# 論文 一方向繰り返し曲げを受ける鉄筋コンクリート柱の変形特性 に関する実験的研究

亀田 好洋\*1·水野 英二\*2·鈴木 森晶\*3・梅原 秀哲\*4

要旨:本研究では、「横拘束筋間隔」および「コンクリートの圧縮強度」を要因として、RC 柱の一方向 繰り返し曲げ実験を実施し、変形特性に関する考察を行った。ここでは、実験結果の考察を通して、こ れら要因が履歴曲線、エネルギー吸収能および破壊進展などの変形特性に与える影響について検討した。 また、道路橋示方書に記載される、横拘束筋からの拘束効果を考慮したコンクリート構成モデル式に導 入されている「力学的鉄筋パラメータ」を用いて、本実験結果の整理をすることにより変形特性に関す る考察も行った。

キーワード:繰り返し曲げ,変形特性,横拘束筋間隔,コンクリート強度,力学的鉄筋パラメータ

## 1. はじめに

平成7年に発生した兵庫県南部地震では,多数の鉄筋 コンクリート(RC)橋脚が倒壊した。震災後に実施され た被害分析から,横拘束筋の配筋量およびそれの定着状 態がRC構造物のポストピーク領域における変形性能に 大きな影響を及ぼすことが分かった<sup>1)</sup>。

一般に、RC 柱のポストピーク領域での変形性能を向 上させるためには、面積横拘束筋比(以下、面積鉄筋比) および打設コンクリートの圧縮強度(以下、コンクリー ト強度)を高く設定することにより、柱基部における拘 束(コンファインド)効果を十分に確保する手法が有効 であると言われている<sup>1)</sup>。星限ら<sup>2)</sup>ならびに秋山ら<sup>3)</sup>は、 面積鉄筋比およびコンクリート強度をパラメトリックに 変化させることにより、矩形および円形断面を有する RC 柱への単調一軸圧縮載荷実験を実施して、上述の手法の 有効性に対する評価を行い、コンファインドコンクリー トの応力-ひずみ関係を提案している。

一方,繰り返し曲げが作用する RC 柱の変形挙動を対 象とした研究も数多く実施されている<sup>4)</sup>。しかし,内部 コンクリートへの拘束効果などに代表される材料レベル の力学特性と部材レベルの変形特性との関連性に着目し た研究事例に限れば,さほど多くないのが現状である。 また,上述のように,横拘束筋配筋量の多少が RC 柱の 変形特性に大きな影響を及ぼすことが指摘されている中 で,既往の研究で用いられた供試体の多くが,面積鉄筋 比が 0.5 %以下という比較的低い水準で設定されており <sup>5)</sup>,面積鉄筋比の高い RC 柱の変形特性については,未だ 解明されていない部分が多い。

これまで、筆者らは、「軸圧縮力」および「横拘束筋 間隔」<sup>6</sup>、「横拘束筋間隔」および「載荷パターン」<sup>7)</sup>を 要因として,一方向曲げまたは繰り返し曲げを受けるRC 柱供試体の載荷実験をそれぞれ実施してきた。

本研究では、文献 7) での成果を基に、新たに RC 柱 供試体(200×200×1000 mm:28 体)を作製し、軸圧縮 下での一方向繰り返し曲げ載荷実験を実施した。本実験 では、既往の研究で扱った「横拘束筋間隔」および「載 荷パターン」に加え、「コンクリート強度」も要因とした。 ここでは、上記の3要因のうち、「横拘束筋間隔」ならび に「コンクリート強度」の違いが RC 柱の変形特性に与 える影響について、文献 7)の実験結果も含めてエネル ギー吸収能および破壊進展の観点から検証した。また、 横拘束筋からの内部コンクリートへの拘束効果を考慮し たコンクリート構成モデル式<sup>8)</sup>において軟化特性を設定 するために用いられる「力学的鉄筋パラメータ」を指標 として、実験結果の整理および考察も行った。

