論文 100N/mm² を超える高強度コンクリートにおける発熱特性の逆解析 による評価

河上 浩司*1·松田 拓*2·嶋 毅*3·鈴木 康範*4

要旨:低熱ポルトランドセメントとシリカフュームを用いた高強度コンクリートを対象に,発熱特性を評価 し温度解析へ適用するため,周囲を断熱した小型ブロック試験体を製作し温度履歴を測定した。小型ブロッ ク試験体にて測定された温度履歴を逆解析して,最終断熱温度上昇量であるK値と温度上昇速度の係数であ るα値を求め,単位結合材量とコンクリート温度をパラメータとする算出式を提案した。最後に,この提案 式により求めたK値とα値を用いて模擬柱試験体の温度解析を行い,実際の温度測定結果との比較により提 案式の妥当性を検証した。

キーワード:高強度コンクリート,低熱ポルトランドセメント,シリカフューム,温度解析

1. はじめに

ー般に、コンクリート部材の温度履歴の推定は、式(1) で表されるコンクリートの断熱温度上昇曲線とコンク リートの比熱や熱容量等の諸物性、外気温、部材形状そ して境界条件などの諸条件を考慮した温度解析によっ て行われている。

$$Q_{(t)} = K \left(1 - e^{-\alpha \left(t - DI \right)^{\beta}} \right)$$
(1)

ここに, Q_(t):断熱温度上昇量(℃)

K:最終断熱温度上昇量(℃)

t:材齢(h)

α:温度上昇速度に関する係数

β:セメントの特性に関する係数

DI:遅延剤の効果を表す係数

ここで,式(1)における最終断熱温度上昇量(以下,K 値と称す)や温度上昇速度に関する係数(以下,α値と 称す)については,結合材の種類が早強ポルトランドセ メントや普通ポルトランドセメントあるいは高炉セメ ントB種であり,また,その単位結合材量が 400kg/m³ 程度までであれば,過去において数多くの研究がなされ 標準値が示されている¹⁾。しかし,結合材として低熱ポ ルトランドセメントを使用したり,各種の混和材を混合 した場合,あるいは単位結合材量が極端に多い高強度コ ンクリートについては,断熱温度上昇に関する研究報告 が少なく,標準値は提案されていない。

一方,近年では設計基準強度が 100N/mm² 以上の高強 度コンクリートの強度発現に関する研究が数多くなさ れており,特に,150N/mm² 級の高強度コンクリートで は,水和初期に 60℃以上に到達するような高温履歴を受 けると若材齢から非常に高い強度が得られる反面,初期 の養生温度が 20℃だと高温履歴を受けた場合より得ら れる強度が低くなる傾向が示唆されている^{2,3),4)}。すなわ ち,正確な温度解析を行うことは,温度ひび割れ解析の 実施だけでなく,コンクリート強度発現の推定や初期の 養生計画を策定する上でも非常に重要と考えられる。

そこで今回,低熱ポルトランドセメントとシリカフュ ームを混合した結合材を用いて,実強度 100~180N/mm² 程度が得られるコンクリートを練り混ぜ,周囲を断熱し た小型ブロック試験体(以下,小型試験体と称す)を製 作し温度履歴を測定した。その後,温度履歴を再現する ように,式(1)に入力するK値やα値を調整,算定し(本 論では逆解析と称する),これらの値を算定する式の提 案を行った。また,その提案式により算出されるK値や α値を用いて模擬柱試験体の温度解析を行い,提案式の 妥当性について検証を行った。

2. 検討方法

2.1 概要

検討を行うにあたってのフローを図-1に示す。はじめに、コンクリートの各種物性や断熱材の熱伝達率を、 既往の文献^{1),5)}などを参考に仮定した。

続いて,周囲を断熱した 20 体の小型試験体のうち5 体程度の温度データを対象に逆解析を行い,コンクリー トの発熱が終了した後の温度降下曲線が一致するまで 境界条件の値を変化させ繰り返し解析を行い,断熱材の 熱伝達率を推定した。その後,全小型試験体を対象に逆 解析を行い温度履歴がほぼ一致をみるまでK値とα値 を調整し逆解析を行うことでK値とα値を算出し,それ

