論文 CFT 柱に充填するコンクリートの収縮挙動に関する実験的研究

寺西 浩司*1·山田 一徳*2·梶田 秀幸*3

要旨:本研究では,CFT 柱に充填する高流動コンクリートの極若材齢の収縮挙動を把握するために,模擬鋼管に充填したコンクリートの沈降挙動などを測定した。また,硬化過程における収縮を調べるために自己収縮試験を行った。その結果,コンクリートに生じる極若材齢の沈降は,ブリーディングを主因としたものであることがわかった。また,本実験の範囲では,コンクリートの沈降は,高さにかかわらず均一の割合で生じることが明らかになった。

キーワード:コンクリート充填鋼管,高流動コンクリート,沈降,ブリーディング,自己収縮

1. はじめに

CFT (コンクリート充填鋼管)柱は,耐力, 靭性,剛 性などに優れることから,高層建築物を中心に普及して きている¹⁾。しかし,その一方で、圧入工法を採用した 場合に,CFT柱に充填されたコンクリートの圧縮強度が ダイアフラム近傍で低下するという事例が古くから多 数報告されている^{2)~4)}。また,その際の強度低下の割合 は事例ごとに異なっており,低下割合にどのような要因 が影響を及ぼすのかは明らかになっていない。

以上のことを踏まえ, 現状の CFT 柱のコンクリート工 事では, 施工者ごとに, モデル実験を行ってダイアフラ ム近傍の強度のばらつきを調べている。そして, その結 果を基に充填コンクリートの調合強度の割増しの値を 設定し, それを全ての物件に対して一律に適用してい る⁵⁾。しかし,より合理的に CFT 柱を施工するためには, まず, 強度低下の原因を解明し, そのうえで, 充填コン クリートの合理的な調合強度の割増し方法を確立する か, もしくは, 強度低下の生じにくい施工方法を検討す ることが重要である。

そこで、本研究では、CFT 柱のダイアフラム近傍にお けるコンクリートの強度低下の原因を解明するために、 その基礎資料の収集を目的とした検討を行った。筆者ら は、CFT 柱に充填されたコンクリートに生じる収縮がダ イアフラムにより拘束され、その結果、ダイアフラム近 傍のコンクリートにひずみが集中し、強度が低下する可 能性が高いと考えた。そして、流動状態から凝結過程に かけての極若材齢の収縮挙動を把握するために、模擬鋼 管に充填したコンクリートのブリーディングなどに伴 う沈降挙動などを測定した。また、硬化過程における収 縮を調べるために自己収縮試験を行った。本報では、こ の一連の実験結果を取りまとめて報告する。

2. 実験概要

2.1 実験ケース

表-1 に実験ケースを示す。本実験では、CFT 柱に充 填する高流動コンクリートの種類を要因とした。その際、 コンクリートの使用セメントを低熱ポルトランドセメ ント、普通ポルトランドセメントおよび普通エコセメン トの3種類とした。また、低熱ポルトランドセメントの 場合には、ブリーディング量の多いケースとして、遅延 剤を添加したものを別途用意した。

2.2 使用材料および調合

表-2 に使用材料を示し、また、表-3 にコンクリー

表-1 実験ケース

記号	使用セメント	W/C(%)	遅延剤
L34R	任執ポルトランドセメント	34	使用
L34		74	
N35	普通ポルトランドセメント	35	不使用
EC35	普通エコセメント	35	

表-2 使用材料

			农 Z 区加州科
材料	記号		仕様
	C		低熱ポルトランドセメント (密度:3.22g/cm ³)
セメント			普通ポルトランドセメント (密度:3.16g/cm ³)
			普通エコセメント (密度:3.17g/cm ³)
细骨材*	s	SA	市原産山砂 (表乾密度:2.58g/cm ³ ,吸水率2.24%)
		SB	鳥形山産砕砂 (表乾密度 2.62g/cm ³ ,吸水率 1.64%)
粗骨材	(3	峩朗産石灰岩砕石 (表乾密度 2.70g/cm ³ ,実積率 60.0%)
高性能 AE 減水 剤	Н	AE	ポリカルボン酸系
遅延剤]	R	変性リグニンスルホン酸化合物と オキシカルボン酸の複合体
* SA : SB	= 5	0:	50(体積比)で使用

