論文 竣工から約70年を経た構造物から採取したコンクリートの諸性状

沢木 大介*1・田中 敏嗣*2・黒田 一郎*3・米倉 亜州夫*4

要旨: コンクリートは時間の経過に伴い変質し,著しい場合は構造物が劣化する。長期間にわたり健全さを 保つ実在の構造物のコンクリートを採取し,その性状を詳細に評価することは,経時的変質に関する実証的 データの提供という意味で,非常に重要である。本研究では,1938年及び1940年に竣工した二つの構造物か ら採取したコンクリートについて,目視観察,配合推定,力学的性質評価,EPMA 面分析,細孔径分布測定 などを実施した。他の長期材齢コンクリートの性状と比較することにより,いずれも変質の程度は小さく, 健全であるものと判断された。健全さを保つために必要な要因の一つは,良好な施工であると推察した。 キーワード:昭和初期,長期材齢,耐久性,中性化深さ,配合推定,圧縮強度,EPMA,細孔径分布

1. はじめに

日本には 50 年,あるいは 100 年以上を経てもなお,健 全さを保つコンクリート構造物が多く存在する。それらの 性質を詳細に評価し,材料の品質,施工の優劣,供用中の 維持補修等に関する情報を明らかにすることは,コンクリ ートの長期的耐久性向上のために,きわめて有用と考えら れる。しかし,竣工から長時間を経た構造物の構成部材を 材料科学的に評価した調査や研究報告の例は,これまで必 ずしも多くはなかった^{1,2,3,4,5})。

本研究では,昭和初期(1938年及び1940年)に建設さ れた二つの構造物からコンクリートを採取し,①目視レベ ルでの変質状況の評価,②配合推定,③力学的性質の評価, ④機器分析手法による評価を実施した。それらを基に,建 造当時の材料や設計,施工に関する事情を明らかにし,長 期にわたり健全性を維持するための要因を考察した。

なお本論文は,首都大学東京が主催する国際会議 "Building Stock Activation 2007"(2007.11.5-7,於東京)に て発表した内容⁶に,未発表のデータを加え,再構成した ものである。

実験の概要

2.1 コンクリートを採取した構造物

約 70 年前に竣工した二つのコンクリート構造物から コアを採取した。構造物の外観を Fig.1 に示す。

(1)構造物(a):旧海軍が建設した監視小屋(横須賀市) 花立新砲台に建設されたコンクリート造りの監視小 屋で,1938年(昭和13年),神奈川県横須賀市にて竣工 した。以下,構造物(a)とする。コアを採取した壁付近に 丸鋼が見られ,鉄筋コンクリートと判断される。同砲台 付近は現在,防衛大学校の所有地である。海岸からの距 離は約 400m,海抜は約 90mである。Fig.1 は東側からの 外観である。

(2) 構造物(b):旧海軍が建設した石油タンク(呉市) 内容積5万k0の覆土式の石油タンクであり,昭和15年 (1940年),広島県呉市吉浦にて竣工した。以下,構造 物(b)とする。2004年(平成16年)まで,船舶の燃料用タ ンクとして使用された。海岸からの距離は約200m,海抜 は数mである。タンクの構造をFig.2に示す。厚さ30cm程 度の無筋コンクリートでできた直径(外径)88m,高さ 10mの円筒形のタンクを,外側の全周囲から,階段型の

Structure (a) Structure (b) Fig.1 Appearances of the structures from which the concretes were taken

Fig.2 Size of the structure (b)

*1 太平洋コンサルタント(株) ソリューション事業部解析技術グループリーダー (正会員)

- *2 太平洋セメント(株) 中央研究所研究開発1部ダクタル技術開発チームリーダー 工博 (正会員)
- *3 防衛大学校 建設環境工学科准教授 工博 (正会員)

*4 広島工業大学 大学院工学研究科土木工学専攻教授 工博 (正会員)

コンクリート躯体で支持する構造である。Fig.1は開口部 から見たタンクの断面である。

2.2 コンクリート採取の概要

構造物(a), (b)から採取したコアの外観をFig.3に示す。 (1) 構造物(a)

