論文 ガス吸着等温線による硬化セメントペースト中の C-S-H の構造解析

青野 義道^{*1}・松下 文明^{*2}・柴田 純夫^{*3}・濱 幸雄^{*4}

要旨:30 または50 の乾湿繰返しおよび50 の乾燥を与えた硬化セメントペーストの窒素および水蒸気吸 着等温線を測定し,BET 比表面積およびESW 理論による比表面積を求め比較した。乾燥に伴う比表面積の変 化については,窒素によるBET 比表面積,および水蒸気のESW 理論による複層分子吸着層では比表面積が 減少したが,水蒸気によるBET 法およびESW 法による単分子吸着層ではほぼ一定の値を示した。窒素によ るBET 比表面積は,水蒸気によるBET 比表面積より一桁小さい値を示した。水蒸気吸着等温線から求めたフ ラクタル次元は乾燥に伴い高まった。乾燥によってC-S-Hの構造は凝集する傾向にあることを示した。 キーワード:比表面積,硬化セメントペースト,C-S-H,乾燥,窒素,水蒸気,フラクタル

1. はじめに

コンクリートの物性および耐久性は,骨材,硬化セメ ントペースト(以下,HCP),空隙など多くの要因に支配 される。耐久性の観点からは,化学的および物理的に比 較的安定な骨材よりも,HCPの変化が支配的な要因とな り,特にその空隙構造変化がおよぼす影響が最も大きい。

これまでに,筆者らは,実環境でも起こり得る代表的 な環境変化条件として,乾燥および乾湿繰返しに着目し, その HCP の微細構造変化¹⁾⁻⁵⁾および耐凍害性^{4),5)}への影 響について観察してきた。その結果,50 の乾湿繰返し または乾燥によって,水銀圧入法(以下,MIP)による 細孔径分布(以下,細孔径分布(MIP))で測定される直径 約 8nm 以上の細孔量が増加すること¹⁾⁻³⁾,アルキメデス 法から HCP の真密度が上昇すること²⁾⁻⁵⁾,²⁹Si-NMR によ りC-S-H のシリケートアニオン鎖の重合が進行すること ¹⁾⁻⁵⁾を報告した。すなわち,乾湿繰返しまたは乾燥は, HCP 中のC-S-Hをナノ構造レベルで変化させるとともに, HCP の空隙構造を粗大化させることを示すものである。

一方,HCPの空隙構造等の解析手法として,従来から ガス吸着法が広く用いられている⁶⁾⁻¹⁴⁾。従来は,窒素と 水蒸気の吸脱着過程で得られるヒステリシスの違いや BET (Brunauer-Emmet-Teller)法¹⁰⁾による比表面積に基づ いた解析が主流であり,窒素と水蒸気の BET 比表面積 (以下 BET-N₂, BET-H₂O)の違いに基づき HCP 中の C-S-Hの構造も論じられている^{11),12)}。例えば,乾燥によ る影響について Bentur et al.¹³⁾は,BET-N₂が減少すること を報告している。しかしながら,BET 法は,相対圧が0.35 以下の比較的低圧領域でのみ適用可能であるため,BET 法による C-S-H の構造に関する解釈もその範囲に制限さ れ,吸着等温線の相対圧全域からの情報は得られない。 HCPの空隙構造および C-S-Hの構造に関してしては,相 対圧が高い領域の吸脱着現象も有益な情報を有してい ると考えられ,BET法のみでは不十分であると考える。

BET 法の適用範囲を超えた相対圧全体を網羅する解 析手法として, Adolphs & Setzer¹⁴⁾⁻¹⁶⁾による ESW (Excess Surface Work) 理論, 多田ら¹⁷⁾による有効比表面積および フラクタル次元¹⁸⁾解析が挙げられる。

ESW 理論では,単分子吸着層および複層分子吸着層に おける比表面積を求めることが可能である。筆者ら²⁾は, 乾燥による HCP の比表面積の変化について ESW 理論を 適用し,乾燥に伴い複層吸着分子層における比表面積が 低下することを明らかにしている。

有効比表面積は,界面の状態方程式を含んでおり相対 圧全体に適応可能であり,水蒸気吸着法による相対湿度 35%までのデータから比表面積測定に,相対湿度35%以 上のデータから表面のフラクタル次元測定に利用でき る¹⁸⁾。

