論文 プレキャスト化された柱梁接合部内における柱主筋貫通孔の仕様が 部分架構の構造性能に及ぼす影響

鈴木 英之*1·西原 寬*2

要旨:超高層住宅を対象とした梁と柱梁接合部を一体化したプレキャスト工法において,柱主筋が貫通する 孔にシース管を用いない作製方法を提案した。まず,簡易な付着試験によって,各種の貫通孔の性能を把握 した。その結果を踏まえて,貫通孔の仕様を絞り込み,部分架構実験を実施した。その結果,柱梁接合部を 現場打ちコンクリートとした場合と比較して,構造的な差は見られなかった。試験体をモデル化した非線形 有限要素法解析によって,実験結果を再現することが可能であり,柱主筋の付着強度や付着剛性を要因とし た解析によって,付着強度が低い場合には部分架構の耐力が低下することが確認された。 キーワード:鉄筋コンクリート,プレキャスト,柱梁接合部,付着,部分架構実験,有限要素法解析

1. はじめに

超高層 RC 住宅の建設では、工期の短縮を計る目的で 躯体のプレキャスト(以下 PCa) 化率を上げることが望 まれており、最近では、柱梁接合部と梁を一体とした PCa 工法も使われている。この場合は、PCa 化された柱梁接 合部内に柱主筋を貫通させる孔を設け、下層階から伸び る柱主筋をそこに貫通させ、建て方後にその貫通孔と柱 主筋間にグラウトを充填することで一体化する方法が 多い。この貫通孔は、一般的には金属製のシース管を用 いて形成されるが^{例えば 1),2)}、シース管の節の形状にはい くつかの種類がある。一方で、多層多スパンの建物全体 で考えた場合、貫通孔の作成方法にも合理化が求められ ている。

本論では、コンクリートが硬化する直前に円筒形の型 枠を引き抜くことで貫通孔を成型する方法を提案する。 この方法によると、貫通孔部分のシース管が不要となり、 コンクリートの素地とグラウト間の付着力によって、一 体性が確保される。このような貫通孔に鉄筋を挿入し、 後からグラウトを充填した時の付着性能については、定 量的な評価がされていない。

本開発では、まず貫通孔の成型方法を要因とした簡易 な付着試験により、それぞれの付着性状を把握した上で、 柱主筋貫通孔の種類を要因とした部分架構実験を行い、 その仕様が構造性能に及ぼす影響を明らかにすること を目的とした。更に非線形有限要素法解析によって、柱 梁接合部内の柱主筋の付着性状が架構の剛性に与える 影響を明らかにした。

2. 引き抜き成型による柱主筋貫通孔

あらかじめ柱梁接合部を形成する型枠内の柱主筋が

*1 安藤建設(株)技術研究所 博士(工学)(正会員)
*2 安藤建設(株)技術研究所 室長 (正会員)

通る位置に円筒形の型枠をセットし、コンクリートを打 設する。その後、コンクリートが硬化する直前に円筒形 型枠を引抜くことで、円筒形の貫通孔が成型される。貫 通孔の表面は、**写真-1a**に示すように比較的平滑である。 そこで、引抜き成型の直後に電動ドリルの先端に回転型 のワイヤーブラシを取り付け、貫通孔の表面を粗面化す る方法を試みた。この方法により**写真-1b**に示すような 凹凸が 1mm 程度の粗面状態を形成することができた。

写真-1引き抜き成型による貫通孔の表面

3. 付着試験

3.1 試験体

まず,引抜き成型を含めた各種貫通孔の付着性能を調 べるために,簡易な付着試験を行った。表-1 に試験体 一覧,図-1 に試験体形状を示す。コンクリート強度は 60N/mm²程度とし,主に貫通孔の仕様を要因とした。