監視小屋の西側の壁より,地面から約 1m の高さで, 壁を貫通するコア1本を採取した。コアの直径は 45mm, 長さは 300mm である。採取は 2006 年夏に実施したので, コンクリートの材齢は約 68 年である。

(2) 構造物(b)

タンクの内表面,底部から約 6.5m の高さで,直径 150mm,長さ約 250mm のコンクリートコア3本を同じ 位置から採取した。2005 年秋に採取したので,コンクリ ートの材齢は約 65 年である。なお,タンクの内表面に は,合成樹脂と思われる被覆材が塗布されていた。これ は1983 年(昭和58年)に施工されたものである。

Structure (a)

Structure (b)

Fig.3 Appearances of the concretes

2.3 評価項目と方法

(1) 目視観察

コアを長軸方向に二分割し,切断面におけるコンクリ ートの充てん性,骨材の形状と分布,骨材とペーストの 界面の状態などを観察した。

(2) 中性化深さの測定

コア端部の切断面にフェノールフタレイン1%エタノ ール溶液を噴霧し, JIS A 1152に準じて非変色深さを測 定した。

(3) 塩素と硫黄の濃度分布の評価

長軸方向に二分割したコアの切断面から、表面(構造

物(a)では屋外側の表面,構造物(b)ではタンクの内表面) を含む40mm×40mm×10mmの板状試料を採取した。 40mm角の面を研磨し,カーボンを蒸着して,電子線マ イクロアナライザー(以下EPMA)により塩素と硫黄の マッピング分析を行なった。分析条件は加速電圧15kV, 試料電流5×10⁸A,測定時間40msec/ピクセル,プローブ 径100μm,ピクセルサイズ100μm,ピクセル数400×400 とした。

(4) 配合推定

セメント協会法⁷に従い,セメント量,水量および骨 材量を推定した。

(5) 力学的性質の評価

圧縮強度試験は、JIS A 1107 "コンクリートからのコ アの採取方法及び圧縮強度試験方法"に準拠した。静弾 性係数およびポアソン比は,圧縮強度試験用の供試体に 縦方向と水平方向に貼り付けたひずみゲージ(120mm)に より測定した。

(6) セメントペーストのEPMA面分析

コアの中心付近から20mm程度の板状試料を採取し, その一面を研磨した。カーボンを蒸着し,1mm以下の微 細な領域について,EPMAによりカルシウムとケイ素の マッピング分析を行なった。分析条件は加速電圧15kV, 試料電流5×10⁻⁸A,測定時間40msec/ピクセル,プローブ 径1µm,ピクセルサイズ1µmまたは2µm,ピクセル数400 ×400とした。

(7) 細孔径分布の評価

コアの非中性化部分から数十gを採取し、ニッパーで 数mm角に割裂した。アセトンに浸漬して水分を除去し、 真空乾燥器中で脱気・乾燥した後、水銀圧入法(以下MIP と記す)により細孔径分布を測定した。加圧範囲は0.5 ~60000psiaである。

3. 試験結果

3.1 目視レベルでの変質状況

(1) 目視観察結果

Fig.4に示すように、いずれのコンクリートも切断面の 粗骨材は丸みを帯びており、川砂利と思われた。骨材と ペーストの界面には、ブリーディング水に伴う空隙は認

Structure (a)Structure (b)Fig.4 Appearances of the cross section of the concretes

められず,また充てん不良箇所もなく,よく締め固めら れている密実なコンクリートと思われた。アルカリ骨材 反応によるゲルの生成などは確認されなかった。

(2) 中性化深さ

測定結果をTable 1に示す。平均値は、構造物(a)の屋内 側で6.9mm、屋外側で6.4mm、構造物(b)で4.8mmであっ た。長期間供用された構造物から採取されたコンクリー トの中性化深さは、最大で数十mmに及ぶとの報告事例 が多く見られる^{8,9,10}。それらと比較するなら、本研究の コンクリートの中性化深さは、かなり小さいレベルであ るといえる。構造物(a)は海抜約90mに位置し、風雨に曝 される時間は比較的長かったと考えられる。また構造物 (b)は石油貯留用として使われていたが、常に石油で満杯 であった訳ではなく、コアを採取した比較的高い位置で は、空気と接する時間も多かったと考えられる。これら 暴露環境を考慮すると、中性化深さの小さい本コンクリ ートは、緻密・堅牢であるものと推察される。