*1 三井住友建設(株) 技術研究所 博士(工学)(正会員)
*2 三井住友建設(株) 技術研究所 修士(工学)(正会員)
*3 住友大阪セメント(株) 東京支店 (正会員)
*4 住友大阪セメント(株) セメントコンクリート研究所 工博 (正会員)

ぞれ単位結合材量やコンクリート温度で整理して算出 式を提案した。最終的に模擬柱試験体を対象に温度解析 を実施し提案式の妥当性を検証した。なお,小型試験体 は室内試験で製作したもので,模擬柱試験体は実機試験 にて製作したものである。

解析は(社)日本コンクリート工学協会(JCI)のプロ グラムを使用し2次元有限要素法で行った。

2.2 コンクリート

使用材料とその代表的な物性値を表-1に示す。結合 材は、室内試験と実機試験ともに低熱ポルトランドセメ ントとシリカフュームの組合せとし、シリカフュームは 内割りで10%置換した。シリカフュームの混合方法とし て、室内試験では粉体のシリカフュームを練混ぜ時に混 合し、実機試験では予め水で溶いたシリカフュームスラ リーにして混合した。また、使用骨材のうち、細骨材は 室内試験では川砂を単独で使用し、実機試験では山砂と 石灰石砕砂を混合して使用した。粗骨材は、産地は異な るものの、どちらも硬質砂岩を使用した。

使用した骨材の組合せとコンクリート調合を表-2 に示す。水結合材比の範囲は30~13%に設定した。その 他の調合条件として、単位水量は室内では150kg/m³に固 定したのに対し、実機試験では140~160kg/m³の範囲で 水結合材比が小さくなるにつれ若干増加させた。なお、 材齢 91 日において得られたコンクリート強度は、室内 試験と実機試験ともに標準養生供試体で100~ 180N/mm²程度、模擬試験体より採取したコア供試体で は180N/mm²を超える強度が得られた²⁾。

2.3 小型試験体

逆解析によるK値とα値の検討に使用した小型試験 体の形状を図-2に示す。小型試験体は、コアを採取し

材料名	材料名	諸物性			
紅ムサ	低熱ポルトランドセメント	密度:3.24g/cm ³ ,比表面積:3300cm ² /g,C ₃ S:24%,C ₂ S:57%			
하며 다 12	シリカフューム	密度:2.20g/cm ³ , 比表面積:22.6m ² /g, SiO ₂ :95.6%, Ig loss:1.3%			
	栃木鬼怒川産川砂	表乾密度:2.60g/cm ³ , 吸水率:2.29%, FM:2.60			
細骨材	千葉君津産山砂	表乾密度:2.59g/cm ³ , 吸水率:2.41%	沪△络 EM:262	S2	
	高知鳥形山産石灰石砕砂	表乾密度:2.66g/cm ³ , 吸水率:0.60%	/比□按FWI.2.02	S3	
和骨杆	栃木葛生産硬質砂岩砕石	長乾密度∶2.67g/cm³, 吸水率∶0.97%, FM∶6.47			
租有物	茨城岩瀬産硬質砂岩砕石	表乾密度:2.65g/cm ³ , 吸水率:0.81%, FM:6.76			
化学混和剤	高性能減水剤	ポリカルボン酸系			

表一1 使用材料

表-2 コンクリート調合

シリーズ	調合	W/B (%)	B/W	s/a (%)	空気量	使用	骨材	単位量(kg/m ³)				
					(%)	S	G	W	С	SF	S	G
室内試験 100L強制二軸ミキサ	A-30	30.0	3.33	52.8	2.0	S1	G1	150	450	50	907	842
	A-25	25.0	4.00	50.4	2.0	S1	G1	150	540	60	824	842
	A-20	20.0	5.00	46.3	2.0	S1	G1	150	675	75	699	842
	A-16.7	16.7	6.00	40.8	2.0	S1	G1	150	810	90	558	842
	A-14.3	14.3	7.00	35.7	2.0	S1	G1	150	945	105	450	842
	B-24	24.0	4.17	51.5	2.0	S2+S3	G2	140	525	58	521+356	837
	B-20	20.0	5.00	48.6	2.0	S2+S3	G2	140	630	70	462+317	837
実機試験 6m ³ 強制二軸ミキサ	B-16	16.0	6.25	43.3	2.0	S2+S3	G2	140	788	88	374+255	837
	B-16'	16.0	6.25	44.0	2.0	S2+S3	G2	145	816	91	359+245	827
	B-14	14.0	7.14	35.4	2.0	S2+S3	G2	150	966	107	273+182	827
	B-13	13.0	7.69	26.1	2.0	S2+S3	G2	160	1108	123	172+117	827