*1 名城大学 理工学部建築学科教授 博士(工学) (正会員)

*2 名城大学大学院 理工学研究科建築学専攻 大学院生 (正会員)

*3 前田建設工業(株) 技術本部ものづくりセンター (正会員)

トの調合を示す。本実験では、コンクリートの目標スラ ンプフローを 60±10cm,目標空気量を 3±1.5%に設定し た。

2.3 試験項目および試験方法

(1) 沈降試験

本実験では、模擬鋼管として高さ1m, 直径 25cm の塩 ビ管(VU管)を用意し、その内部にコンクリートを打 ち込んで、ブリーディングなどに伴う沈降挙動を測定し た。なお、試験は、室温を制御していない実験室内で行 った(実験室の室温は、平均的に 20℃前後であった)。

図-1および写真-1に,沈降試験装置の概要を示す。 この試験では、図-2に示すような治具を用いて、底面 から25,50および75cmの位置のコンクリートの沈降量 を経時的に測定した。この治具は、下端にステンレス製 の金網を取り付けたピアノ線を真鍮管の中に通したも のであり、金網に接する部分のコンクリートの沈降挙動 をピアノ線の上端に伝達する仕組みになっている。本実 験では、ピアノ線の上端にレーザー反射板を取り付けて、 その変位をレーザー変位計により測定した。また、この 他に、コンクリートの天端(底面から100cm)の沈降量 をレーザー変位計で測定した。

なお、本実験では、レーザー変位計用のマグネットス タンドを塩ビ管の天端に固定した。そのため、レーザー 変位計の測定値には、塩ビ管の温度変化に伴う変形量が 含まれてしまう。そこで、データ整理時のこの補正を目 的として、塩ビ管側面の温度を熱電対により測定した。 また、塩ビ管の外周面にひずみゲージを貼付してその温 度ひずみを測定した。

(2) その他の試験

表-4 に, 沈降試験以外の試験項目および試験方法を 示す。CFT 柱の場合,一般に,充填されたコンクリート に乾燥収縮は生じないとされているため,本実験では, コンクリートの硬化過程の収縮として自己収縮ひずみ を測定した。自己収縮試験では,封かん養生としたコン クリート供試体(10×10×40cm)を調合ごとに2個ずつ用 意し,供試験体内部に埋設した埋込み型ひずみ計により 経時的にひずみを測定した。

なお,凝結試験および自己収縮試験は恒温恒湿室内 (温度 20℃,相対湿度 60%)で実施し,ブリーディング 試験は沈降試験と同一環境下で実施した。

表-3 調合

記号	スランプ フロー	空気量 (%)	空気量 (%) 水セメ ント比		質量 (kg/m ³)			混和剤 (C×%)	
	(cm)		(70)	W	С	S	G	HAE	R
L34R	60±10	3±1.5	34	165	485	843	891	0.85	0.003
L34			34	165	485	796	989	0.81	_
N35			35	170	486	731	991	1.43	_
EC35			35	170	486	732	991	1.34	_

表-4 試験項目および試験方法

試験項目	試験方法
スランプフロー試験	JIS A 1150
空気量試験	JIS A 1128
コンクリート温度	JIS A 1156
凝結試験	JIS A 1147
ブリーディング試験	JIS A 1123
自己収縮試験	JCI 超流動コンクリート 研究委員会の方法 ^の を準用
圧縮試験	JIS A 1108