以上のように,ガス吸着等温線からは,各種の解析手 法により様々な情報が得られるものの,これまでに系統 的に整理された例は見当たらない。そこで,本論文では, 乾湿繰返しまたは乾燥を与えた HCP の窒素および水蒸 気吸着等温線に対し,BET 法,ESW 理論,有効比表面 積およびフラクタル次元の解析を行い,これらの関係に ついて整理するとともに,これまでに得られている ²⁹Si-NMR による C-S-H のシリケートアニオン鎖の重合 度との関係についても考察した。これらの結果から,ガ ス吸着等温線による HCP 中 C-S-H の構造解析の適用性 について検討した。

^{*1} 住友金属鉱山シポレックス(株) 技術部開発推進グループ技術担当課長 博士(工学) (正会員)

^{*2} 住友金属鉱山シポレックス(株) 技術部三重分室技術担当課長 博士(工学) (正会員)

^{*3} 住友金属鉱山シポレックス(株) 技術部部長 工博 (正会員)

^{*4} 室蘭工業大学工学部 建設システム工学科准教授 工博 (正会員)

2. 実験概要

2.1 供試体

供試体は前報^{2),3)}と同一のものである。実験は,骨材 界面の影響や空気連行による影響を避けるため,硬化セ メントペースト系としている。表 - 1 に,供試体の養生 条件を示した。セメントは市販の普通ポルトランドセメ ント(密度 3.16g/cm³,比表面積 3250cm²/g)を使用した。 ブリーディングの影響を極力避け,かつ混和剤無添加で もセメントペーストを作成可能とするため,W/Cは0.35 とした。水道水とセメントをモルタルミキサーで練混ぜ 後,8×4×16cmの鉄製型枠に高さ6cmまで打ち込み,1 日封緘養生後に脱型し,ブリーディング部分の影響を排 除するために上部を切除して4×4×16cmに成形したも のを供試体とし,20 で4週の水中養生を行った。次い で,20 水中4週(記号 35W20)の標準に対して,30

および 50 乾燥 5 日と 20 水中 2 日の乾湿繰り返し (35DW30 および 35DW50)と,50 乾燥(35D50)か らなる 4 水準の環境変化を与えた。参考として、図-1 に環境変化過程における質量変化を示した。50 で4週 の乾燥を与えた 35D50 の場合で、乾燥後の質量減少率は 10%であった。

環境変化後は,試料全体を約2.5~5mm に粉砕し,ア セトンで水和停止した後,保存期間中の炭酸化を避ける ため各測定に供するまで D-dry 下で保存した。ガス吸着 等温線の測定においては,乳鉢で微粉砕したものを試料 とした。

記号	W/C	水中養生	環境変化条件		
35W20	0.25	20°C × 4 週	20℃水中×4週(標準)		
35DW30			(30℃乾燥×5日⇔ 20℃水中×2日)×4 サイクル		
35DW50	0.00		(50℃乾燥×5日⇔ 20℃水中×2日)×4 サイクル		
35D50			50℃乾燥×4 週		

表 - 1 供試体の養生条件

2.2 ガス吸着等温線の測定と解析

常温で2時間真空脱気した後測定した。BET 法による比 表面積(BET-N₂)を求めた。比表面積の計算には、窒素分 子の占有面積 0.162 nm²を用いた¹⁹⁾。

水蒸気吸着等温線は,日本ベル(株) BELSORP P18-PLUS にて,20 の真空で24時間前処理した後,吸着温度25 にて測定した。BET 法による比表面積(BET-H₂O), ESW 理論による比表面積,有効比表面積およびフラクタル次 元を求めた。

ESW 理論¹⁴⁾⁻¹⁶⁾は,熱力学に基づき相対圧全体を網羅 した吸着等温線を記述するものである。ESW()は(1)式 で定義される。

$$\Phi = n_{ads} \Delta \mu \tag{1}$$

ここで n_{ads} は吸着量(mol), $\Delta \mu$ は化学ポテンシャル変化 [$\Delta \mu$ (J/mol) = RT ln(P/Ps), T:絶対温度(K), R:ガス定 数, P/Ps:吸着ガス相対圧]である。吸着量に対して ESW()をプロットすると,図-2(a)に示すような単分 子吸着層に相当する極小値 n_{mono} を持つ曲線が得られる。

はエネルギーの次元を持ち,吸着分子のエネルギーが 分かる。また,(1)式と極小値の関係から,(2)式が導かれ ている。

$$\ln|\Delta\mu| = -\frac{1}{n_{mono}} \cdot n_{ads} + \ln|\Delta\mu_0|$$
⁽²⁾

(2)式を∆µと n_{ads} でプロットした直線の傾きから n_{mono} が求まり,これに分子占有面積を乗ずることによって比 表面積を求めることができる。

