論文 SC 基礎梁と杭頭の接合部詳細に関する開発研究

筏井 文隆*1・新井 勇作*2・小林 昭*3・小林 克巳*4

要旨:鉄骨構造における固定柱脚工法の一つである鉄骨コンクリート基礎梁(以下 SC 基礎梁)工法は直接基礎を対象にしていた。杭基礎を採用する場合は,従来の RC 造基礎梁下に設けるのと同様のパイルキャップを SC 基礎梁の下に設けて対処していたため,施工の煩雑さを招いていた。そこで SC 基礎梁工法においても施工の省力化を図れ,半剛接合により杭頭応力の負担を制御できる杭頭接合部のディテールを開発し,杭頭モーメントの伝達メカニズムを検証するための実験を行なった。その結果,設計上意図した応力伝達メカニズムにより杭頭モーメントが伝達されることを確認できた。

キーワード:杭頭接合部,応力伝達メカニズム,SC基礎梁,PHC杭

1. はじめに

鉄骨構造における固定柱脚工法の一つに,鉄骨コンク リート基礎梁工法¹⁾(以下 SC 基礎梁工法)がある。こ の工法ではH形鋼梁に直接鉄骨柱部材が溶接接合されて おり,基礎梁及び柱基礎梁接合部コンクリートは基礎コ ンクリートと一体で打設され, SC 基礎梁を構成し, 柱脚 の固定度と耐力が確保できるものである。この SC 基礎 梁工法は直接基礎を対象として開発されたものであり, 軟弱地盤において杭基礎を採用する場合には,図-1に 示すように, SC 基礎梁の下に従来の RC 造基礎梁下に設 けるのと同様のパイルキャップを設けて対処していた。 SC 基礎梁の下にパイルキャップを設けることは、基礎の 根入れ深さが深くなること, SC 基礎梁下で基礎コンクリ ートを打ち継ぐ必要があること,また,かご筋の配筋な ど施工の煩雑さを招いていた。しかも杭頭モーメントの 基礎梁への伝達も不明解となり合理的とはいえなかっ た。

本論文は、これらの諸問題を解消する杭頭接合部ディ テールの開発を行い、意図した応力伝達メカニズムによ り杭頭モーメントが伝達されることを実験的に検証し たものである。

2. 工法概要

開発した杭頭接合部ディテールの概要を図-2 に示す。 鉄骨柱と SC 基礎梁内の H 形鋼接合部直下に,杭頭リン グ (鋼製の筒状部材)が隅肉溶接によって固定されてい る。既製コンクリート杭はその杭頭リング内の範囲に収 まるように施工されるものとする。杭頭端板に緊結され た杭頭補強筋ユニットはリング状の定着プレートによ って杭頭リング内に定着されている。この定着リングに より,杭頭補強筋の定着長さは 20d (d:鉄筋径の呼び名)

*1	木内建設(柊	朱)設	計部開発課主任	博士(工学)	(正会員)	
*2	木内建設(柊	朱)設	計部開発課副部長	長 (正会員)		
*3	サンベース	(株)	技術管理室室長	長 (正会員)		
*4	福井大学大学	学院	工学研究科建築建	建設工学専攻	教授 工博	(正会員)

程度となっている。杭頭リング内には, SC 基礎梁内の H形鋼をまたぐようにU形接合補強筋が挿入されている。 U形接合補強筋は先端の定着金物により杭頭リング内に 定着されている。杭頭リング内および SC 基礎梁のコン クリート打設は同時に行なわれ一体化される。なお,杭 頭のパイルキャップへの埋め込みは50mmとした。これ により,杭頭は半剛接合となり杭頭モーメントの大きさ の制御が可能となる。

3. 杭頭モーメントの応力伝達メカニズム

杭頭モーメントは杭端板に緊結された杭頭補強筋の 引張降伏応力によって決定される。杭端板位置に発生す る杭頭モーメントがパイルキャップを経て SC 基礎梁に 伝達されるメカニズムは、圧縮力の伝達に関しては杭頭 リング内に充填されているコンクリートによって伝達 されることが明解である。従って、杭頭リング内で定着 された杭頭補強筋引張力(T)の伝達メカニズムに言い換 えることができ、図-3 に示す3種類のメカニズムを考 える。

