論文 打継ぎコンクリート界面の破壊エネルギと破壊面積の関係

佐藤 あゆみ*1・山田 寛次*2・石山 智*3

要旨:コンクリート界面の破壊エネルギと破壊した面積の関係について検討した。打継ぎ界面を持つ5水準 のコンクリート試験体の破面を破壊と剥離に二値化し,破壊部のみに修正J積分法を応用することで一体打 ち試験体から打継ぎ試験体の破壊エネルギを推定した。推定には破壊部分で消費した破壊エネルギは打継ぎ 試験体の種類に関係なく,全て等しいという仮定のもと行った。その結果,骨材が最大粒径9.5mmの一体打 ち試験体をもとにした推定値は,打継ぎ試験体の実験値に概ね適合することが確かめられた。

キーワード:破壊エネルギ,引張軟化曲線,界面,強度,靭性,修正J積分法

1. はじめに

コンクリート構造物には打継ぎ面などコンクリート 界面が必然的に生じるが、既設の古いコンクリートと新 しく打足すコンクリートとの付着性能を向上させること は重要な課題である。近年では、構造物にコンクリート を打足す補修や補強工事も増加し、界面研究の対象とし て注目すべきである。

本来,打継ぎ面では界面付着により応力が伝達され, その破壊過程で破壊エネルギ(ひび割れを形成するのに 必要な単位面積あたりのエネルギ,以下,GF)が消費さ れて,同時に強度が決まる。それら力学特性値を向上さ せるためには,試行錯誤的研究では限界があり,界面付 着の本質に迫る必要がある¹⁾。その時,対極にある二つ の参照用界面を念頭に置いて研究を進めるべきであろう。 つまり,明らかな水酸化カルシウム層²⁾からなる最弱界 面とその対極にある最強界面としての一体打ちである。 これらとの関係を考察することにより,打継ぎ界面の力 学特性値向上の糸口が明らかになると考えられる。また, その本質的な検討のためには,単なる強度では不十分で, 引張軟化曲線(Tension Softening Diagram,以下,TSD)を 考察することが有効である^{1),3}。

著者らはこれまで,GF が打継ぎ時の表面処理に大き く影響され,さらに破面のうち破壊した面積がGF に比 例する結果を得た^{2),4)}。本稿ではこれに続き,GF とそれ に対応する破壊部面積との関係をより精密に把握するた めに,打継ぎ試験体のGF を一体打ち試験体のGF から 推定し,実験値と推定値とを比較,考察した。

2. 実験および解析

2.1 試験体作製

試験体名および特徴を表-1,調合表を表-2,使用材料 を表-3 に示す。本研究の試験体は一体打ち試験体(N シ リーズ)もしくは、5 種類の異なる表面処理を行った打継 ぎ試験体である。一体打ち試験体は調合表の材料を打設 したもの(N)の他に、ウェットスクリーニングし骨材の最 大粒径を変えたもの(N950 と N236)を作製した。表面処 理は打継ぎ面に凹凸を作る打継ぎシートを用いる方法 (J)、先打ちコンクリートの打継ぎ面を遅延剤で処理し洗 い出す方法(E)、流水を掛けながら目荒しを行なう方法 (R)、無処理(SP)、さらに載荷試験によって破断した一体 打ち試験体の破断面に打継ぐ方法(FS)の合計 5 種類とし た。試験体は各水準 3 体ずつ作製し、100×100×400mm の梁形とし、ひび割れを集中させるために載荷点下に高 さ 50mm の切欠きを入れ、その上部の評価対象部をリガ メントとした。概要を図-1(a)に示す。

打設は型枠に所定の材料を用いて一体打ちを行い,打 継ぐものは片側半分だけ先打ちを行った。打継ぎ試験体 は,図-1(b)に示すように24時間後に脱型を行い,打継 ぎ面に各種の表面処理を行った後,型枠の残る片側に所 定の材料を打設した。FS に限り,28 日材齢時に破壊し た試験体を先打ち部として使用しているため,打継ぎ時 の材齢は35日である。後打ち部の打設後は28日間の標 準養生を行なった。