ESW モデルは, 微粒子分散系や多孔体など, ある相対 圧における分子の吸着状態変化に伴い, 比表面積が変化 した場合についても拡張できる¹⁶⁾。ここで,相対圧 P₁/Ps から P₂/Ps で吸着ガス分子の吸着状態が変化する場合を 考えると,(2)式はそれぞれの相対圧の領域について,次 式で表すことができる。

$$\ln|\Delta\mu| = -\frac{1}{n_1} \cdot n_{ads} + \ln|\Delta\mu_1|$$
(3)

$$\ln|\Delta\mu| = -\frac{1}{n_2} \cdot n_{ads} + \ln|\Delta\mu_2|$$
⁽⁴⁾

ここで, n_1 は $P_1 \le P < P_2$ での吸着量, n_2 は $P_2 \le P < 1$ での吸着量, $\Delta\mu_1$ および $\Delta\mu_2$ は,それぞれ P_1 および P_2 における化学ポテンシャルを示す。(3),(4)式から,分子の吸

着状態変化に伴う比表面積の変化,例えば単分子吸着層 が形成される過程と,それ以降の複層分子吸着層が形成 される過程での比表面積をそれぞれ求めることができ る。比表面積の計算には、水分子の占有面積 0.114 nm² を用いた⁷⁾。

有効比表面積¹⁷⁾は,界面の状態方程式を含み,水蒸気 吸着等温線から特定の形状を仮定することなく得られ る。

$$\gamma_{\rm lg} \left(A_{\rm lg} + 2A_{\rm sg} \cos \theta_{\rm w} \right) = -\frac{RT \ln(p/p_{\rm s})}{v_{\rm w}} \cdot V_{\rm w} \tag{5}$$

ここで, γ_{lg} は気相と液相の界面張力(J/m²), A_{lg} は気相と 液相界面の比表面積(m²/g), A_{sg} は固相と気相界面の比表 面積(m²/g), wは固相への吸着水の接触角(deg), vw は水 のモル比容積(m³/mol), Vw は固相への吸着水の体積(m³/g) である。A=(A_{lg} +2 A_{sg} cos w)とおけば, A は吸着・凝縮の 進展に伴い正味変化する界面の面積(m²/g)で,有効比表 面積と定義される。

フラクタル次元は,複雑さの程度を表す尺度である。 フラクタル次元 D は非整数で,ある尺度 r で測定した場 合の結果 N(r)との間に次式が成り立つときに定義される。

$$N(r) \propto r^{D}$$
 (6)
材料表面の複雑さを表す面積のフラクタル次元 D は,

Pfeifer & Avnir²⁰⁾によって定義されている。

$$A_0 \propto \sigma^{(2-D)/2} \tag{7}$$

ここで,A₀は比表面積,σは吸着分子の占有面積である。 面積のフラクタル次元は2~3の非整数を取り,3に近づ くほど複雑さが増す。多田ら¹⁸⁾は,水蒸気吸着等温線か ら得られる有効比表面積の相対湿度35%以上のデータ から表面のフラクタル次元を求める方法を示した。フラ クタル次元Dは,有効比表面積Aと水理半径HRの関係 から次のように定義される。

$$A \propto HR^{(2-D)} \tag{8}$$

面積のフラクタル次元は,次式をプロットしその傾き (2-D)から求められる。

$$\log(A) = \log(k) + (2 - D)\log(HR)$$
 (9)
ここで、k は定数である。

3. 結果

3.1 窒素吸着

図 - 3 に,窒素吸着等温線を示した。BET-N₂ について も,図中に記載した。

50 の乾湿繰返しおよび乾燥を与えた 35DW50 と 35D50 は,相対圧全体で窒素吸脱着量が減少するととも に,相対圧約 0.5 以上での吸脱着に伴うヒステリシスも 小さくなる傾向を示した。BET-N₂についても 35DW50, 35D50 で小さくなる傾向が認められた。

3.2 水蒸気吸着

(1) 水蒸気吸着等温線

図 - 4 に,水蒸気吸着等温線を示した。乾燥に伴い水 蒸気吸脱着量が減少する傾向が認められ,特に相対圧が 高い領域でその傾向が顕著であった。窒素吸着の場合と 同様に,相対圧 0.4 以上でのヒステリシスが小さくなる