普通セメントや中庸熱セメントなどを用いた17種類 の実験データに基づき求められた,水結合材比及び材齢 と中性化深さの関係¹¹⁾を式(1)に示す。

$\alpha = (-3.57 + 9.0 \text{W/B})$	$\times \sqrt{t}$ (1)
ここにα:中性化深さ	(mm)
W/B:水結合材比	

t : 材齢 (年)

後述する配合推定により求めた本コンクリートのW/B 推定値(0.66及び0.59)とtを式(1)に代入して求めた, 材齢と中性化深さの関係をFig.5に示す。いずれの構造物 でも,実測値(●)は式(1)に基づく予測値(◆)と比べ て小さかった。なお構造物(b)の実測値は,実際の材齢で ある68年と,竣工後表面被覆が施されるまでの年数であ る43年の二点をプロットした。

 Table 1 Depth of neutralization of the concretes

 Structure (a) Inner side of the wall

_	511 400	ur (()					-	
No.	1	2	3	4	5	6	7	8
Depth (mm)	6.0	10.0	5.5	15.0	4.0	4.0	4.0	7.0

Ave.: 6.9mm (σ=3.59)

Structure (a) Outer side of the wall

No.	1	2	3	4	5	6	7	8
Depth (mm)	9.0	11.0	11.0	2.0	1.0	5.5	7.0	5.0
					A	ve.: 6.4	lmm (σ	=3.55)

Structure ((b)	١
		,

No.	1	2	3	4	5	6	7	8	9	10
Depth (mm)	4.6	4.2	5.5	4.1	4.6	4.7	6.7	4.5	4.2	66
No.	11	12	13	14	15	16	17	18	19	20
Depth (mm)	4.7	3.5	3.5	4.7	5.9	4.0	2.9	3.8	5.4	8.3

Ave.: 4.8mm (σ=1.25)

Fig.5 Estimation of depth of neutralization by equation (1) (●: measured value)

(3) 塩素と硫黄の濃度分布

マッピング分析結果をFig.6に示す。目視観察写真(左上)とカルシウムの濃度分布(右上)も示した。図の上端部が,採取したコアの表面(構造物(a)では屋外側の表面)に相当する。

まず,構造物(b)のコンクリートの特徴を記載する。カ ルシウム,塩素,硫黄のいずれも,表面から深さ数mm の領域において,内部より濃度が低かった。目視でも, この部分の色が内部とは異なることが判る。これは中性 化(炭酸化及び/またはセメント分の溶脱)した領域で あると考えられる。その深さ数mmは,フェノールフタ レインによる評価値とおおむね一致している。

炭酸化の進行にともない、塩素や硫黄を含有する水和 物等が分解され、これらの元素が濃度勾配により、内部 の非炭酸化領域へ移動する、いわゆる濃縮現象が知られ ている¹²⁾。構造物(b)のコンクリートでも、硫黄の濃度分 布において濃縮が認められたが、その程度は小さく、炭 酸化の進行度合いは大きくないと考えられる。

塩素濃度は非中性化領域において,外部から内部に向 けて漸次低下している。海岸近くの建造物であり,飛来 塩分の影響があったことを物語る。

構造物(a)のコンクリートでは,構造物(b)のような,表 面近傍における元素濃度の低い領域は認められなかっ た。上述のように(a)の中性化の深さは,(b)よりやや大き かったが、中性化、すなわちアルカリ性低下の度合いは、 (a)の方が(b)より小さいのではないかと推察される。後述 するように(a)は(b)よりセメントに富む配合と推定され ることや、現地の気象条件が関係するものと思われる。