M-1 はコンクリートだけで一体化した試験体である。 M-2 および M-3 は前述の要領で外径 60mm の塩ビ管をコ ンクリートの硬化直前に引き抜いて貫通孔を成型し, M-2 は引抜き後未処理, M-3 は写真-1b に示すように貫 通孔の表面を粗面化した。M-4~M-6 は鋼製のシース管 を使用した試験体である。M-4 は内径 60mm の#1060 シ ース, M-5 は内径 75mm の#1075 シース, M-6 は内径 60mm で横節の数が多い#3060 シースを使用した。 試験体の形状は建材試験センター方式³⁾に準じた。使 用した鉄筋は横節形状の D41(SD685)とし,試験区間のう ち加力側の約 $2d_b$ (=85mm, d_b :鉄筋公称径)の区間につい てはコンクリートと鉄筋間の付着を無くした。試験結果 の偏差を考慮して各要因で同一の試験体を3体製作した。

M-2~M-6 はコンクリート硬化後に貫通孔内へ鉄筋を 挿入し、引抜き成型の試験体は水湿しをした後に、手動 ポンプを用いてグラウトを充填した。実験に使用したコ ンクリートおよびグラウトの試験結果は**表-1**中に示す。

3.2 加力および計測

加力は1000 kN アムスラーを用い,一方向単調載荷と した。計測項目はアムスラーの荷重および,自由端側の 鉄筋の抜け出し変位とした。

3.3 試験結果

a. 付着応カー抜け出し変位関係

表-2 に試験結果一覧を示す。また図-2 に平均付着 応力度-抜け出し変位関係の一例を示す。ここで、平均 付着応力度は鉄筋の公称周長と埋込長さ(165mm)から 算出した。図中の付着強度計算値は靱性保証指針式⁴か ら計算した。

M-2 および M-3 の各1回目の試験は,加力面のキャッ ピング不良が原因で早期にコンクリートが割裂したた め、今後の考察から除外する。抜け出し変位が 0.05mm 時の割線剛性は一体打ちのM-1が最も高く,続いて#3060 シースを用いた M-6と粗面仕上げとした M-3の両者がほ ぼ同じ剛性であった。#1000 台のシース管を用いた M-4 と M-5 は他の試験体と比較して剛性が低く最大耐力も低 かった。特に直径が大きい#1075 シースを用いた M-5の 剛性が低かった。

最終破壊はいずれもコンクリートの割裂破壊であり, シース管を用いた試験体はシース管表面から,シース管 を用いていない試験体は鉄筋の表面から割裂した。

b. 滑り始めの荷重

図-3 に自由端側における鉄筋の抜け出し変位が確認 された時の平均付着応力度(以下,滑り応力度)を示す。

シース管を使用した試験体は、いずれも一体打ち試験体よりも滑り応力度が小さく、特に#1000 台のシース管を

試験No.	鉄筋	コンクリート	グラウト	付着部の要因
M-1	D41 SD685	圧縮強度 66.7N/mm ² 弾性係数 33.2kN/mm ²	無し	一体打ち
M-2			圧縮強度 74.8N/mm ² 弾性係数 31.4kN/mm ²	引抜き成型後未処理
M-3				引抜き成型後粗面化
M-4				1060シース使用
M-5				1075シース使用
M-6				3060シース使用

表-2 付着試験結果一覧

		滑り始	め荷重	最大	同変位			
試験体	No.	P _{cr}	$\tau_{\rm cr}$	P _{max}	τ_{max}	δ _{max}		
		(kN)	(N/mm^2)	(kN)	(N/mm^2)	(mm)		
M_1	1	183	8.5	524	24.4	0.12		
/+ +++	2	107	5.0	517	24.1	0.10		
-141 ら	3	177	8.3	512	23.9	0.09		
M 0	1*	—	-	194	9.0	0.01		
土加田	2	131	6.1	534	24.9	0.39		
不処理	3	110	5.1	536	25.0	0.35		
M_2	1*	—	-	158	7.4	0.01		
ᄢᆕᇰ	2	111	5.2	558	26.0	0.24		
租圓	3	179	8.3	535	24.9	0.32		
N4 .4	1	94.7	4.4	374	17.4	1.23		
10602 J	2	53.1	2.5	311	14.5	0.71		
10009-2	3	68.1	3.2	337	15.7	0.94		
M_F	1	66.1	3.1	351	16.3	0.83		
10753. 7	2	29.1	1.4	332	15.5	0.84		
10/59-2	3	35.1	1.6	317	14.8	0.72		
MG	1	139	6.5	454	21.2	0.07		
1VI-0	2	96.2	4.5	440	20.5	0.10		
3000シース	3	95.2	4.4	450	21.0	0.10		
*M-2-1,M-3-1はキャッピング不良で早期に割裂破壊した。								