- ◇メカニズム1:杭頭リング内のコンクリート引張力 (T_c)のみで伝達されるメカニズム。
- ◇メカニズム2:杭頭リング内コンクリートと杭頭リン グ内面の付着力を介して鋼管の溶接 部からSC基礎梁内のH形鋼に引張力 (T_s)が伝達されるメカニズム。
- ◇メカニズム3:U形接合補強筋と杭頭補強筋のあき重 ね継手により引張力(T」)を伝達するメ カニズム。

杭頭リング内の引張応力がコンクリートのひび割れ 応力以下であれば、メカニズム1は成立するが通常の設 計ではコンクリートの引張力に期待した設計は許され ないため、設計上のメカニズムとしては採用できない。 メカニズム2による設計を考えた場合、鋼管とコンクリ ートの付着、鋼管によるコンクリートの拘束効果などメ カニズムに不明解な要素を含む。しかも、最終的に SC 基礎梁内のH形鋼と鋼管の溶接部に引張力が伝達される ことから、厳格な溶接部の施工管理が求められる。

それに対し、メカニズム3では杭頭補強筋とU形接合 補強筋が鋼管内部に充填されたコンクリートを介して、 いわゆるあき重ね継手として引張力を直接 SC 基礎梁に 伝達すると考えるものであり、鋼管には単に内部コンク リートに対する拘束効果のみを期待することになる。そ の結果、鋼管リングは建て方上の便宜から SC 基礎梁内 のH形鋼に隅肉溶接されていればよいことになり、溶接 管理は不要となる。実際の応力伝達はメカニズム1~3 が複合されたもの(T=T_c+T_s+T_J)であるが、それぞれのメ カニズムで杭頭モーメントを伝達できることが望まし い。

メカニズム3を設計上のメカニズムに採用すれば,杭 頭接合部の設計においては,杭頭モーメントを伝達する に十分なU形接合補強筋を杭頭リング内に挿入しておけ ば,SC基礎梁に杭頭モーメントが伝達できることになる。 杭頭リング内部のコンクリートの引張力,杭頭リングが 負担する引張力を考慮しないものであるが,これらを代 替応力伝達メカニズムと考えれば,冗長性を付加した簡 便な設計方法とすることができる。

図-3 応力伝達メカニズム

表-1 試験体一覧

No	試験体記号	杭頭補強筋	U形接合補強筋	打継ぎ
1	CR-N-B (メカニズム2)		無	有
2	CR-J-N (基準試験体)	6-D16 (SD345)	8-D16 (SD345)	無
3	CR-J-B (メカニズム3)		0-010(30343)	有

表--2 使用材料特性

鉄筋	D16	降伏応力度	引張強度	ヤング係数	伸び率
SD34	45	$382 \mathrm{N/mm}^2$	$568 \mathrm{N/mm}^2$	$1.91 \times 10^5 \mathrm{N/mm}^2$	25.8%
コンク!	リート	圧縮強度	引張強度	ヤング係数	t
$Fc=21N/mm^2$		28.7 N/mm^2	$2.51 \mathrm{N/mm}^2$	2.56×10^4 N/m	nm ²