塩素濃度は,(b)より低かった。海岸線からの距離が, (b)より遠いことによるものと思われる。硫黄濃度は,総 じて(a)の方が高かった。(a)では外部と内部の濃度差は小 さく,比較的均一に分布していることから,外来硫黄の 侵入よりも,始めからコンクリートに含有された硫黄量 の相違,例えばセメント配合量の相違等に起因するもの であろう。なおセメントペースト部の硫黄濃度はSO₃と しておおむね 0.5~1.0%の範囲にある。当時のセメント の硫黄分含有量は 1.0%程度であり¹³⁾,これと後述する水 セメント比の推定値を考慮すると,測定結果は妥当な値 ということができる。

Structure (a)

Fig.6 Distribution of Ca, S and Cl in the concretes evaluated with EPMA (Area for analysis: 40mm by 40mm)

3.2 配合推定

電子顕微鏡による観察では、いずれのコンクリートに もスラグ等の混和材は認められなかったため、使用され たセメントはポルトランドセメントであるとして推定 を行なった。推定に必要なセメントの組成は,昭和10年 代のポルトランドセメントの一例であるig.loss=0.6%, CaO=65%¹³⁾とした。また骨材については,全国の骨材の 平均値であるinsol=95.2%, ig.loss=1.2%およびCaO=0.4% とした⁷⁾。結果をTable 2に示す。コンクリート(a)及び(b) の単位水量は263及び139kg/m³,単位セメント量は397及 び236kg/m³,単位骨材量は1595及び2013kg/m³で,水セメ ント比は0.66及び0.59と推定された。

昭和初期、コンクリートの配合は、材料の容積比で定 められていた。土木学會による「鐡筋コンクリート標準 示方書」の制定は1931年(昭和6年)¹⁴⁾,最初の改訂版の 発行は1940年(昭和15年)¹⁵⁾のことであり、そのいずれ にも,配合は容積比で表わす旨が記されている。重量比 とされたのは、1949年(昭和24年)制定の「コンクリー ト標準示方書」16)からである。大正10年に公布された「土 木及び建築工事示方書」には容積配合のガイドラインが 記され、それによるとセメントペーストに富む配合はセ メント:細骨材:粗骨材=1:2:4,骨材に富む配合 はセメント:細骨材:粗骨材=1:3:6や1:4:8 であった¹⁷⁾。配合推定試験結果から、(a)と(b)のセメント と骨材の容積比を計算した。セメントの単位容積質量は 「鉄筋コンクリート標準示方書」(昭和6年)¹⁴⁾等に記さ れた1500kg/m³, 骨材の単位容積質量は川砂, 川砂利の値 の一例として1650kg/m^{3 18)}とした。(a)はセメント: 骨材 ≒1:3.6, (b)はセメント:骨材≒1:7.8であった。(b) は1:3:6配合に近かったものと思われる。(a)は1: 2:4配合以上にペーストに富んでおり、軍事施設とい う性格上、特殊な配合であったものと推察される。

単位水量を基に、本コンクリートのフレッシュ性状を 推測する。普通セメントと最大寸法40mmの川砂・川砂 利を用い,スランプ4±1cmのコンクリートを調製するの に必要な単位水量は,139~150 kg/m³の範囲で,平均 147kg/m³(試験点数n=9)との報告がある¹⁹⁾。このことと 上述の単位水量推定値より,(a)のコンクリートは比較的 軟練り,(b)のコンクリートはスランプ数cmの硬練りであ ったと考えられる。上述のように,いずれのコンクリー トもよく充てんされており,ていねいに打設されたこと が,特にスランプ数cmの硬練りと推測される(b)のコンク リートにおいて,強く推察される。

Table 2 Estimated mix proportion of the concretes

	Unit			
	Cement	Water	Aggregate	W/C
Structure (a)	397	263	1595	0.66
Structure (b)	236	139	2013	0.59