使用した試験体の滑り応力度は,一体打ち試験体の半分 以下であった。引抜き成型したものはシース管よりも滑 り応力度が高く,さらに粗面化することで一体打ちと同 等となった。

c. 最大付着応力度

図-4 にコンクリート圧縮強度と最大付着応力度の関係を示す。図中の実験値には文献 1)および 2)に示されている試験体も含まれている。ここで、横軸は試験時のコンクリート圧縮強度とグラウト圧縮強度の小さい方の値とし、縦軸は各要因における試験体の平均値とした。

図-4中の曲線は、靱性保証指針式の $\tau = 0.7 \sigma_B^{2/3}$ を表している。これによると、全試験体が計算値を上回っているが、#1000シースを用いた試験体は他の要因の試験体と比較して最大付着応力度が低かった。

4. 部分架構実験

付着試験の結果を基に、柱主筋が貫通する孔の仕様は 引抜き成型,または#3000 台のシース管とすることが適 当であると考え,これらの貫通孔を用いた 1/2.5 縮尺模 型の部分架構実験を行った。

4.1 試験体

図-5 に試験体形状図,表-3 に試験体一覧を示す。 試験体は中柱を想定した十字型部分架構とし,試験体数

表-3 部分架構試験体および実験結果一覧

は5体とした。試験体に与えた要因はPCaの形式,柱主 筋貫通孔の仕様,および想定した破壊形式とした。試験 体名の最初が「S」は柱梁接合部せん断破壊型であり,梁 曲げ降伏に対する接合部せん断耐力のせん断余裕度を 約1.0とした。ここで,梁曲げ耐力は曲げ略算式,接合 部せん断耐力は靱性保証指針式⁴⁾から算出した。「M」は 梁曲げ降伏型であり,せん断余裕度を約1.4とした。

S-CO と M-EJ は図-5a に示すように下柱と梁を一体 打ちで製作し, PCa 化した上柱を機械式継手で接合した。 他の3試験体は図-5bに示すように柱梁接合部を含む梁 をPCa化し,下柱から伸びる柱主筋を貫通孔に通した後,

表-4 鉄筋の材料試験結果(単位 N/mm²)