2.2 載荷試験

後打ちコンクリートの材齢 28 日で RILEM 推奨の破壊 靭性試験 ⁵⁾を行い,荷重および開口変位を測定した。自 重の影響を防ぐためカウンターウェイトを取付け載荷し た。また圧縮および割裂引張試験によって材料強度を調 べた。(表-4 参照)

2.3 引張軟化解析

ひび割れ発生後の引張軟化特性を評価するために JCI 標準の多直線近似解析法^のに基づき,破壊靱性試験によ って得られた荷重-開口変位関係から TSD を求めた。図 -2 に示すように,この TSD に囲まれた面積が GF である。

*1秋田県立大学大学院 システム科学技術研究科 総合システム科学専攻(建築学)工修 (正会員) *2秋田県立大学 システム科学技術学部 建築環境システム学科教授 工博 (正会員) *3秋田県立大学 システム科学技術学部 建築環境システム学科助教 工博 (正会員)

2.4 破面観察

破壊靱性試験によって破壊させた破面を目視によっ て観察し,破面のうち粗く骨材が見える部分を破壊,平 滑で白みのある部分を剥離と二値に区別した。FS は目視 による判定が困難であったため,打継ぐ前の破面との凹 凸差をレーザー3 次元測定機によって測定し両者の差を 画像解析した。

3. 結果

3.1 コンクリート界面の力学特性値

一体打ち試験体の TSD を図-3(a), 打継ぎ試験体と試 験体 N3 の TSD を図-3(b) に示す。また曲げ強度(以下, fb)および各試験体の TSD から求めた引張軟化特性値を 表-5 に示す。fb は破壊靱性試験結果の最大荷重に対して, 弾性論の理論式から求めた曲げ縁応力である。各引張軟 化特性値は図-2において ft は初期結合応力, GFpx は最 大荷重時までの GF を示し, Wer は限界ひび割れ幅, 同 様にWpx は最大荷重時の仮想ひび割れ幅であり,これら は力学特性値(強度, 靱性)を表す指標である。表-5より 力学特性値は一体打ち試験体では最大骨材粒径が大きく なるに従い高くなる結果となった。打継ぎ試験体の中で はJとRが強度, 靱性ともに高く, N236の結果を上回 るものであった。一方で FS は J や R と同様に打継ぎ時 の先打ち表面は粗い状態であったが,力学特性値は低い。 これは、先打ち側の材齢が他の水準より経過していたこ と、さらに破壊試験によって骨材周りの遷移帯が打継ぎ 面に露出していたことが要因となったと考えられる。

ここで注目すべきは, 表-5 の fb では打継ぎ試験体の 最大値 (J2:3.80)を最小値(FS1:1.61)で除した値は約2.4 になるが, GF では同様の比較(J1/SP1)をすると約5.3 と なることである。fb より打継ぎ試験体間の差が大きいこ

試験体名	打設方法	骨材最大粒径,表面処理方法
Ν	一体打ち	骨材最大粒径:20mm
N950	一体打ち	骨材最大粒径:9.5mm
N236	WS^{*1}	骨材最大粒径:2.36mm
J		打継ぎシート
E		洗い出し
R	打継ぎ	目荒し
FS		破断面打継ぎ
SP		無処理
4 1 3 48 4		

表−1 試験体名および特徴

*1:中心部分のみウェットスクリーニングを行った

表-2 調合表

W/C	s/a	質量(kg/m ³)					空気量
(%)	(%)	W	С	S	G	Ad	(%)
51.4	43.0	177	344	739	1010	1.72	3.0
Ad:高性能AE減水剤(C×0.5%)							