3.3 力学的性質

Table 3に圧縮強度、静弾性係数およびポアソン比の試 験結果を示す。コンクリート(a)及び(b)の圧縮強度は、そ れぞれ41.6及び40.6N/mm²であった。この値を最近のコン クリートと比較するため、砕石を用いたコンクリートお よび川砂利を用いたコンクリートの比較的長期材齢の データ^{19,20,21)}に基づき、Fig.7のようにセメント水比と圧 縮強度の関係を求め、本試験結果をプロットしてみた。 粗骨材最大寸法や暴露環境などが異なるものの、本研究 のコンクリートの圧縮強度は、同程度のセメント水比の コンクリートと比べ、低いレベルではなかった。このこ とは、本コンクリートに、顕著な変質の進行や構造物と しての脆弱化が認められないことを示すものである。

3.4 セメントペーストの EPMA 面分析結果

Fig.8 に, 面分析により求めたカルシウムとケイ素のモル比(以下 Ca/Si)の分布を示す。黒く表される部分は骨材, その間はセメントペーストである。セメントペース

トの Ca/Si は, 1.2~2.0 の範囲にあった。セメント水和物 の主体であるカルシウムシリケート水和物(C-S-H)の Ca/Si は 1.4~1.7 程度であり,本コンクリートの水和物は 主に C-S-H から成ることが分かる。

(Area for analysis: 0.4mm by 0.4mm)(Area for analysis: 0.8mm by 0.8mm)

Fig.8 Distribution of molar ratio of Ca to Si of the concretes evaluated with EPMA

3.5 細孔径分布

細孔径分布の測定結果を Fig.9 に示す。比較のため,

		Structure (a)			Structure (b)			
Ι	tems	No.1	No.2	Ave.	No.1	No.2	Ave.	
Diamo	eter (mm)	45.0	45.0	_	152.1	152.2	—	
Heig	ht (mm)	89	89	_	163	153	—	
Ratio (Hei	ght/Diameter)	1.98	1.98	_	1.07	1.01	—	
Correction Factor		1.00	1.00	_	0.887	0.870	—	
Maximum Load (kN)		60.6	71.6		777.5	900.0	—	
Compressive	Before Correction	38.1	45	41.6	42.8	49.5	_	
(N/mm ²)	After Correction	50.1	15	11.0	38.0	43.1	40.6	
Young's Modulus (kN/mm ²)		29.9	26.3	28.1	28.8	25.3	27.1	
Poisson's Ratio		0.27	0.29	0.28	0.197	0.159	0.178	
Mass of Specimen (g)		313.6	316.9	_	6994.3	6536.7	—	
Unit Weight of	f Concrete (kg/m ³)	2220	2240	2230	2360	2359	2360	

Table 3 Co	mpressive strength,	Young's modulus and	Poisson's ratio	of the concretes
	· · · · · · · · · · · · · · · · · · ·			

Fig.7 Relationship between ratio of cement to water and compressive strength

著者らによる材齢約 20 年のコンクリートの測定結果を 同図に示した。比較試料(Comparison)と本研究のコン クリート(Sample)には、骨材の種類や養生方法の違い はあるが、いずれも普通セメントを使用し、また減水剤 が使用された比較試料の水セメント比はやや低いもの の強度レベルは近いものであり、比較は可能と考える。 本研究のコンクリートはいずれも、比較試料と比べ、強 度や種々の耐久性と密接に関係する 0.01~0.1µm 程度の 毛細管空隙は少なく、緻密なコンクリートである。また 0.01µm より小径側のゲル空隙が多く、セメントの水和進 行度が高いことを示す。

Fig.9 Pore size distribution of the concretes

4. まとめ

- 本研究の結論を以下にまとめる。
- (1)昭和初期に建造され、竣工から70年を経た二つの構 造物のコンクリートはいずれも、充てん不良箇所は見 られず、よく締め固められた密実なものであり、てい ねいに打ち込まれたことが推察された。
- (2) 表面から数mm程度の中性化以外は経時的な変質は 認められず,力学的性質は低いレベルではなかった。
- (3) EPMA面分析により、セメントペーストにはカルシ ウムシリケート水和物がよく認められた。細孔径分布 の評価結果から、緻密かつ水和がよく進行したもので あると判断された。
- (4) ていねいに打設されたゆえに、緻密なコンクリート となり、経時的変質が少なかったものと推察された。