#### 2. 実験供試体

#### 2.1 供試体の概要

本研究で使用した供試体の形状ならびに配筋の一例を 図-1に示す。実験には、断面 200×200 mm, 柱有効高 さ1000 mm, せん断スパン比5を有する RC 柱供試体を 用いた。供試体は曲げ破壊先行型となるように、軸方向 筋には D10 (SD295A)を8本,横拘束筋には D6 (SD295A) を35, 50, 65, 90, 105, 120 および 150 mm 間隔 (*s*) でそれ ぞれ配筋した。すなわち, 横拘束筋の面積鉄筋比0.29~ 1.23%(体積鉄筋比にして, 0.58~2.46%)の7水準から 成る供試体を作製した。打設コンクリートには,設計基 準強度 f´<sub>ck</sub> = 40 MPa および 60 MPa を有する普通コンク リート(2 水準)を用いた。

ここで、本実験に用いた供試体の面積鉄筋比および力

\*1 名古屋工業大学 大学院工学研究科 創成シミュレーション工学専攻 博士後期課程 修士(工学)(正会員) \*2 中部大学 工学部都市建設工学科 教授 Ph.D.(正会員)

\*3 愛知工業大学 工学部都市環境学科土木工学専攻 准教授 博士(工学)(非会員)

\*4 名古屋工業大学 大学院工学研究科 創成シミュレーション工学専攻 教授 Ph.D.(正会員)



| 表-1 | 面積鉄筋比と力学的鉄筋パラメ | ータ |
|-----|----------------|----|
|-----|----------------|----|

| 黄拘束筋                | 面積                  | 力学的鉄筋パラメータ                                        |      |       |  |  |  |
|---------------------|---------------------|---------------------------------------------------|------|-------|--|--|--|
| 間隔 <i>s</i><br>[mm] | 上(、<br>鉄筋比<br>ρ』[%] | ρ <i>a·m</i> [%]<br>設計基準強度:f' <sub>ck</sub> [MPa] |      |       |  |  |  |
|                     |                     | 20                                                | 40   | 60    |  |  |  |
| 35                  | 1.23                | 20.08                                             | 7.69 | 5.15  |  |  |  |
| 50                  | 0.86                | 11.42                                             | 5.39 | 3.60  |  |  |  |
| 65                  | 0.66                | 11.40                                             | 4.44 | 3.18  |  |  |  |
| 90                  | 0.48                | 6.45                                              | 3.45 | 2.30  |  |  |  |
| 105                 | 0.41                | 5.06                                              | 3.01 | 2.06  |  |  |  |
| 120                 | 0.36                | 5.86                                              | 2.40 | 1.79  |  |  |  |
| 150                 | 0.29                | 3 54                                              | 2 07 | 1 4 3 |  |  |  |



写真-1 載荷実験装置

| <del>` *</del> |        |                |      | 表-2  | 材料定数·   | 一覧      |          |         |
|----------------|--------|----------------|------|------|---------|---------|----------|---------|
|                | 横拘束筋   | コンクリート         |      |      | 軸方向筋    | (平均)    | 横拘束筋(平均) |         |
|                | 間隔 s   | 設計基準・圧縮強度[MPa] |      |      | 降伏強度    | 引張強度    | 降伏強度     | 引張強度    |
| )=750          | [ mm ] | 20             | 40   | 60   | [ MPa ] | [ MPa ] | [ MPa ]  | [ MPa ] |
| 12@20          | 35     | 19.5           | 46.7 | 71.0 |         |         |          |         |
|                | 50     | 24.0           | 46.7 | 71.0 |         |         |          |         |
| 「新穀冶具          | 65     | 18.5           | 43.6 | 61.8 |         |         |          |         |
|                | 90     | 24.0           | 40.5 | 61.8 | 351.0   | 519.0   | 315.1    | 512.4   |
|                | 105    | 25.8           | 39.8 | 59.2 |         |         |          |         |
| 57 ( /Fil )    | 120    | 19.5           | 43.6 | 59.7 |         |         |          |         |
| 凶 (一1例)        | 150    | 25.8           | 40.5 | 59.7 |         |         |          |         |

学的鉄筋パラメータの一覧を**表**-1に示す。表中, $\rho_a$ は 面積鉄筋比(%), m は強度比(横拘束筋の降伏強度  $\sigma_{ys}$ をコンクリートの一軸圧縮強度  $f'_c$ で除した値)である。 ちなみに,設計基準強度  $f'_{ck} = 20$  MPa の普通コンクリー トを用いた供試体(文献 7))のパラメータ値も記載して ある。なお,道路橋示方書で定められるコンクリート構 成モデル式に適用できる横拘束筋量の上限は,体積鉄筋 比にして 1.80%(本論文に用いている面積鉄筋比にして 0.90%)であることを付記しておく<sup>8)</sup>。