4. 実験計画

4.1 試験体概要

試験体の概要を図-4 に,試験体一覧を表-1 に,使 用材料特性を表-2 に示す。対象とする杭頭接合部ディ

図-4	試験体概要
-----	-------

テールの試験体へのモデル化は, SC 基礎梁内の H 形鋼 下面からのモデルとし、柱基礎梁接合部は剛体として考 え,基礎梁や柱の剛性等は考慮していない。また,杭頭 モーメント伝達メカニズムの検証を主目的としている ため、軸力は載荷していない。試験体は図-3のメカニ ズムを全て含む基準試験体(No.2)が一体,応力伝達を 検証するために、U形接合補強筋を無くし、SC 基礎梁内 のH形鋼下フランジ下面と杭頭リング内のコンクリート とに打ち継ぎを設け, 杭頭リング内のコンクリート引張 力伝達をなくしたもの、即ち引張力が鋼管リングの溶接 部のみに伝達されるもの(No.1)が一体, さらに設計上 のメカニズムであるU形接合補強筋のみで引張力伝達を するように、打継ぎ部を設け杭頭リングを SC 基礎梁内 のH形鋼に溶接していないもの(No.3)が一体,合計3 体とした。杭頭リングの形状は鋼管または円筒状のもの を想定し、本実験では縞鋼板の八角形断面(内法長さ 600mm)とした。杭頭補強筋ユニットは PHC 杭端板上 に緊結されている。杭は直径 300 φ の PHC 杭 C 種を使用 した。杭頭補強筋(6-D16)およびU形接合補強筋(8-D16) は SD345 を使用し、 編鋼板は CP-4.5 を用いた。 SC 基礎 梁内H形鋼はH-200×200×8×13(SS400), パイルキャッ プに相当する杭頭リングを含む断面は 750mm×750mm であり,スタブ断面もこれと同断面サイズとした。コン クリートの設計基準強度は $F_c=21N/mm^2$ である。

4.2 実験方法

実験載荷装置を図-5 に載荷状況を写真-1 に示す。 試験体を反力床に置き, 片持ち梁形式としてスタブ側面

図-5 実験載荷装置

写真-1 実験載荷状況

を4台のキリンジャッキで固定し, 杭先端部に 300kN 油 圧ジャッキ2台で載荷した。加力は変位制御とし,正負 交番の繰り返し載荷とした。部材角 R=1/1000, 1/800,

1/400 で正負一回。R=1/200, 1/100, 1.5/100 で正負2回, R=2/100 まで載荷して加力を終了した。

スタブ面から杭の加力点までの距離は910mmであり, 杭径 300mm に対するせん断スパン比は約3となる。杭 頭固定とした場合,一様地盤においてはおおよそ杭径の 3~4倍程度に曲げモーメントの反曲点があることか ら,せん断スパン比を3程度に設定した。実際のディテ ールにおいては,杭頭が剛接合にはならないため,曲げ モーメントの反曲点は下がり,せん断スパン比が3より

図-6 せん断力・水平変位関係

大きくなるが、より大きな曲げモーメントをパイルキャ ップに導入するために、せん断スパン比を3程度とした。

杭の変位を高感度変位計を用いて測定した。加力点ま での中間位置で2点,加力点,杭先端の合計4点で杭の 変位分布を測定した。杭頭補強筋には杭端板直上の位置, U形接合補強筋はSC基礎梁内H形鋼下フランジ下面直 下の位置にひずみゲージを貼付し,ひずみを測定した。 杭頭リング表面のひずみを載荷軸方向上の2面に三軸ゲ ージを貼付して測定した。

5. 実験結果

5.1 せん断力・水平変位関係

各試験体のせん断力・水平変位関係を図-6 に示す。 どの試験体も部材角 1/200 を超えたあたりで杭頭補強筋 が降伏し,全試験体とも最終加力の部材角 R=2/100 まで 安定した紡錘形の履歴性状を示した。

5.2 破壊性状

どの試験体もパイルキャップ表面に杭を中心とした 放射線状のひび割れが数本発生した程度である。また, 杭の側面に曲げひび割れは一切発生しなかった。

5.3 変形性状

各試験体の変位分布を図-7 に示す。どの試験体も大 変形時まで直線分布を示している。このことから、杭は 剛体回転変形しており、杭頭の半剛接合のディテールを 実現できていると判断できる。

6. 杭頭モーメント伝達メカニズムの検証

実施工ディテールの No.2 試験体と設計上意図したメ カニズムである No.3 を比較すると、載荷履歴、耐力とも 顕著な違いが見られなかった。両試験体のU形接合補強 筋のひずみ分布を図-8 に示す。両試験体とも最終加力 まで降伏強度には達していないが, No.2 試験体のひずみ が 200 µ 程度に収まっているのに対し, No.3 試験体の最 大ひずみは1500μを超えている。杭頭補強筋が降伏強度 に達する直前の部材角 1/200 のとき, No.2 試験体のせん 断力は 61.24kN, No.3 試験体が 61.51kN であり、ほぼ同 じせん断力となっている。U形接合補強筋に働いている 引張応力度の合計は、ひずみゲージによる測定結果より、 No.2 試験体が 45.4N/mm², No.3 試験体が 799N/mm²であ る。即ち、杭頭補強筋が弾性範囲のとき、杭頭モーメン トの伝達に寄与するU形接合補強筋のおおよその引張力 負担率は全引張応力度 799N/mm²に対し 45.4N/mm²とな ることから6%程度である。