謝辞:

本研究を行なうにあたり,独立行政法人国立高等専門学 校機構・市坪誠様及び株式会社安部日鋼工業・北園英明 様には多くの御助言,御協力をいただきました。ここに 感謝の意を表します。

参考文献

- (1) 横関康祐ほか:100年以上経過した地下コンクリート 構造物の耐久性について、コンクリート工学年次論 文報告集, Vol.20, No.1, pp.251-256, 1998
- 2)森 弥広,宇野祐一,小林一輔:鉄筋コンクリート貨物船「武智丸」に関する調査報告,コンクリート工学年次論文報告集, Vol.25, No.2, pp.1939-1944, 2003
- 3) 玉井 譲ほか:90年が経過したコンクリート地下柱・ 基礎の基本物性に関する分析調査,歴史的構造物の 診断・修復に関するシンポジウム 委員会中間報告 ならびに論文報告集, pp.61-66, 2006.6
- 4) 星野富夫ほか:100年以上供用されているドックコン クリートの調査・分析事例,歴史的構造物の診断・ 修復に関するシンポジウム 委員会中間報告ならび

に論文報告集, pp.67-74, 2006.6

- 5) 熊谷守晃ほか:50 年経過したコンクリートの物理, 化学的特性と耐久性,土木学会論文集,No.686/IV -52, pp.41-54, 2001
- Sawaki, D. et al. : Mechanical and Chemical Properties of the Concrete Used in the Structures Built in Old Days, Proceedings of Building Stock Activation 2007, pp.291-298, Nov. 2007
- 7) セメント協会・コンクリート専門委員会:硬化コンク リートの配合推定に関する共同試験報告,セメント 協会,1967
- 4) 小嶺啓蔵ほか:60 年間供用されたコンクリート橋の 材料調査について、コンクリート工学年次論文報告 集, Vol.22, No.1, pp.571-576, 2000
- 9) 真崎洋三ほか:約45年供用されたコンクリート道路橋の残存機能に関する調査、コンクリート工学年次論文報告集, Vol.24, No.1, pp.1479-1484, 2002
- 10) 迫田恵三ほか: 70 年経過した鉄筋コンクリート橋の耐久性調査, セメント・コンクリート論文集, No.60, pp.419-425, 2006
- 土木学会:2002年制定コンクリート標準示方書 [施 工編],土木学会,pp.79,2002
- 12) 小林一輔,白木亮司,河合研至:炭酸化によって引き起こされるコンクリート中の塩化物,硫黄化合物及びアルカリ化合物の移動と濃縮,コンクリート工学論文集,Vol.1, No.2, pp.69-82, 1990
- 中尾龍秀:わが国のセメントの品質,セメント・コンクリート, No.253, pp.27-40, 1968
- 14) 土木学會: 鐡筋コンクリート標準示方書, 1931
- 15) 土木学會: 鐡筋コンクリート標準示方書, 1940
- 16) 土木学会:コンクリート標準示方書, 1949
- 17) 山崎和夫,浅岡宣明,小石川功:大正年代に築造された鉄筋コンクリートの調査,セメント工業,No.188, pp.1-11, 1985
- 18) 岡田 清, 六車 熙編:コンクリート工学ハンドブ ック, p.91, 朝倉書店, 1991
- セメント協会・コンクリート専門委員会:各種セメントを用いたコンクリートの長期強度,セメント・コンクリート, No.246, pp.43-49, 1967
- 20) 森茂二郎,国広悦司:各種セメントを用いたコンク リートの永年試験,セメント技術年報,No.27, pp.278-283,1973
- 21) 土木研究所:都市ごみ焼却灰を用いた鉄筋コンクリ ート材料の開発に関する共同研究報告書,2002