強度確認を行う²⁾ため,内寸 500×500×400mmのブロッ ク状とし,試験体の周囲6面を発泡スチロールで断熱し たもので,コア供試体の採取に支障が無いよう中心から 若干ずれた位置に熱電対を設置して温度測定を行った。 なお,この小型試験体では,最高温度は実大柱部材と同 等程度まで上昇するが,温度の降下は実大柱部材とり緩 やかとなる。K値とα値の検討に小型試験体を用いた理 由は,発泡スチロールが充分な厚みを持っているため気 温変動や日射あるいは風などの影響を受けにくく,また 試験体内における温度差が小さいためである。

2.4 模擬柱試験体

K値とα値の算出式について,最終的な検証に用いた 模擬柱試験体の形状を図-3に示す。模擬柱試験体は, 寸法が 1000×1000×1000mm ないし 1400×1400× 1800mmで,上下のみを150mm厚以上の発泡スチロール で断熱した普通柱試験体(普通柱)と,1000×1000× 1000mmの上下に加えて側面4面も厚さ50mmの発泡ス チロールで断熱した断熱柱試験体(断熱柱)の2種類を 製作した。なお,模擬柱試験体の温度測定は,図-3に 示すように試験体中心と端部の2箇所に熱電対を設置 して行った。

2.5 温度解析

温度解析に使用した要素モデルを図-4に示す。モデ

ルは、各試験体断面の 1/4 を切り出したモデルとした。 なお、温度測定結果と解析結果の比較は、温度測定位置 に対応するように小型試験体については No.6 の位置で、 模擬柱試験体については No.1 と No.11 の位置でそれぞれ 行った。

小型試験体の逆解析を行う場合,断熱材により外気温 の短期的な変化の影響は小さくなることから,温度測定 期間である 20 日間の平均外気温を入力し,温度上昇勾 配,最高温度ならびに最高温度到達時間の3要素が実測 値に近づくようにK値は1.0刻みで,α値を0.05刻みで 調整して温度解析を繰り返し実施した。なお,小型試験 体において,K値とα値が算定されたと判断する基準と して,最高温度は±3℃以内,最高温度到達時間は±4 時間とした。

K値とα値が算定されたと判断した基準を上記のように定めた理由として,K値を1.0刻みとしα値を0.05 刻みで調整したところ,最高温度到達時間が50時間を 超える場合などは,最高温度と到達時間を一致させるこ とが非常に困難となった。ここで,K値とα値の調整幅 を細かくしても,K値とα値の回帰式には大きな影響を 及ぼさないと考えられたことから上記の判断基準とし た。ただし,最高温度到達時間が30時間程度までであ れば,到達時間の誤差は±2時間程度まで調整を行うこ

とができた。

なお、本検討においてβ値は1.0に固定し、DI値は温 度上昇の開始時間が合う様に調整した。模擬柱試験体の 温度解析の場合、外気温の変動の影響が大きいことから、 試験ヤード近傍での実測値を入力した。

最終的に入力した物性値の一覧を**表-3**に示す。断熱 柱試験体の側面に配置した断熱型枠の熱伝達率は,小型 試験体の発泡スチロールの値をもとに厚さで補正し,合 板の値と組み合わせて決定した。

3. 小型試験体の検討結果

3.1 逆解析結果

小型試験体を逆解析した温度履歴の例を,実際の測定 結果とともに図-5に示す。逆解析結果は,ピーク近辺 で測定結果と多少ずれている事例もみられたが,試験時 期やコンクリート調合にかかわらず,測定結果を概ね追 従できた。

