論文 原位置での簡易透気性とかぶり厚さによる RC 構造体の耐久性評価

山﨑 順二*1・今本 啓一*2・下澤 和幸*3・永山 勝*4

要旨:水セメント比 30~100%の範囲のコンクリート供試体を作製し,促進中性化および材齢4年までの 自然暴露を行い,中性化速度係数と簡易透気性の関連性を評価した。また,呼び強度21,27および36の3 種類のコンクリートを用いて実大 RC 壁を作製し,各種の簡易透気性試験を行った。検討の結果,中性化速度 係数と簡易透気性には高い相関が認められ,簡易透気性試験によってコンクリートの中性化速度が予測でき ることが分かった。これらの関連性を適用して,原位置でのかぶり厚さとかぶりコンクリートの簡易透気性 試験により,RC 構造物の耐久性や寿命を予測する手法を示した。

キーワード:簡易透気性,かぶり厚さ,耐久性評価,ドリル削孔法,シングルチャンバー法,中性化深さ

1. はじめに

かぶりコンクリートの品質が鉄筋コンクリート構造 物の耐久性に大きな影響を及ぼすことは良く知られて いるが、この理由は、かぶりコンクリートの物質浸透性 がコンクリート構造物の耐久性に重要な役割を担って いるためである。

コンクリートを高耐久性化するためには、低水セメン ト比のコンクリートを使用すること等によってかぶり コンクリートを密実にすることが、CO₂や塩化物イオン の浸透を防止するために有効な手段である。またかぶり コンクリートの品質には、使用材料や調合条件だけでな く、締固めの程度、収縮ひび割れの存在、養生方法など の施工条件も、大きな影響を与える重要な要因である。

これらのことから、構造物の耐久性に重要な役割を担 うかぶりコンクリートの原位置における物質浸透性を 適切に評価することは、鉄筋コンクリート構造物の竣工 時点での耐久性予測,経過年数に応じた構造物の寿命予 測,補修時期などを立案するために有用な情報となる。

そこで本報では, 呼び強度 21,27 および 36 の 3 種類の コンクリートを用いて, 0.3×0.3×0.1m の小型試験体と 2.4×3.6×0.2m の実大 RC 壁試験体の 2 つの大きさの試験 体をそれぞれ作製し, 各種の簡易透気性試験を行った。

簡易透気性試験法として、ドリル削孔法¹⁾,トレント によるダブルチャンバー法²⁾およびシングルチャンバー 法³⁾の3種類の透気性試験に加え、透気性のベンチマー クとして扱われる RILEM 法⁴⁾による透気性試験を行っ た。これらの簡易透気性試験の結果と中性化深さとの関 連性を基に、かぶり厚さと透気性を指標とした鉄筋コン クリート構造物の耐久性評価手法について検討した。

2. 各種の透気性試験の概要

2.1 ドリル削孔法 (FIM 法)

図-1に示すように、試験位置に設けたドリル孔をシリ

図-1 ドリル削孔法(FIM法)

図-2 シングルチャンバー法 (SCM 法)

*1 (株) 淺沼組 大阪本店建築部技術グループ主任 工修 (正会員)
*2 東京理科大学 工学部建築学科准教授 博(工) (正会員)
*3 (財)日本建築総合試験所 試験研究センター材料部材料試験室主査 (正会員)
*4 (財)日本建築総合試験所 試験研究センター材料部 博(工) (正会員)

コン栓にて密封し, 孔内を減圧(XI)した後, 孔内部の真 空度が所定の圧力(X2)に戻るまでに要する時間を計測 し, 簡易透気速度を求める。

簡易透気速度*P.V.*(kPa/sec)は、孔内を*XI*まで減圧した
 後, 圧力が*XI*(kPa)から*X2*(kPa)まで復圧するのに要した
 時間を*T*(sec)とすると、式(1)により求められる。

$$P.V. = \{ (X2 - X1) / T \}$$
(1)

本報では, 簡易透気速度*P.V.*(kPa/sec)を得るための圧 力の範囲について, *X1を*21.3(kPa), *X2を*25.3(kPa)とし た。この範囲は文献⁵⁾の160~190(mmHg)に相当する。

なお、FIM法においては笠井⁵⁾らや下澤ら⁶⁾によって 用いられている従来型(FIM-N)と、試験準備段階での栓 の設置の作業性がやや改善できるコーン型(FIM-A)の2 種類のシリコン栓を使用した。

2.2 シングルチャンバー法 (SCM法)