引張力伝達を杭頭リングの溶接部のみに限定した No.1 試験体と実施工ディテールである No.2 試験体を比 較する。No.1 試験体の引張力伝達要素は,打継ぎ部を設 けておりU形接合補強筋も無いことから,杭頭リングの 溶接部のみで引張力が伝達されているはずである。各試 験体の最大引張主応力度の分布を図-9 に示す。杭頭補 強筋が弾性範囲である部材角 1/200 において, SC 基礎梁 内H形鋼下フランジ下面溶接部付近の杭頭リングに生じ ている最大引張主応力度は,No.1 試験体が 87.5N/mm², No.2 が 28.6 N/mm²である。杭頭リングの主応力度は 3 軸ひずみゲージの測定結果からロゼット解析により求 めたものである。部材角 1/200 のとき,No.1 試験体のせ ん断力は 50.65kN であり,他の 2 体の試験体よりせん断 力が 21%低くなっている。U形接合補強筋と杭頭リング

内面の付着力に差があり、剛性が下がっていると推測さ れる。No.1 試験体の引張力負担は杭頭リングの溶接部に 限定されているはずであり、弾性範囲内ではほぼせん断 力と鉄骨溶接部に生じる引張応力度は比例すると考え られる。そこで、No.1 のせん断力 50.65kN 時の杭頭リン グ溶接部引張主応力度 87.5N/mm² を 1.21 倍して 106N/mm²とし、せん断力 61.24kN 時の杭頭リング溶接 部引張主応力度とみなすことにより、杭頭モーメントの 伝達に寄与する引張力のおおよその負担割合を検討す ることとした。杭頭モーメント伝達に寄与する引張応力 は、No.1 の引張主応力度 106N/mm²に対し No.2 が 28.6 N/mm²となることから、27%が杭頭リングの溶接部によ り伝達されていることがわかる。従って、杭頭モーメン ト伝達に寄与するコンクリート引張力のおおよその負 担割合は、U 形接合補強筋が 6%, 杭頭リングの溶接部 で 27%が伝達されているので残りの 67%となる。なお, No.3 の杭頭リングに生じている最大引張主応力度は, 5.62 N/mm²である。No.3 の杭頭リングはリング内コンク リートに拘束を与えるために、引張力を生じているもの と理解できる。

以上の結果より,実施工ディテールの各伝達メカニズ ムのおおよその負担率に言い換えれば,図-3に示すメ カニズム1による応力伝達負担率が67%,メカニズム2 が27%,メカニズム3が6%となり,大半の引張力をメ カニズム1とメカニズム2にて伝達していることにな る。実験結果より得られた引張力負担割合を図-10に示 す。設計においてメカニズム3を採用することは,負担 率からいえば不合理ではあるが,仮にメカニズム1およ びメカニズム2が消滅した後でも,終局時には全杭頭モ ーメントを伝達できるので,コンクリートの引張力や溶 接接合部の管理など不確定要素に期待する必要がなく なり,実務上の設計においては利点があると考えられる。

7. まとめ

鉄骨造固定柱脚工法である SC 基礎梁工法において, 杭基礎に対応させるために,応力伝達メカニズムの明解 さと施工性を考えた杭頭接合部のディテールの開発を 行った。杭頭モーメントの伝達メカニズムについて実験 的に検証した。その結果,意図した応力伝達メカニズム により杭頭モーメントが伝達されることを確認できた。

今後の課題として,杭軸力を考慮した場合の挙動の確 認,杭が偏心することの影響の評価,中詰め工法への対 応などがある。

参考文献

大角昇,斉藤元司,橋本敏男,増田俊夫,玉松健一郎,橋本篤秀,吉田究,在原将之,川上修:鉄骨コンクリート基礎梁を用いた固定柱脚の実験的研究(その1~その5),日本建築学会大会学術講演概要集 C-1構造 III, pp.465-474, 1997