小型試験体 20 体分について、コンクリート温度履歴 に関する主要な実測値、材齢 20 日までの平均外気温そ して逆解析により算出したコンクリートのK値ならびに α値の一覧を表-4に示す。練り上がりは温度8~30℃ 程度、最高温度は 40~80℃程度そして到達時間は 30~ 60時間程度であった。また、逆解析により算出されたK 値は40~60程度,α値は1.5~2.5程度の範囲となった。 普通ポルトランドセメントで単位セメント量が 400kg/m³の時には,K値が約62,α値が1.36程度と算 出される⁶⁾が,それと比較するとK値は小さい反面,α 値は大きく評価された。低熱ポルトランドセメントをベ ースにすることで発熱量は抑えられるが,高強度コンク リートでは,一度反応が始まると自らの水和熱により反 応が加速的に進行すると推察される。

3.2 K値とα値の評価

単位結合材量と逆解析により算出された係数K値なら

図-5 逆解析結果の例

材料	物性	単位	入力値
	比熱	J∕kg°C	942
コンクリート	熱伝導率	W∕m·°C	2.67
	密度	kg/m ³	2450
発泡スチロール(EPS:200mm厚)	熱伝達率	W∕m²·°C	0.50
化粧合板	熱伝達率	W∕m²·°C	4.64
断熱型枠(合板+EPS50mm)	熱伝達率	W∕m ² · °C	0.90

表一3 物性値

表-4 温度実測値と逆解析による算出係数³⁾

	当估结合社		逆解析による						
B/W 単位和 		練上がり	最高温度	温度上昇量	最高温度	平均外気温	係数		
	里(Kg/m)	温度(°C)	(°C)	(°C)	到達時間(h)	(°C)	К	α	
7.0	1050	23.0	72.0	49.0	50.4	23.1	58.0	2.40	
7.0	1050	25.5	78.2	52.7	43.4	24.4	59.0	2.50	
6.0	900	22.0	68.7	46.7	43.1	23.1	55.0	2.40	
6.0	900	29.0	76.5	47.5	41.8	24.7	55.0	2.50	
6.0	900	23.5	73.3	49.8	44.6	24.4	57.0	2.40	
6.0	900	29.5	76.3	46.8	41.5	20.8	50.0	2.55	
6.0	900	11.5	57.6	46.1	41.0	2.3	51.0	2.40	
5.5	825	22.0	64.8	42.8	40.6	24.4	54.0	2.30	
5.5	825	22.5	70.4	47.9	52.3	23.1	54.0	2.20	
5.0	750	23.0	65.7	42.7	27.7	23.1	50.0	2.20	
5.0	750	29.0	71.1	42.1	40.8	24.7	50.0	2.25	
5.0	750	23.0	65.7	42.7	53.5	24.4	50.0	2.20	
5.0	750	8.5	54.5	46.0	37.0	20.8	50.0	2.20	
5.0	750	21.5	65.8	44.3	51.5	20.8	42.0	2.25	
5.0	750	30.5	75.2	44.7	39.4	20.8	49.0	2.55	
5.0	750	8.0	51.0	43.0	53.9	2.3	47.0	1.75	
4.0	600	19.0	59.6	40.6	35.8	20.8	46.0	1.90	
4.0	600	29.5	66.5	37.0	46.8	20.8	42.0	2.10	
4.0	600	8.0	43.8	35.8	57.9	2.3	40.0	1.40	
3.3	495	19.0	55.0	36.0	35.5	16.4	37.0	1.80	

びに α 値の関係を図-6に示す。今回,検討対象とした 範囲内では,K値と α 値は,どちらも単位結合材量の増 加に伴い直線的に大きくなる傾向が確認できる。

次に、データ数が最も多い結合材水比 5.0 の逆解析結 果について、算出された K 値と α 値をコンクリート温度 で整理した結果を図-7に示す。同一結合材量で比較し た場合、α 値はコンクリート温度の上昇とともに直線的 に大きくなっていく傾向が見られるが、K 値はコンクリ ート温度との相関関係は明らかではない。そこで、K 値 については単位結合材量のみで回帰を行い、α 値につい ては単位結合材量とコンクリート温度を変数として回 帰分析を行った。その結果、対象とした結合材のK 値と α 値について、式(2)ならびに式(3)という算出式が得られ た。なお、α 値について、単位結合材量のみで回帰を行 った式(4)を併せて示す。