図-2に示すように、コンクリート表面に装着させた チャンバー内部を真空状態にした後、チャンバー内部の 圧力が16.0(kPa)から33.3(kPa)に戻るまでに要する時間 T(圧力と時間変化関係において線形性が成り立つ範囲) を計測し、式(2)により透気指数A.P.I.(kPa/sec)を求める。

透気指数 A.P.I. =(33.3-16.0)/T (2) ここに、

T:チャンバー内部の圧力が16.0(kPa)から33.3(kPa) に戻るまでに要する時間(sec)

3. 供試体による中性化深さと簡易透気性

3.1 供試体による実験の概要

水セメント比30%~100%までの全16種類の計画調合 によるコンクリートを用いて室内試験に供する供試体 を作製し,JISA1153に準じた促進中性化試験,材齢約4 年までの雨がかりのない屋外自然暴露による中性化試 験および簡易透気性試験 (FIM法(FIM-A, FIM-N)および SCM法)を行った。加えて,透気性試験値のベンチマー クとなるRILEM法⁴⁾による透気性試験を行った。コンク リートの使用材料を表-1に,16種類の調合計画を表-2に示す。供試体の種類は,促進中性化深さ測定のため の10×10×40cm供試体,縦打ちした高さ30×幅30×厚 10cmの小型試験体 (ブリーディングの影響を考慮し側面 端部より約5cm以上内側の位置で試験を実施)および RILEM透気性試験のためのφ15×30cm円柱供試体(円柱 供試体を厚さ5cmにスライスしたものを使用)とした。

3.2 中性化深さ試験の結果および考察

JIS A 1153に準じた促進中性化試験による中性化速度 係数と,材齢約4年までの雨がかりのない屋外自然暴露 における中性化深さを図-3に示す。なお,供試体 100-200の材齢26週での促進中性化深さは材齢13週まで の促進中性化深さから計算により求めた数値を用いた。

表-1 供試体の使用材料

使用材料	品質
セメント (C)	普通ポルトランドセメント:密度3.16g/cm ³
水 (W)	上水道水
細骨材 (S)	山砂(枚方産):表乾密度2.57g/cm ³ , FM: 2.75
粗骨材 (G)	砕石(高槻産):表乾密度 2.68g/cm ³ ,実積率:58.0%
[月和初] (Ad)	SP:ポリカルボン酸系高性能AE減水剤
ARTHAN (AU)	AE:AE減水剤

表-2 供試体の計画調合の概要

供封休記号	W∕C	s∕a	単位量(kg/m ³)				Ad
厌സ仲心力	(%)	(%)	W	С	S	G	C×(%)
30-175	30	46.8	175	583	734	870	SP:1.2
40-175	40	45.7	175	438	754	933	SP:0.6
40-197	40	45.7	197	438	754	933	SP:0.6
40-219	40	45.7	219	438	754	933	SP:0.7
45-175	45	46.8	175	398	787	933	SP:0.6
50-162	50	47.4	162	360	805	933	AE:1.0
50-180	50	47.4	180	360	805	933	AE:1.0
50-198	50	47.4	198	360	805	933	AE:1.0
50-216	50	47.4	216	360	805	933	AE:1.0
55-180	55	48.2	180	327	831	933	AE:1.1
60-165	60	48.8	165	300	853	933	AE:1.3
60-180	60	48.8	180	300	853	933	AE:1.3
60-195	60	48.8	195	300	853	933	AE:1.3
65-180	65	50.2	180	277	887	917	AE:1.5
80-200	80	53.5	200	250	977	886	0
100-200	100	54.5	200	200	1018	886	0

促進試験および材齢4年までの自然暴露による中性化 深さは、水セメント比が大きいほど、また同一水セメン ト比において単位水量が大きいほど大きくなっている。

3.3 中性化速度係数と透気性試験値との関係

水セメント比30%~100%の供試体において,材齢約4 年の自然暴露試験体における中性化試験結果から求め た中性化速度係数と各種の透気試験結果との関係を図 -4~図-7に示す。各図中にはそれぞれの回帰式を示 した。相関係数はR=0.88~0.96となり,試験法によって やや差はあるがいずれも高い相関が認められた。これら の関係を適用することによって,中性化の進行の程度を 簡易透気性試験の結果から予測できることになる。 一方,図-4および図-5には,材齢26週までの促進 中性化試験による中性化速度係数と,RILEM 法および FIM (FIM-A)法との関係を併せて示した。促進試験によ る中性化速度係数に対する材齢約4年までの自然暴露に おける中性化速度係数は概ね1/10程度であった。