表-3 使用材料

セメント	普通ポルトランドセメント, 密度3. 16g/cm ³
細骨材	粒度調整細骨材,表乾密度2.51g/cm ³
粗骨材	由利本荘産砕石,表乾密度2.59g/cm ³
混和剤	高性能AE減水剤 メタクリル酸ポリマー

表-4 コンクリートの機械的性質

密度	圧縮強度	引張強度	弾性係数
(g/cm^3)	(MPa)	(MPa)	(GPa)
2. 31	41.98	3. 47	26.99

図-2 引張軟化特性値

表-5 全試験体の引張軟化特性値

試験	fb	ft	Wcr	Wpx	GF	GFpx
体名	MPa	MPa	mm	mm	N/mm	N/mm
N1	4.94	6.82	0. 2128	0.0112	0.0911	0. 0296
N2	4.85	7.07	0.1305	0.0074	0.0955	0. 0261
N3	4.60	7.28	0. 2243	0.0132	0.1160	0. 0299
N950-1	4.54	5.25	0. 1188	0.0094	0.0949	0. 0247
N950-2	3.66	4.70	0.1769	0.0114	0.0642	0. 0202
N950-3	4.05	6.65	0.0973	0.0084	0.0637	0. 0208
N236-1	2.70	2.72	0.1007	0.0086	0.0326	0. 0117
N236-2	3.24	3.03	0.0400	0. 0071	0. 0331	0. 0137
N236-3	3.30	4.46	0.0409	0.0067	0.0289	0.0130
J1	3.74	5.80	0.1996	0. 0068	0.0597	0.0160
J2	3.80	5.56	0.0506	0. 0071	0.0467	0.0169
J3	3.53	4.76	0.1174	0.0104	0.0501	0. 0188
E1	2.85	2.90	0.1129	0.0065	0.0340	0. 0104
E2	3.12	3.92	0. 0488	0.0060	0.0343	0. 0119
E3	2.80	3.26	0. 0835	0. 0081	0.0372	0. 0119
R1	3.42	6.47	0.0473	0. 0030	0.0407	0. 0107
R2	3.03	5.68	0.0540	0.0049	0.0297	0. 0101
R3	3.60	5.52	0. 0384	0.0069	0.0336	0. 0140
FS1	1.61	2.11	0.0940	0. 0059	0. 0243	0. 0044
FS2	2.01	2.90	0. 0883	0. 0052	0.0211	0. 0056
FS3	2.11	2.11	0.1054	0.0073	0. 0288	0. 0074
SP1	2.00	3.65	0. 0282	0.0027	0.0112	0. 0039
SP2	2.20	3.49	0. 0272	0. 0033	0.0129	0. 0045
SP3	1.75	3.03	0.0714	0.0055	0.0131	0. 0047

とから,打継ぎ界面では GF の方がより敏感に違いを評価できると言える。この結果は栗原らの既往の研究でも確かめられている^つ。

3.2 破面観察結果

破面観察によって破面を破壊と剥離の二値に区別し, 破壊部を黒色,剥離部を白色でマッピングした結果を図 -4 に示す。なお一体打ち試験体は全面を破壊と判断し, EはRに類似した破面であったため省略する。

図-5 は図-4 のマッピング結果を数値化したもので, y 軸はリガメント高さを表し, x 軸はリガメント高さ毎に 破壊部面積をトータルのリガメント面積で除した値を破 壊面積率(以下, φ)として表した。このφの分布は打継 ぎ処理によって大きく異なることが分かる。さらにこの φが大きいほど 3.1 節に示した力学特性値が高くなる傾 向にあり,既往の結果⁴と同じである。