試験体名		S-CO	S-SH	S-PF	M-PF	M-EJ	鉄	5種類	使用箇所	降伏強度	弾性係数
Pca形式 上柱PCa 梁, 柱梁接合部			接合部+上	部+上下柱PCa 上柱PCa		D19	D19 SD490 柱,梁主筋		516	193×10^{3}	
柱梁 带	帯筋		2 、 → 佐	2-UHD6 @5	0]		UHD6	SHD685	帯筋 助筋	778*	100×10^{3}
」 技行部 員1	通孔	-	シース官	51抜き成型	り抜き成型	_		0110000	נעניעו , נענון	*0 20/+7+	130×10
	新田 王欽	300x400mm							↑0.2% クノ セ	シアズによる	
	土肋	8-D19(SD490) 6-D19(SD490)				+	- - •				
						— − −	・5 コン	クリート、クラ	ワトの材料	試 験 結果	
村 主	计面		12	2-D19(SD49	0)		単)				単位 N/mm²)
	性 王崩 12 D15(35430) 帯筋 4–UHD6 @75			5						副性体发	
接合部SC ^{*1} Qisc	sc(kN)	$242(42)^{*2}$	253(4.3)	247(4.3)	250(5.0)	212(3.9)			12日間所	上艄独皮	9年111余致
<u>梁1段筋降伏</u> Qbv	v(kN)	469(14.6)	471(13.9)	450(12.3)	353(9.3)	343(9.3)	ン?	フリート	梁, 枉, 接合部	83.8	35.0x10°
梁2段筋降伏 Qby	/2(kN)	475(17.3)	492(17.8)	490(17.0)	377(11.2)	385(13.1)	グラ	ንウト1	貫通孔内,目地	101	35.1x10 ³
最大耐力 Qma	ax(kN)	492(20.0)	503(20.1)	510(20.1)	409(30.0)	400(30.0)	グラ	<u>;</u> ウト2	継手内,目地	109	34.8×10^3
*1:接合部せん断ひび割れ *2()内は層間変形角(1/1000rad.),各荷重は柱のせん断力											
S- <u>4-UHD6</u> 上下8-D19 柱 SD490 継 00+ 3-UHC @75	- CO 3@75 主手 D6 0 従来:		-EJ 		<u>4-UHC</u> 下8-D19 7 490 3-UHI @75 グラヴ 充填子	S-PF 6@75 注手 注手 D6 つ い は梁建立		PF 下6-D19 490 1部 10 mm 10 mm 上筋貫通: 32 ϕ 週部 地10 mm -D19 -D1	069 3-UHD6@75 上下8-D19SI 5試験体 孔 19,27,400 9 10,00 10,000 10,000 1	27 100 100 100	-300

下部の充填孔からグラウトを圧入し,柱頭部の目地と柱 主筋貫通孔にグラウトを充填した。上柱の接合は前記の 2体と同様とした。

柱主筋貫通孔は、S-SH は#3030 シースを使用し、S-PF と M-PF はコンクリートが硬化する直前に外径 32mm の 円筒形の型枠を引き抜くことで成型した。S-PF のうち半 分の貫通孔は写真-1b に示したように、貫通孔の内面を 粗面化した。M-EJ は直交する梁を材端部で接合すること を想定し、梁端部 0.5D (D: 梁せい)の位置に機械式継手 を設けた。試験体に使用した材料とその試験結果を表-4 および表-5 に示す。

4.2 加力

加力サイクルを表-6 に示す。柱の上部と下部をピン 支持とし、梁の先端に取り付けた油圧ジャッキで左右の 梁の変形が逆対称となるように加力した。軸力は F_c を 60N/mm² とし、軸方向応力度が $0.2F_c$ の一定軸力となる ように載荷した。

4.3 実験結果

表-3 中に実験結果の一部,図-6 に柱せん断力-層 間変形角関係を示す。図-6 中には,靭性保証指針式⁴⁾ による柱梁接合部せん断終局,および曲げ略算式による 梁曲げ降伏時の層せん断力計算値を示している。

柱梁接合部のせん断ひび割れ(図中 JSC)は 3.9~ 5.0/1000rad.で発生した。接合部せん断ひび割れ耐力は, 柱主筋貫通孔の有無や仕様による影響が無かった。S シ リーズの試験体は,いずれも梁一段主筋および二段主筋 が 12.3~17.8/1000rad.で降伏したが,最大耐力となった 20/1000rad.以降,接合部のせん断ひび割れ幅が拡大する と共に,徐々に耐力低下しており,柱梁接合部がせん断 破壊したと考えられる。その最大耐力は靱性保証指針式 による接合部せん断終局耐力を上回っていた。接合部が 一体打ちの S-CO と比較して S-SH と S-PF は 2~4%耐力 が高かった。この原因は明らかではないが,柱主筋周り のグラウトがコンクリートよりも高強度であることが 一因であると考えられる。

履歴性状および最終加力時までの破壊性状に関して

は, 柱主筋貫通孔の有無や仕様による影響は無く, 打継 ぎ部分の目開きやずれも観察されなかった。

M シリーズは梁一段主筋が 10/1000rad.以前に降伏し, 梁二段主筋は 11~13/1000rad.で降伏した。その後,若干 耐力が増加し,30/1000rad.で最大耐力となった。その後 の載荷で柱梁接合部の帯筋の降伏と共に耐力が低下し, 同時に柱梁接合部のせん断ひび割れ幅が大きくなった。 材端部に継手を設けた M-EJ は,最大耐力は継手が無い M-PF とほぼ同じであるが,大変形時に履歴面積が若干 小さくなっていた。これは,ヒンジ部に継手が存在する ことによって大変形時の降伏域が減少したためと考え られる。