写真-1 沈降試験装置

3. 実験結果

表-5 に, 沈降試験および自己収縮試験以外の試験結 果の一覧を示す。スランプフローおよび空気量は全ての ケースで目標値を満足した。

3.1 凝結試験の結果

図-3 に凝結試験の結果を示す。同図および表-5 からわかるように、L34R では、遅延剤添加の効果により、 始発および終結時間がL34の2倍程度に伸びている。また、残りのケースの中では、エコセメントを用いた EC35 の凝結時間が他のケースよりも長くなった。

3.2 ブリーディング試験の結果

表-5 からわかるように, ブリーディング量は, 遅延 剤を添加した L34R では, CFT 造技術基準⁵⁾に規定され た上限値(0.1cm³/cm²)を上回り, それ以外のケースで はこの上限値を下回った。図-4 に, ブリーディング試 験の結果を示す。同図によると, L34R では, 凝結遅延 の影響により, ブリーディング終了までに L34 の 2 倍近 くの時間を要している。

3.3 沈降試験の結果

図-5 に沈降試験の結果を示す。ここで、図中に示し

表-5 試験結果一覧

た値は、塩ビ管の温度とひずみの関係から求めた線膨張 係数を用い、レーザー変位計の測定値から塩ビ管の温度 変化に伴う変形の影響を排除した値である。また、N35 および EC35 における高さ 25cm の位置の沈降量は、異 常値を示したため、試験結果から除いてある。

同図からわかるように、L34 および N35 では、コンク リートの沈降はほとんど生じなかった。それに対し、 L34R および EC35 では一定量の沈降が生じた。これらの ケースでは、上方に位置するコンクリートほど沈降量が 大きくなっている。また、急激な沈降は注水から 6hr 後 程度までにほぼ終了している。

3.4 自己収縮試験の結果

図-6に、自己収縮試験の結果を示す。同図によると、 L34R と L34 の自己収縮ひずみは同程度であり、遅延剤 添加の影響は見られない。また、普通エコセメントを用 いた EC35 の自己収縮ひずみは、普通ポルトランドセメ ントを用いた N35 の場合と同程度となっている。

4. 考察

4.1 沈降量の高さ方向の分布

図-7 に、コンクリートの沈降量の高さ方向の分布を 示す(経過時間 24hr)。同図からわかるように、沈降量 の分布は、いずれのケースの場合も原点を通る直線でほ ぼ表すことができる。このことから、少なくとも打込み 高さが 1m 程度までの場合には、コンクリートの沈降は、 ほぼ均一の割合で生じるものと判断される。すなわち、 コンクリートの沈降に起因する収縮ひずみ(以下,沈降 ひずみという)は、高さにかかわらずほぼ一定であると いえる。

4.2 沈降ひずみ

図-8 は、図-5 に示した各高さにおける沈降量の差 分から、コンクリートの沈降ひずみの平均値を計算した

結果を示したものである。また、図中には、この沈降ひ ずみの回帰曲線(表-6に回帰式を示す)と、その他に、 ブリーディング試験で生じたコンクリートの収縮ひず み(以下、ブリーディングひずみという)も併せて示し てある。ここで、ブリーディングひずみの値は、図-4 に示したブリーディングの分だけコンクリートが収縮 したと考えて計算したものである。

図-8によると、EC35以外のケースでは、沈降ひずみ とブリーディングひずみの時間変化曲線は類似した形 状になっており、また、ひずみの収束値も比較的近い値 になっている。このことから、極若材齢のコンクリート に生じる沈降はブリーディングを主因としたものであ ると判断される。ただし、EC35の場合は、ブリーディ ングひずみがほとんど生じていないにもかかわらず、沈 降ひずみが大きくなっている。すなわち、コンクリート の沈降がブリーディングとは別の原因により発生した 可能性が高いものと考えられる。