4. 考察

4.1 破壊面積率による最大荷重時の破壊エネルギの推定(1)最大荷重時の引張軟化曲線の推定方法

本研究では、破壊部における吸収エネルギは一体打ち も打継ぎ試験体も同一であると仮定した。その時、高さ 方向にφが特定の分布をする打継ぎ試験体 X(以下,試験 体 X)の TSD は、一体打ち試験体 N(以下,試験体 N)の結 合応力に、当該位置におけるφを乗じることで構成され る。このとき、TSD はひび割れ幅(W)に対応する結合応 力であるため、一体打ち試験体の結合応力に乗ずべきφ はひび割れ幅が対応している必要がある。そこで既往の 研究³⁾により、ひび割れ先端高さからリガメント底に向 かって楔形に開口すると仮定して W とφとを対応させ た。本項では、最大荷重時の TSD を推定するために、図 -6 に示すように Wpx までの範囲内の分布を適用する。 また最大荷重時におけるひび割れ先端高さは、既往の研 究³⁾に従い、実験値の回帰式から決定した。

(2) 最大荷重時の破壊エネルギ推定結果の検討

実際の推定に際し、本研究では一体打ち試験体 N として、図-3(a) に示す 3 通りの TSD(N3, N950-2 および N236-2)を用いた。それぞれの試験体 N にφを乗じることによって構成した最大荷重の TSD と,引張軟化解析から得られた TSD(実験値 TSD)との比較を, R-3 を例に図 -7 に示す。R-3 の場合, N950-2 から推定した TSD が, ft は一致しないものの実験値に最も近いことが分かる。

図-7 のように推定された TSD から最大荷重時までの GF を求め、表-5 に示した GFpx との関係を検討した。 両者の関係を、基準とした試験体 N 毎に図-8(a)~(c)に 示す。図-8より、試験体 N によっては多少の違いがある がひび割れ幅の小さいこの時点では、N の種類に関係な く実験結果と推定結果は適合していることが分かる。

4.2 リガメントで消費される破壊エネルギ

破壊エネルギを求める方法としては、実験値の荷重-変形曲線や TSD の面積から求める手法が最も一般的で あるが、本研究では新たな手法として内田らの修正 J 積 分法⁸⁾を変形しリガメント部で消費した破壊エネルギを 推定することを試みた。

修正 J 積分法では,ひび割れがリガメント上端を回転 中心にして,高さ方向に均等(楔形)に分布すると仮定し ている。その前提のもと,GF は式(1)のように TSD を w に関して積分することで得られる。さらにリガメント全 体で消費した破壊エネルギは,リガメント方向に積分す ることにより,式(2)に示す E(w)として表される。

$$GF(w) = \int_0^w \sigma(w) dw \tag{1}$$

$$E(w) = \int_0^{a_0} \left\{ \int_0^w \sigma(w) dw \right\} dA$$
⁽²⁾

4.3 打継ぎ試験体の破壊エネルギの推定

本研究では、式(2)を変形し以下に示すように一体打ち 試験体 N の GF から打継ぎ試験体 X の GF を推定した。 ここで限界ひび割れ幅を試験体 N であれば Wcr_(N),試験 体 X であれば Wcr_(X)とする。そのとき実験値から得られ る試験体 X,試験体 N の既知の GF(表-5 参照)をそれぞ れ GF_(X)(Wcr_(X))および GF_(N)(Wcr_(N))とし、同様に推定す る試験体の GF を GF_(SX)(Wcr_(X))として図-9(b)に示す。

さらに,従来の修正 J 積分法に加えて下記の 2 点につき仮定した。

(1) 破壊した部分だけが破壊エネルギに寄与し、剥離した部分はエネルギ消費に寄与していない。

(2) 破壊部分で消費した破壊エネルギは打継ぎ試験体の 種類に関係なく等しい。つまり,試験体 X では全リガメ ント中の破壊した面積は小さいが,破壊部分の破壊エネ ルギは試験体 N のそれに等しい。

以上の仮定を修正 J 積分法に適用して,打継ぎ試験体 X の破壊エネルギ GF_(SX)(Wcr_(X))が以下のように示される。 はじめに,高さが a₀であるリガメントの上端を回転中心 に広がるひび割れを考える。リガメント下端のひび割れ