4.4 柱主筋の平均付着応力度分布

図-8 に柱梁接合部内の柱主筋の平均付着応力度分布 を示す。これによると、接合部内の各区間における柱主 筋の付着応力度は,最大耐力時でτ=8.0N/mm²前後であ り,柱主筋貫通孔の仕様の違いによる差は見られず,付 着劣化も見られなかった。

今回の部分架構実験では#3000 番台のシース管および 引き抜き成型による柱主筋貫通孔を作製し、グラウトを 充填して一体化したが、部材の変形性能および接合部内 の付着性能に関して、一体打ち試験体との差異は認めら れなかった。

5. 柱梁部分架構の非線形有限要素法解析

一般的に柱梁を含む部分架構実験を実大スケールで 行うのは困難であるため、構造実験は縮小モデルで行う ことが多い。一方で、シース管は呼び径が小さくなる程、 直径に対する横フシの高さの比が大きくなるため、縮小 模型実験で使用するシース管は、実大の部材に使用する シース管よりも付着性状が良くなる。そのため、縮小模 型試験体による部分架構実験では貫通孔の仕様による 付着特性の差異が現れにくいと考えられる。そこで、前 述の 1/2.5 縮尺の部分架構試験体をモデル化し、柱梁接 合部内の柱主筋の付着特性を主な要因とした非線形有 限要素法解析を行った。

3 章で示した実大スケールの付着試験の結果より, #1000 番台のシース管を用いたときの付着強度は,一体 打ちあるいは引抜き成型による貫通孔の試験体と比較 して約 60%程度であった。ここでは,柱梁接合部内の柱 主筋の付着強度および付着剛性を要因とした非線形有 限要素法解析を行い,それらが部分架構に及ぼす影響を 検証する。

5.1 解析モデル

表-7 に解析ケースの一覧を示す。ケース名の数字は コンクリート圧縮強度を表しており、「80」は部分架構 実験の材料試験結果を利用した。表中の 80g は部分架構 実験の試験体 S-PF をモデル化した接合部せん断破壊型, 同じく 80gm は試験体 M-PF をモデル化した梁曲げ降伏 型である。

図-9 に要素分割および境界条件を設定した解析モデ ルの形状を示す。本解析には、主にコンクリート系構造 物を対象とした三次元非線形有限要素法解析コードで ある ATENA3D を使用した。コンクリートは三次元6面 体8節点要素、主筋は一次元2節点線要素による離散鉄 筋モデル、あばら筋および帯筋はコンクリートと複合さ せた分散鉄筋モデルとした。

コンクリートモデルは引張強度を考慮し,圧縮引張共 に最大耐力時からの軟化曲線は破壊エネルギーを考慮 したモデルとした。主筋,あばら筋および帯筋の材料モ デルは部分架構実験の材料試験結果を利用し,降伏強度 を折れ点とするバイリニア型とした。

主筋とコンクリート間の付着ーすべり変位関係は CEB-FIP モデルコードを使用し,最大付着強度は靱性保 証指針式⁴⁾から算出した。解析に使用した付着応力度– すべり変位関係の例を図-10 に示す。付着試験の結果よ り,#1000 番台のシース管は一体打ちと比較して付着強 度が 0.6 倍程度であるので,靱性保証指針式⁴⁾による計 算値を 0.6 倍したケースを「p」とした。また,最大付着 強度までの剛性が半分のケースを「w」とした。

5.2 解析方法

図-9 中に,解析上の拘束条件と載荷位置を示す。前述の部分架構実験と同様に柱頭をローラー支持,柱脚を ピン支持として軸方向応力度を0.2F_c作用させた状態で, 各ステップで左右の梁に逆対称となる強制変位を増分 させ,一方向単調載荷とした。また非線形求解法として 非線形 Newton-Raphson 法を用いた。