試料	窒素吸着法		²⁹ Si-NMR				
	BET-N ₂	ESW(1)*	ESW(2) **	BET-H ₂ O	有効比表面積***	フラクタル	Q₂ピーク
	(m^2/g)	(m²/g)	(m²/g)	(m^2/g)	(m²/g)	次元	強度比
35W20	8.4	124.8	118.2	133.5	129.6	2.52	41.5
35DW30	9.5	112.5	105.8	118.1	117.9	2.56	42.6
35DW50	5.7	117.7	88.0	113.6	117.8	2.61	51.2
35D50	3.6	109.6	52.7	107.6	96.0	2.74	72.3

表 - 2 ガス吸着等温線解析結果および²⁹Si - NMR 解析結果²⁾⁻⁵⁾

*;単分子吸着層形成までの比表面積 **;単分子吸着層形成以降(複層分子吸着)での比表面積 ***;有効比表面積;図-6の極大値

傾向を示した。

なお、試料の前処理としての D-dry およびガス吸着等 温線測定の前処理(脱気)が HCP 中の C-S-H の構造に 影響を与えた可能性も考えられるが、図 - 3 および図 - 4 から、乾湿繰返しまたは乾燥に伴いガス吸着等温線が大 きく変化していることから、前処理の影響よりも表 - 1 で示した環境変化条件による影響が支配的であると考 えられる。

(2) ESW 解析

ESW 理論による解析結果については,筆者らの既往の論 文²⁾⁻⁴⁾で報告済みであるが,参考として図-5に示した。 (1)式によるプロットの極小値は単分子吸着層の形成を 表す。(2)式によるプロットから,乾燥の程度が進むと, この単分子吸着層を形成する近傍において屈曲する傾 向が認められる。(1)式および(2)式から,単分子吸着層を 形成する前後での比表面積(ESW(1),ESW(2))を求め ることができる。

表 - 2 に,比表面積の計算結果についてまとめた。

BET-H₂O, BET-N₂, 後述の有効比表面積とフラクタル次 元,および既報²⁾⁻⁵⁾の²⁹Si-NMRの結果も併記したが,こ れらの関係については,4章にて考察する。

単分子吸着層が形成されるまでの比表面積 ESW(1)は, BET-H₂O とよく一致し,乾燥による比表面積の低下は僅 かであった。一方,複層分子吸着層での比表面積 ESW(2) は,乾燥に伴い大きく減少した。また,BET-N₂も,乾燥 温度が高い場合,ESW(2)と同様の傾向を示している。 3.2 有効比表面積とフラクタル次元解析

図 - 6 に,有効比表面積と相対圧の関係を示した。有 効比表面積の極大値は,単分子吸着層が形成されたこと を示す¹⁷⁾。表 - 2 には,有効比表面積の極大値をまとめ た。有効比表面積は,BET-H₂O または ESW(1)に近い値 を示した。

図 - 7 に,35W20 と35D50のフラクタル次元解析の例 を示した。フラクタル次元は,多田ら¹⁸⁾の報告に近い値 となった。表 - 2 に示したように,フラクタル次元は, 乾燥に伴い2.52から2.74まで上昇する傾向があった。

乾燥に伴うフラクタル次元の変化の有意性について は、後述の²⁹Si-NMRによる結果から考察する。

4. 考察

表 - 2 にまとめた各解析結果についての関係を検討し, 乾湿繰返しまたは乾燥を与えた HCP 中の C-S-H のナノ 構造変化について考察する。 4.1 各比表面積およびフラクタル次元との関係

図 - 8 に,ガス吸着等温線の解析結果から得られた各 比表面積およびフラクタル次元の関係を示した。

BET-H₂O は, ESW(1)および有効比表面積(極大値)と 良く一致した。ESW(1),有効比表面積は,その理論から 何れも水分子の単分子吸着層形成時の比表面積に相当 することから,BET-H₂O についても,単分子吸着層形成 時の比表面積に相当するものと考えられる。複層分子吸 着層における比表面積に相当する ESW(2)については BET-H₂O とは一致しない。これは,BET 法では,相対圧 0.05~0.35 の低圧領域での単分子吸着層形成時の吸着量 から比表面積を求めていることからも妥当なものと考 えられる。