4.3 CFT 柱のダイアフラム近傍におけるコンクリートの 強度低下の原因

CFT柱に充填されるコンクリートの自己収縮ひずみは, 図-6に示したように、100~250×10⁶程度である(材齢 84日の時点)。それに対し、沈降ひずみ(すなわち、ブ リーディングひずみ)は、L34Rの場合に4000×10⁶程 度に達し、自己収縮ひずみに比べて非常に大きい。した がって、CFT柱のダイアフラム近傍におけるコンクリー トの強度低下が、筆者らの仮定したように、コンクリー トの収縮に起因して発生するのであれば、その主な原因 は、自己収縮などよりも、極若材齢のコンクリートのブ リーディングに伴う沈降である可能性が高いものと推 察される。

5. まとめ

本研究では、CFT 柱のダイアフラム近傍におけるコン クリートの強度低下の原因を解明するために、その基礎 資料の収集を目的として、充填コンクリートの沈降試験 や自己収縮試験などを行った。その結果から得られた知 見は、以下の通りである。

- (1)極若材齢のコンクリートに生じる沈降は、ブリー ディングを主因としたものである。ただし、普通 エコセメントを用いたコンクリートの場合は、ブ リーディングとは別の原因により発生する可能性 が高い。
- (2) 少なくとも打込み高さが Im 程度までの場合には、 極若材齢のコンクリートの沈降は、高さにかかわ らず均一の割合で生じる。すなわち、コンクリー トの沈降に起因する収縮ひずみは高さにかかわら ず一定である。

表-6	沈降ひず	おの回り	帚士
-----	------	------	----

→ → 17	
記号	沈降ひずみ
L34R	$\varepsilon_{sh}(t) = 3886.1 \Big[1 - \exp(-23.77t)^{1.09} \Big]$
L34	$\varepsilon_{sh}(t) = 225.8 \left[1 - \exp(-1.27t)^{0.48} \right]$
N35	$\varepsilon_{sh}(t) = 361.6 \left[1 - \exp(-2.40t)^{0.72} \right]$
EC35	$\varepsilon_{sh}(t) = 1612.5 \left[1 - \exp(-10.27t)^{0.85} \right]$

[記号]t:経過日数(日), $\varepsilon_{sh}(t)$:沈降ひずみ(×10⁻⁶)

(3) 極若材齢における沈降に起因する収縮ひずみは、 長期材齢における自己収縮ひずみに比べて非常に 大きい。したがって、CFT 柱のダイアフラム近傍 におけるコンクリートの強度低下が、コンクリー トの収縮に起因して発生するのであれば、その主 な原因は、極若材齢のコンクリートのブリーディ ングに伴う沈降である可能性が高い。

本報は、「環境配慮型セメントを用いたコンクリート 充填鋼管造に関する施工技術の開発コンソーシアム」が 国土交通省平成 18 年度住宅・建築先導技術開発助成事 業の助成を得て実施した研究の一部を報告するもので ある。

参考文献

- 山口育雄,上田弘樹,今村輝武,鈴木忠彦:CFT 構 造設計・施工の現状報告,コンクリート工学, Vol.37, No.4, pp.25-31, 1999.4
- 2) 梅本宗宏, 槙島修, 松本和行, 西田浩和, 森浩之, 大内千彦, 梶田秀幸, 黒島毅: CFT 柱の構造体コン クリート強度確認実験(その3 硬化コンクリートの 試験結果), 日本建築学会学術講演梗概集, A-1, pp. 847-848, 2002.8
- 3) 中川雄二,川崎三十四,松本範義,成川史春,和田 真平:鋼管コンクリート構造柱の実用化実大施工実 験(その3 鋼管の応力分布、硬化コンクリート),日 本建築学会学術講演梗概集,A-1,pp.851-856,1998.8
- 4) 中込昭,江口清,寺西浩司,西川秀則:充填形鋼管 コンクリート柱の圧入施工実験,コンクリート工学 年次論文報告集, Vol.15, No.1, pp.1055-1060, 1993.6
- 5)新都市ハウジング協会:コンクリート充填鋼管(CFT) 造技術基準・同解説の運用及び計算例等, pp.2-36-2-40, 2003.9
- 6) 日本コンクリート工学協会:超流動コンクリート研 究委員会報告書(II), pp.209-210, 1994.5