5.3 解析結果

図-11 にせん断力-層間変形角関係の実験値と解析 値の比較を示す。同図 a は接合部せん断破壊型 S-PF,同 図bは梁曲げ降伏型のM-PFの比較である。いずれも解析値の方が, 最大耐力が若干大きくなる傾向があるが,主筋降伏時までの剛性は,ほぼ一致しており,破壊状況も再現している。よって,今回の解析モデルによって,実験結果を再現できると考えられる。

図-12 に接合部内の柱主筋の 付着モデルとコンクリート強度 を要因とした各解析ケースのせ ん断力-層間変形角関係の比較 を示す。同図 a はコンクリート強 度を試験体と同じとしたケース であるが、せん断力-層間変形角 関係では付着強度および付着剛 性による差異がほとんど見られ なかった。80pの柱主筋の最大付 着強度は 8N/mm²としており、こ れは図-8の付着応力度分布に示 したように、部分架構実験で柱梁

接合部内の柱主筋に生じた最大付着応力度とほぼ同じ であった。そのため,解析上は付着劣化が生じず,付着 強度による影響が現れなかったものと考えられる。

図-12bにコンクリート強度を60N/mm²としたケース を示す。柱主筋の付着剛性を半分にした60wではその影 響はほとんど見られないが,同じく付着強度を靱性保証 指針計算値の0.6倍(6.4N/mm²)とした60pは最大耐力が 若干低下した。柱主筋の付着強度と柱梁接合部のせん断 耐力の関係は明確ではないが,柱主筋貫通孔にグラウト を充填して柱主筋を一体化する工法では,一体打ちと同 等程度の付着強度を有する貫通孔の仕様を選択すべき であると考えられる。

また,今回の解析は一方向単調載荷としたため,主に 剛性と耐力の比較を行ったが,繰り返し載荷時には,柱 主筋の付着が劣化することによって,履歴曲線の形状に スリップ型になることが予想される。

6. まとめ

- (1)簡易な付着試験により、引き抜き成型による貫通孔に グラウトを充填した場合の付着性能は一体打ちと同 等の強度が得られることが確認された。横フシの数が 少ない#1000番台のシース管を使用した場合は、付着 強度が低く、一体打ちと同等の付着性能を見込めない。
- (2)部分架構実験では#3000 番台のシース管および引き抜 き成型による柱主筋貫通孔を作製し、グラウトを充填 して一体化したが、部材の変形性能および接合部内の

付着性能に関して,一体打ち試験体との差異は認めら れなかった。

- (3)梁端部 0.5D の位置に機械式継手を設けた場合は,通 常配筋と比較して,梁の曲げ耐力および主筋の付着性 状に差異は無かった。
- (4)非線形有限要素法解析によって、実験値の荷重-変形 角関係を精度良く再現することができた。
- (5)柱主筋貫通孔の仕様によっては、一体打ちと比較して 付着強度が低下し、部分架構においても耐力が低下す ることが解析により明らかとなった。本工法を適用す る場合は、一体打ちと同等の付着性能を有する貫通孔 を選択する必要がある。

参考文献

- 江村勝,畑戸龍夫,根津定満,森岡徹,後閑章吉,江 戸宏彰,杉本訓祥,増田安彦:柱梁接合部のプレキャ スト化に関する実験研究(その2), C-2分冊, pp.851, 2004.8
- 杉本訓祥,増田安彦,江戸宏彰:柱梁接合部のシース 管内通し主筋の付着性状確認実験,コンクリート工学 年次論文集 Vol.26-2, pp.817-822, 2004
- 3) 建材試験センター:引抜き試験による鉄筋とコンクリ ートとの付着強さ試験方法,JSTM C 2101, 1999.5
- 4)日本建築学会:鉄筋コンクリート構造建築物の靭性保 証型耐震設計指針・同解説,1999