BET-N₂ については, ESW(2)と比較的良い相関が認め られたが、ESW(1)および有効比表面積との関係ははっき りしない。また,比表面積の値は,水蒸気吸着の場合よ りも一桁小さい。このことから,BET-N2は,水分子が吸 着可能な単分子吸着層に相当する比表面積ではなく, C-S-H 中の微細な空隙には吸着せず,外部表面にのみ吸 着しているものと推察される。C-S-H のコロイドモデル を提唱している Jennings²¹⁾は,HCPの乾燥に伴う BET-N2 の減少について, C-S-H が乾燥に伴い重合, 緻密化し, 窒素分子が吸着可能な細孔が減少するためとしている。 また, Odler¹¹⁾は, 窒素吸着による比表面積が水蒸気によ る場合より低い値を示す理由について,窒素吸着の測定 温度が77Kと極低温であるため窒素分子の拡散が極めて 遅く吸着平衡に達していないためとし,窒素吸着では全 体の比表面積が測定されていないことを指摘している。 BET-N2は BET-H2O に比較して一桁小さいものの, 乾燥 に伴う比表面積が低下する傾向は一致していることか ら,窒素分子が吸着可能な細孔の変化一部のみを反映し ているものと考えると, Jennings²¹⁾, Odler¹¹⁾の報告と矛 盾しない。

フラクタル次元については,ESW(2)との相関が認めら れた。これは,両者ともに,相対圧が高い領域の複層分 子吸着層に相当する水蒸気吸着量から算出しているた めと考えられる。図-4から分かるように,乾燥に伴い 相対圧が高い領域での水蒸気吸着量の減少が顕著であ ることからも理解でき,これらの解析手法がC-S-Hの構 造解析において有効な手段であることが示唆される。

4.2 シリケートアニオン鎖の重合とフラクタル次元の関係

²⁹Si-NMR では、C-S-H のシリケートアニオン鎖の構造 を示すスペクトルとして、 $Q_0 \sim Q_4$ のピークを示すことが 知られている。 Q_0 (単鎖)は未反応セメントに由来し、 HCP の水和生成物である C-S-H は、 Q_1 (端鎖)、 Q_2 (鎖 中)からなる直鎖であり、 Q_3 (分岐鎖)、 Q_4 (網目状) は観察されない²²⁾。

筆者ら²⁾⁻⁵⁾は,表 - 2 に示した²⁹Si-NMR による Q₂ ピー ク強度比(Q₀~Q₂のピーク強度の合計に対する Q₂ ピー ク強度の比)の増加は C-S-H のシリケートアニオン鎖の 重合の進行を意味するものであり,シリケートアニオン 鎖の重合と ESW(2)の減少に相関があることを既に報告 しており,乾燥に伴い C-S-H が重合するとともに,凝集 構造を発達させているものと考察している。

図 - 9 に示したように,Q2のピーク強度比の増加とフ ラクタル次元の増加が良い相関関係を示しており、乾燥 に伴うフラクタル次元の変化は有意な値を示している ものと考えられる。

フラクタルはコロイドの凝集を説明するモデルとし て,例えばクラスター凝集(Cluster-Cluster Aggregation; CCA) モデル²³⁾などにおいて広く議論されており, C-S-H のナノ構造変化に関しても,フラクタルおよびコ ロイド凝集の観点から考察することも有用であると考 える。

図 - 9 フラクタル次元と Q₂ ピーク強度比の関係

5. まとめ

乾湿繰返しまたは乾燥を与えた HCP のガス吸着等温線の解析結果,および C-S-H の構造変化について,以下のようにまとめられる。

- (1) BET-H₂O, ESW(1)および有効比表面積の値は良く一 致し,乾湿繰返しまたは乾燥による変化は小さい。 これらの値は,何れも,水の単分子吸着層に相当す る比表面積を示すものと考えられる。
- (2) 乾燥に伴い BET-N₂, ESW(2)は大きく減少する。比表 面積の値は前者が一桁小さいが,乾燥に伴う変化の 傾向は一致する。これらの値の変化は,複層分子吸 着層における比表面積の変化を示し,乾燥により C-S-H の凝集構造が発達することを示すものと考え られる。BET-N₂の値は一桁小さいため,乾燥による C-S-H の凝集構造変化の一部のみを反映しているも のと推測される。
- (3) 乾燥に伴いフラクタル次元は上昇する傾向を示し, C-S-H 中のシリケートアニオン鎖の重合の進行と相

関が認められた。

(4) ガス吸着等温線から得られる情報である BET-H₂O, ESW(1)もしくは有効比表面積(極大値)等の単分子吸 着層に関する情報と,ESW(2)または有効比表面積か ら求めたフラクタル次元等から得られる複層分子吸 着層に関する情報から,C-S-Hの構造解析が可能であ り,例えば乾燥に伴う C-S-Hの凝集構造の変化を知 ることができる。

