:透水性型枠を使用したコンクリートの表層および内部強度性状に及ぼす再振動締固めの影響,コンクリート工学年次論文集,Vol.24, No.1, pp.345-350, 2002
- 3)三島直生,畑中重光,小林広美,犬飼利嗣:透水性型枠を使用したコンクリートの性能改善,コンクリート工学年次論文集,Vol.26,No.1,pp.363-368,2004
- 4)畑中重光,服部宏己,三島直生,坂本英輔:圧密理 論を適用した真空脱水コンクリート中の圧縮強度分 布の発生メカニズムに関する研究,日本建築学会構 造系論文集,第 596 号, pp.1-8, 2005