4. 実大 RC 壁における簡易透気性試験の評価

4.1 実大RC壁の概要および試験概要

写真-1に示す高さ3.6m×幅2.4m×厚さ0.2mの実大RC 壁を,呼び強度21,27および36の3種類のコンクリートを 用いてそれぞれ作製した。使用材料を表-3に,調合計 画および物理的性質を表-4に示す。

壁の型枠はコンクリート打込み後2日目に脱型した。 壁の西面(W)は空気と日射に暴露されており、東面(E) は建物が隣接する日陰面であり、打込み後7日間ビニー ルシートで封かん状態とした。

実大壁における原位置でのかぶりコンクリートの簡 易透気性試験は、写真-1に〇印で示した RC 壁の上部、 中央部および下部(片面 18 ヶ所)で、FIM(-A,-N)法およ び SCM 法の3種類の簡易透気性試験を同じ位置で行っ た。さらに、写真-1に●印で示した9ヶ所からφ15cm のコアを水平に貫通させて採取し、コア両端(W 表面お よびE 表面)から厚さ5cm ずつを供試体(西面コア(W)お よび東面コア(E))とし RILEM 法透気性試験に供した。

写真-1 実大RC壁と各種の試験位置

表-3 実大RC壁での使用材料

使用材料	品質
セメント (C)	普通ポルトランドセメント:密度3.16g/cm ³
水 (W)	上水道水
細骨材 (S)	山砂(城陽産):表乾密度2.57g/cm ³ , FM: 2.80、混合率70%
	砕砂(高槻産):表乾密度2.66g/cm ³ , FM: 2.80、混合率30%
粗骨材 (G)	砕石(高槻産):表乾密度 2.69g/cm ³ , 実積率: 58.0%
混和剤(Ad)	SP:ポリカルボン酸系高性能AE減水剤
	AE:AE減水剤

表-4 計画調合の概要およびコンクリートの性質

呼び	W/C	s/a	単位量 (kg/m ³)				混和剤	スランプ	空気量	圧縮強度
強度	(%)	(%)	W	С	S	G	種類	(cm)	(%)	(N/mm ²)
21	63.0	46.6	184	292	826	974	AE	16.0	5.9	32.0
27	54.0	49.2	180	333	860	915	SP	9.5	5.0	38.7
36	44.0	48.7	180	409	821	890	SP	21.5	5.5	44.4

また,実大RC壁の作製と同時に、縦打ちした高さ30×幅 30×厚み10cmの小型試験体をそれぞれ2体ずつ作製した。 養生条件として,「A:標準」は脱型後1ヶ月間20℃水中 養生の後20℃-60%RHの気中養生したもの,「C:気中」 は脱型後2ヶ月間20℃-60%RHでの気中養生したもので ある。これらの初期養生の後,全ての試験体を20℃ -60%RHの室内環境下に静置してコンクリートの含水率 を安定させ,30×30cmの面の端部より約5cm以上内側の 位置において,材齢約2ヶ月で透気性試験を実施した。

4.2 φ15×5cm供試体のRILEM法による透気性試験結果

実大RC壁と同時に作製して標準養生を行った ϕ 15× 30cm円柱供試体から ϕ 15×5cmにスライスした供試体 を,透気性試験値のベンチマークとなるRILEM法による 試験に供した。なお,透気性試験の前に供試体を50℃の 環境下に静置し,供試体の含水率を安定させた。

これより,標準養生を行い十分に管理された供試体レベルのコンクリートであれば,透気性試験によりコンク リート自体(ポテンシャル)の品質の違いを精度良く評 価できることが分かった。

4.3 実大RC壁でのRILEM透気係数とその変動係数

実大壁から採取したコア両端面の厚さ5cmの部分で測 定した RILEM 透気係数を図-8に、その変動係数を図 -9に示す。両図には表-5に示した φ15cm 供試体での 結果(呼び強度ごと3本の試験体の結果)を併せて示し た。図-8には部位ごと(西面コア(W)および東面コア(E) の3つのデータはそれぞれ左からコア採取位置の上中下 の順)の透気係数を示した。呼び強度21においては、実 大 RC 壁の西面コア(W)および東面コア(E)とも壁の上部 と下部で RILEM 透気係数が大きく異なり、これが実大 RC 壁の変動係数を大きくしている。この理由は、打込 み時の圧密の影響や養生条件などにより部位ごとの品 質が異なることが影響しているためと考えられる。この 他, 簡易透気性試験値の変動は, FIM 法では骨材の偏在 に伴うばらつきの影響を, SCM 法では FIM 法(-A,-N)よ りもかぶりコンクリートの表層組織の影響を大きく受 ける7)8)と推察される。この点については更なる検討が 必要であるが、いずれの透気性試験法も、コンクリート の表層の粗密の程度を概ね評価し得ていると考えられ