参考文献

- 青野義道ほか:乾湿繰返しによるセメントペーストの細孔構造変化,コンクリート工学年次論文集, Vol.28, No.1, pp.731-736,2006
- き野義道ほか:乾燥および乾湿繰返しによる硬化セ メントペーストの微細構造変化,コンクリート工学 年次論文集,Vol.29,No.1,pp.993-998,2007
- Aono, Y., et al.: Nano-structural Changes of C-S-H in Hardened Cement Paste during Drying at 50°C, Journal of Advanced Concrete Technology Vol. 5, No. 3, pp.313-323, 2007
- 4) 青野義道ほか:乾燥による硬化セメントペーストの ナノ構造変化と耐凍害性への影響,コンクリート工 学論文集,第19巻第2号,pp.21-34,2008
- 5) 青野義道ほか:乾燥および乾湿繰返しによる硬化セメントペーストの微細構造変化と耐凍害性への影響,コンクリート工学年次論文集, Vol.30, No.1, pp.921-922, 2008
- Powers, T.C. and Brownyard, T.L.: Studies of Physical Properties of Hardened Portland Cement Paste, Bulletin No.22, Res. Lab. of Portland Cement Association, Skokie IL, U.S.A., reprinted from J. Am. Concr. Inst. (Proc.), vol.43, pp.101-132, 249-336, 469-505, 549-602, 669-712, 845-880, 933-992, 1947
- Brunauer, S. and Greenberg, S.A.: The hydration of tricalcium silicate and β-Dicalcium silicate at room temperature, 4th International Symposium on the Chemistry of Cement, vol.1, pp.135-163, 1962
- Feldman, R.F. and Serada, P.J.: A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties, Materials and Structures, Vol.1, No.6, pp.509-520, 1968
- Daimon, M., et al.: Pore Structure of Calcium Silicate Hydrate in Hydrated Tricalcium Silicate, Journal of The American Ceramic Society, Vol.60, No.3-4, pp.110-114, 1977

- Brunauer, S., et al.: Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60(2), pp.309-319, 1938
- Odler, I.: The BET-specific surface area of hydrated Portland cement and related materials, Cement and Concrete Research, 33, pp.2049–2056, 2003
- 12) Jennings, H.M. and Thomas, J.J.: A discussion of the paper "The BET-specific surface area of hydrated Portland cement and related materials" by Ivan Odler, Cement and Concrete Research, 34, pp.1959-1960, 2004
- Bentur, A. et al.: Creep and drying shrinkage of calcium silicate pastes: III, A hypothesis of irreversible strains, Cement and Concrete Research, 9, pp.83-96, 1979
- Adolphs, J. and Setzer, M. J.: A Model to Describe Adsorption Isotherms, J. Colloid and Interface Science., Vol.180, pp.70-76, 1996
- Adolphs, J. and Setzer, M. J.: Energetic Classification of Adsorption Isotherms, J. Colloid and Interface Science., Vol.184, pp.443-448, 1996
- 16) Adolphs, J. and Setzer, M. J.: Description of Gas Adsorption Isotherms on Porous and Dispersed Systems with the Excess Surface Work Model, J. Colloid and Interface Science, Vol.207, pp.349-354, 1998
- 17) 多田眞作,渡辺一正:硬化セメントペーストの水蒸 気吸着等温線と細孔構造,コンクリート工学年次論 文集,Vol.23,No.2,pp.205-810,2001
- 18) 多田眞作,内海秀幸:硬化セメントペーストの有効 比表面積とフラクタル次元,コンクリート工学年次 論文集,Vol.24,No.1,pp.507-512,2002
- McClellan, A.L., and Harnsberger, H.F.: Cross-sectional Areas of molecules adsorbed on solid surfaces, Journal of Colloid and Interface Science, 23, pp.577-599, 1967
- 20) Pfeifer, P. and Avnir, D.: Chemistry in noninteger dimensions between two and three. I. Fractal theory heterogeneous surfaces, J. Chem. Phys., Vol.79, No.7, pp.3558-3565, 1983
- Jennings, H.M.: A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, 30, pp101-116, 2000
- 22) Grimmer, A-R,: Structural investigation of calcium silicates from 29Si chemical shift measurements, Application of NMR spectroscopy to cement science, Gordon and Breach Science Publishers, pp.113-151, 1994
- 23) 松下貢著: フラクタルの物理(I)基礎編, 裳華房, 2002