$K = 0.037 \times B + 20.16$	(2))
11 0.0577.15120.10	<u>،</u>	,

$\alpha = 0.00126 \times B + 0.0213 \times CT + 0.773$	(3)
	· ·	

- $\alpha = 0.0015 \times B + 1.02 \tag{4}$
- ここに, K: 最終断熱温度上昇量(℃)
 - α:温度上昇速度に関する係数
 - B: 単位結合材量(kg/m3)
 - CT:コンクリート温度 (℃)

α値についてコンクリート温度を考慮する式(3)なら びに考慮しない式(4)による算出値と, 表-4に示した小 型試験体の逆解析で算出した値との関係を図-8に示 す。どちらも 1:1 の関係式上に分布しており, それぞれ の回帰式もほぼ y=x となったが, コンクリート温度を考 慮しない式(4)による場合では, ±15%をはずれる算出値 が2点みられることから, コンクリート温度は考慮した 方が良いと判断した。

4. 模擬柱試験体による検証

前章において提案した式(2)ならびに式(3)を用いて K 値とα値を算出して温度解析を行い,実機試験にて製作 した模擬柱試験体の温度実測値と比較して,提案式の妥 当性について検証を行った。なお,コンクリート温度は 試験体への打込み直前のフレッシュコンクリート試験 結果を用い,入力した外気温は日陰部分における実測値 を使用した。なお,測定期間中の平均外気温は冬期が 6.8℃,標準期が20.7℃そして夏期が32.2℃であった。

模擬柱試験体の温度履歴実測結果と温度解析結果の 数例を,普通柱については図-9に,断熱柱については 図-10に示す。図はそれぞれ左側が試験体中心部の結果 で,右側が角部分の結果である。解析結果は,最高温度 やその到達時間については,実測値を比較的精度良く再 現できた。普通柱については,一部で解析結果と実測値 の温度カーブが異なる部分がみられたが,これは日射や 風の影響とともに、試験体をシート養生していた点など が、その原因と考えられた。一方、外的要因の影響を比 較的受けにくい断熱柱については、図-10に示すように 解析結果は実測値とほとんど一致した。

以上の結果より,小型試験体の温度履歴を逆解析して 提案したK値やα値の算出式は,模擬柱試験体の温度解 析を行う上で,充分な精度を持つことが確認された。

図-10 模擬柱試験体(断熱柱)の温度解析結果と実測値(左:中心部,右:角部)

5. まとめ

本研究では、低熱ポルトランドセメントとシリカフュ ームの混合した結合材を対象として、温度解析に必要と なる最終断熱温度上昇量K値と、温度上昇速度に関する 係数α値について検討を行った。得られた知見を以下に まとめる。

- 周囲を断熱した小型試験体の温度測定データを逆 解析することでK値とα値を評価し、それぞれの算 出式を提案した。
- (2) K値は単位結合材量のみで、α値は単位結合材量と コンクリート温度を組み合わせることで評価が可 能であった。
- (3) 提案式により算出したK値ならびにα値を用いて 温度解析を行い、1.0~1.4m 角程度の寸法を持つ部 材の温度履歴を推定できることを確認した。

謝辞

本研究のデータ収集にあたり,東京エスオーシー(株) と日本シーカ(株)ならびに BASF ポゾリス(株)の諸氏に ご助力いただきました。ここに感謝の意を表します。

参考文献

- 日本コンクリート工学協会:マスコンクリートのひ び割れ制御指針,1986
- 河上浩司ほか:150N/mm² 級高強度コンクリートの 強度発現に関する実験研究、コンクリート工学年次 論文報告集, Vol.28, No.1, pp1235-1240, 2006
- 河上浩司・西本好克: Fc100N/mm² 級の高強度コン クリートの強度発現性に関する研究, コンクリート 工学年次論文報告集, Vol.24, No.1, pp.369-374, 2002
- 5) 村上祐次ほか:コンクリートの保温養生に関する養 生材料について、コンクリート工学年次論文報告集, Vol.21, No.2, pp.1333-1338, 1999
- 6) 日本建築学会:マスコンクリートの温度ひび割れ制 御設計・施工指針(案)・同解説, pp.7-8, 2008