幅が Wcr_(X) から dw 広がったとき, 微小高さを dy とす れば相似関係から式(3)が得られる。

$$\frac{dy}{a_0} = \frac{dw}{Wcr_{(X)}}$$
(3)

上記の仮定(2)から、試験体 X と試験体 N の破壊した 部分の GF は等しく, 図-9(a) に示される結合応力は一体 打ち試験体 N の TSD に単純に φを乗じることで次式と して求められる。ここで b は試験体の全幅(100mm)であ り、b(W)はひび割れ幅 W に関して、破壊した面積を試 験体幅に換算したものである。つまり b(W)/b は φ となる。

$$\sigma_{(SX)}(W) = \sigma_{(N)}(W) \cdot \frac{b(W)}{b}$$
(4)

また式(2)は試験体 X では Wcr(X)を用いて、式(5)のよ うに書き変えられる。

$$E_{(X)}\left(Wcr_{(X)}\right) = \int_0^{a_0} \left\{ \int_0^{Wcr_{(X)}} \sigma_{(X)}\left(W\right) dw \right\} dA$$
(5)

この dA は,式(3)との関係から式(6)のように表される。

$$dA = b \cdot dy \tag{6}$$

式(4)と式(6)を用いて、式(5)を変形すると、打継ぎ試験 体 X のリガメント全体で消費された GF が式(7)として求 められる。この式(7)は一体打ち試験体Nの結合応力から 試験体X全体の破壊エネルギを推定できることを定式化 している。

$$E_{(SX)}(Wcr_{(X)}) = \int_{0}^{a_{0}} \left\{ \int_{0}^{Wcr_{(X)}} \sigma_{(N)}(W) dw \right\} b(w) \cdot dy$$
(7)

ここで, E は全リガメントで消費したエネルギである ため、GF_(SX)(Wcr_(X))を求めるためには、式(7)をリガメン ト面積で除する必要がある。ここで、Alig はリガメント 面積を意味する。

$$GF_{(SX)}(Wcr_{(X)}) = \frac{E_{(SX)}(Wcr_{(X)})}{Alig}$$
(8)

以上の式より,式(8)で得られた GF(sx)(Wcr(x))と,推定 に用いた GF_(N)(Wcr_(N))との関係は図-9(b)のように示さ れる。つまり GF_(SX)(Wcr_(X))は、GF_(N)(Wcr_(N))を x 軸方向 では仮想ひび割れ幅が Wcr_(N)から Wcr_(X)に低減すること, また y 軸方向では b(W)/b が作用して結合応力を低減させ ることにより、着色部に対応して推定される。

4.4 破壊エネルギにおける実験値と推定値との関係

以上の結果をもとに試験体Nに,N3,N950-2,N236-2 を用いて GF(SX)(Wcr(X))の推定を行った。実験値である GF(X)(Wcr(X))と試験体 N から推定した GF(SX)(Wcr(X))との 関係を図-10(a)~(c)に示す。これらの推定値は,N3を 基準とした場合は大きく、逆に N236-2 を基準とした場 合は小さく計算される傾向にあった。3つの一体打ち試 験体の中ではN950-2を基準にした場合が最も適合性が 高く,特にJ,FS,SPに限れば相関係数は0.96であった。 4.5 破壊部と破壊エネルギの関係

図-10 において推定した GF と実験値との適合性が高 いと言うことは4.3節で適用した(1)から(2)の仮定が妥当 であることを意味する。中でも重要なことは、(2)の試験 体の種類や破壊した面積の大小に関係なく,破壊面積あ たりでは破壊エネルギが等しいという仮定である。

図-8と図-10に共通してGFを推定できたのは, N950-2 を基準にした場合であり、本研究の打継ぎ試験体の破壊 部は、粗骨材の最大粒径が9.5mmのコンクリートと同等 の GF を保持していることが示唆される。なお一般にコ ンクリートの破壊進行の前面には破壊進行領域(FPZ)が 形成され、微細なひび割れが生じてエネルギを吸収する ことが知られている⁹⁾。従って、打継ぎ界面の破壊部分 と N950-2 試験体とが FPZ におけるエネルギ吸収に関し て何らかの類似性を持っていると考えられる。