表-5 φ15×5cmでのRILEM透気係数と中性化深さ

呼び	RILEM	法 透気	〔係数(×	変動係数	中性化深さ	
強度	TP1	TP2	TP3	平均值	(%)	促進26週(mm)
21	640	734	840	738	13.6	34.4
27	157	176	172	168	6.0	16.7
36	112	110	115	112	2.2	5.5

図-8 実大RC壁におけるRILEM法による透気係数

ることから、本研究に用いている透気性試験は、一般的 なコンクリートの品質(かぶりコンクリートの密実さ) の違いを評価することができると考えらえる。

4.4 実大RC壁での簡易透気性とサンプリング手法

実大 RC 壁試験体での表層透気性の測定は,統計的理 論に基づき各試験法とも片面につき6ヶ所⁷⁾にて実施し た。原位置での簡易透気性試験から得られた測定値の範 囲は,FIM 法(-A,-N)では0.05~0.73(kPa/s),TPT 法では 0.17~1.75(×10⁻¹⁶m²),SCM 法では0.42~1.19(kPa/s)と, いずれの試験法においても広範な結果となった。図-10 に示すように,小型試験体の変動係数の平均は約33%で あるのに対し実大 RC 壁試験体では66%であり,実大 RC 壁試験体の変動係数は小型試験体の2倍程度となった。

これらの結果から,実際の構造体コンクリートの部材 を対象とする簡易透気性試験においては,構造物全体と しての耐久性や健全性を評価する場合や,柱梁壁などの 各部材自体の品質のばらつきを評価する場合など,試験

を行う際の評価目的に応じて選択的に測定データをサ ンプリングすることも必要と考える。具体的には,前者 の場合は測定された全ての値を用いて品質の差異の程 度を評価することが必要となる。一方後者の場合は,同 一部材において複数ヶ所(理想的には6ヶ所以上⁹⁾)で測 定した時点で測定値の変動係数を算定し,実大RC壁での 変動係数を小型試験体レベルの変動係数に近づけるた めに測定値の平均から大きく外れているデータを棄却 し,再度,平均値を求める等などの手法を用いる。これ により,評価目的に応じた構造体コンクリートの透気性 による耐久性の評価が可能になると考えられる。

5. かぶり厚さと透気性による耐久性評価手法の提案

耐久性予測の手法として、中性化深さがかぶり厚さに 到達した時点を供用期間と定義する。Torrentの考え方¹⁰⁾ に基づき、中性化深さがかぶり厚さ(*t*)に達する材齢を構 造物の供用年数(*S.L.*)とすると、これらの関係は式(3)と して表すことができる。

 $S.L. = \{ t / (A \cdot Ln(Rair) + B) \}^{2}$ (3) $\Box \subseteq [c,]$

Rair:透気試験結果(透気指数,簡易透気速度) *A.B*:環境や材料などに応じた係数

なお,耐久性予測に用いるかぶり厚さの設定値は,施工 等による標準偏差が通常 10mm¹¹とされているが,原位 置で測定したかぶり厚さのばらつきを考慮して設定値 を決定する必要があると考えられる。

図-11~図-14に,式(3)によるかぶり厚さと,RILEM 法,FIM法(FIM-A),FIM法(FIM-N)およびSCM法によ る透気性試験に基づくチャート(供用年数SL30・65・100 年)の例を示す。本報における係数*A,B*は,図-4~図 -7に示した中性化速度係数とそれぞれの透気試験に よる透気指標値との関係により得られたものを用いた。

さらに,前述の3種類の実大RC壁における各透気試験 結果および文献¹²⁾に示した実大壁での測定(各図中の nS30:呼び強度30)を,呼び強度(nS)別にそれぞれのチ