また図-8と図-10を子細に観察すると、特にftの低い

FS の場合では、N236-2 を基準にした場合に最も適合性 が高く、一方でft、GF ともに高いJの場合はN3 を基準 にした場合に最も適合性が高いことに気がつく。一般的 に、骨材の最大粒径が大きいほど FPZ の幅は広くなる¹⁰⁾ ことから、N236-2 と適合する FS と、N3 と適合するJと では FPZ の広がりが異なると考えられる。実際、破面の 凹凸は FS がJよりも小さく、FPZ が狭いことを示唆して いる。つまり FS では、浅い範囲を壊すことで、Wcr が 小さくなっている。従って、ft が小さい打継ぎ界面は、 ft に応じた広さの FPZ を生じて Wcr も小さくなり、著者 らが報告した²⁾TSD 外形が相似になるメカニズムが働い ていると言えよう。

5. まとめ

本稿では、打継ぎ界面を持つ5水準のコンクリート試 験体に対して破壊靱性試験を行い、破面を破壊と剥離に 区別した。また、最大荷重時のTSDを構成する手法と修 正J積分法を応用する手法を用いて一体打ち試験体から 打継ぎ試験体の破壊エネルギを推定した。これらのこと から、以下に示す2点が分かった。

(1) 打継ぎ試験体のリガメントにおける破壊部の破壊 エネルギは, 粗骨材の最大粒径 9.5mm である一体打ちの それとほぼ同等である。これは限界ひび割れ幅までに限 らず,最大荷重時のひび割れ幅についても言える。

(2) 破壊エネルギを推定するために用いた本研究にお ける仮定,つまり応力分布モデル,破壊部における GF は等しい,などは妥当である。

参考文献

- 三橋博三:コンクリートの破壊力学の現状と展望,コンクリート工学, Vol.25, No.2, pp.14-25, 1987
- 2) 佐藤あゆみ、山田寛次、石山智:鉛直打継ぎ目をもつ コンクリート梁の引張軟化特性と破壊進展に関する 考察、日本建築学会東北支部研究報告集構造系、日本 建築学会東北支部,第70号、pp49-54、2007
- 3) 佐藤あゆみ、山田寛次、 石山智:鉛直打継ぎ面をも つコンクリート梁の断面内応力分布モデルの提案、コ ンクリート工学年次論文集、Vol.30, No.1, pp.399-404、 2008
- K. Yamada, A. Satoh, S. Ishiyama: Evaluation of adhesion characteristics of joint in concrete by tension softening properties, Proceedings of "Fracture Mechanics of Concrete and Concrete Structure", vol.3, pp. 1753-1759, 2007
- RILEM Draft Recommendation: Determination of the Fracture Energy of Mortar and Concrete by Means of Three-point bend Tests on Notched Beams, Materials and Structures, Vol.18, No.106, pp.285-290, 1985
- 6) 日本コンクリート工学協会編: JCI 規準集 2004, 日本 コンクリート工学協会, pp.550-558, 2004
- 7) 栗原哲彦,安藤貴宏,内田裕市,六郷恵哲:引張軟化 曲線によるコンクリート打継ぎ部の付着性状の評価, コンクリート工学年次論文報告集,Vol. 18, No.2, pp.461-466, 1996
- 内田裕市,六郷恵哲,小柳治:曲げ試験に基づく引張 軟化曲線の推定と計測,土木学会論文集, No.426, pp.203-212, 1991
- A. Hillerborg, M. Modeer, P. E. petersson: Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, Vol.6, pp. 773-782, 1976
- 大塚浩司,勝部宏明:コンクリートの破壊進行領域の 性状に及ぼす骨材寸法の影響,土木学会論文集, No.478/V-21, pp.109-116, 1993