ャート上にプロットした。

各種の透気試験結果ごとに変動がみられるが,かぶり 厚さが同じ場合,呼び強度が高いほど構造物の供用年数 が長く評価されていることがわかる。

一方,SCM法とFIM法とはやや異なる評価となってい るが,これはSCM法の方がコンクリート表層部の影響 を相対的に大きく受けるためと考えられる。

以上,これらのチャートによれば,測定結果がプロッ トされた領域によってコンクリートの原位置での透気 性とかぶり厚さに応じた供用期間が予測できるので,経 過年数に応じた構造物の寿命予測,竣工時点での耐久性 予測や補修時期を立案することが可能になると考える。

6. まとめ

かぶりコンクリートの透気性を原位置で評価することによりRC構造物の寿命予測や耐久性を評価する手法について,実大RC壁を作製し,3種類の簡易透気性試験を適用して検討を行った結果,以下の知見を得た。

- (1)標準養生を行い十分に管理された供試体レベルの コンクリートであれば、本実験に用いた3種の簡易 透気性試験により、コンクリート自体の品質(ポテ ンシャル)の違いを精度良く評価できる。
- (2) 実大RC壁試験体でのかぶりコンクリートの透気性 測定値の変動係数は,施工条件や養生条件などの影響で供試体レベルのコンクリートと比較して2倍程 度であった。
- (3)構造体コンクリートの透気性による評価は、部材 全体のデータを用いる場合と、小型試験体レベルの 変動係数と同等になるように測定値を選択的にサ ンプリングする場合とを、試験目的や評価目的に応 じて使い分けることが必要になると考える。
- (4) 中性化速度係数と透気性試験結果との間には高い 相関が得られており、それらの関係を用いることに よって、かぶり厚さと透気試験の結果に基づく構造 物の耐久性予測のためのチャートを提案した。

本報に示した原位置での各種の簡易透気性試験とか ぶり厚さの測定によって,鉄筋コンクリート構造物の耐 久性評価や竣工時の健全性評価,寿命予測等のために有 用となる情報を与えると考えられる。

将来的には、中性化速度係数に加え、材料・調合、養 生条件などと透気試験結果とを関連付けることにより、 かぶり厚さとの関係に基づく合理的な耐久性予測手法 への展開が期待できると考えている。

参考文献

 山崎順二・下澤和幸・今本啓一・二村誠二: 簡易透 気性試験による構造体コンクリートの耐久性評価手 法に関する研究, コンクリート構造物への非破壊検 査の展開論文集(Vol.2), 非破壊検査協会, pp.297-302, 2006.8.

- Torrent,R.: A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site,Mater.&Struct.,Vol.25,No.150,pp.358-365,1992 July.
- 3) 今本啓一他:かぶりコンクリートの非破壊透気性試 験法の開発,日本建築学会関東支部研究発表会, pp.33-36, 2005.
- RILEM TC116-PCD, Recommendations of TC116-PCD, Tests for gas permeability of concrete. B. Measurement of the gas permeability of concrete by the RILEM-CEMBUREAU method, Mater.&Struct.,Vol.32, pp.176 -179,1999.
- 5) 笠井芳夫・松井勇・湯浅昇・野中英:ドリル削孔を 用いた構造体コンクリートの簡易透気試験方法 そ の1,日本建築学会学術講演梗概集A-1(中国) pp.699-700 (1350), 1999
- 6)下澤和幸・永山勝・今本啓一・成田瞬・山崎順二・ 二村誠二:構造体コンクリートの各種表層透気試験 法と評価(その1),日本建築学会学術講演梗概集A -1,pp.1249-1250(1617),2007
- Dhir,R.K., Hewlett, P.C. and Chan, Y.N., Near-surface characteristics of concrete: assessment and development of in situ test methods, Magazine of Concr. Res., Vol.39, No.141, pp.183-195, Dec. 1987
- Torrent, R. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site,Mater,&Struct.,Vol.25,No.150, pp.358-365,July 1992
- 永山勝・下澤和幸・今本啓一・成田瞬・山崎順二・ 二村誠二:構造体コンクリートの各種表層透気試験 法と評価,日本建築学会学術講演梗概集A-1(中国) pp.1253-1254 (1619), 2007
- Torrent R.J., Performance-based specification and conformity control of durability, International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, 19-21 March 2006, Madrid, Spain.
- 12) 山崎順二,今本啓一,下澤和幸,永山勝,二村誠二: 簡易透気性試験によるコンクリートの耐久性評価に 関する研究 その2. 実大壁モデルでの簡易透気性 試験の適用性に関する検討,日本建築学会学術講演 梗概集A-1材料施工「オーガナイズドセッション」, pp.141-144,2006.9