#### 2.2 供試体の材料定数

鉄筋およびコンクリートの材料定数を JIS 規格で定め られる材料試験法により求めた。材料試験より得られた 材料定数を表-2 に示す。

# 3. 載荷実験

#### 3.1 載荷方法

本実験では、供試体 (図-1 参照)を鋼製冶具に挿入 し、高力ボルトにより完全固定の条件となるように、供 試体を固定した。写真-1に示すような載荷装置を用い、 RC 柱に対して鉛直ジャッキにより軸力を作用させると 同時に、水平ジャッキにより水平変位を柱頂部に与え、 一方向繰り返し曲げ載荷実験を実施した。軸力の大きさ は累加軸耐力の5%とし、次節の載荷パターンに基づき 変位制御により水平荷重を作用させた。ちなみに、軸力 は、設計基準強度 $f_{ck} = 20$  MPa では51.1 kN, 40 MPa で は95.2 kN および 60 MPa では134.4 kN(いずれも平均値) である。

## 3.2 載荷パターン

図-2 に示すような低変位レベルから大変位レベルに



かけての繰り返し漸増載荷パターン<sup>7)</sup>を設定した。図中の「 $\delta_{y}$ 」は部材降伏時の変位を示し、供試体内の軸方向筋が降伏(降伏ひずみ $\epsilon_{y} = 2,000 \mu$ )した際の水平変位 るを意味する。以下に、載荷パターンの内容を示す。 載荷パターン

変位 0 mm → ±1 $\delta_y$  (1 または 2 サイクル) → ±2 $\delta_y$ (1 または 2 サイクル) → ±4 $\delta_y$  (2 サイクル) → ±8 $\delta_y$  → ±16 $\delta_y$  → <一方向載荷>→荷重 0 kN

# 3.3 計測データ

水平荷重,水平変位,柱基部の軸方向筋および横拘束 筋ひずみを計測した。また,軸方向筋ひずみについては, 軸方向筋8本のうち供試体隅角部に位置する4本に,横 拘束筋ひずみについては,基部直上に位置する横拘束筋 の曲げ加工部近辺(図-1参照)に対してひずみを計測 した。

#### 4. 実験結果および考察

本章では、水平荷重-水平変位関係、吸収エネルギー -累積変位関係および破壊進展状況などの実験結果に対 する考察を行う。また、表-1に示す供試体(21体)の

| 横拘束筋<br>間隔 <i>s</i> -<br>[mm] - | 降伏荷重                          |      |      | 降伏変位                          |      |      | 降伏時吸収エネルギー                    |       |       |
|---------------------------------|-------------------------------|------|------|-------------------------------|------|------|-------------------------------|-------|-------|
|                                 | <i>P</i> <sub>v</sub> [ kN ]  |      |      | $\delta_{y}$ [mm]             |      |      | $E_{y}$ [kN·mm]               |       |       |
|                                 | 設計基準強度:f' <sub>ck</sub> [MPa] |      |      | 設計基準強度:f' <sub>ck</sub> [MPa] |      |      | 設計基準強度:f′ <sub>ck</sub> [MPa] |       |       |
|                                 | 20                            | 40   | 60   | 20                            | 40   | 60   | 20                            | 40    | 60    |
| 35                              | 15.7                          | 20.3 | 22.2 | 9.11                          | 8.02 | 6.68 | 80.3                          | 104.6 | 92.6  |
| 50                              | 18.8                          | 22.1 | 24.4 | 9.89                          | 8.85 | 7.66 | 118.0                         | 129.1 | 118.5 |
| 65                              | 19.1                          | 20.1 | 23.0 | 8.55                          | 8.27 | 8.31 | 115.7                         | 107.1 | 119.5 |
| 90                              | 20.2                          | 20.4 | 23.3 | 9.12                          | 8.68 | 8.35 | 119.9                         | 114.5 | 122.1 |
| 105                             | 20.7                          | 19.1 | 23.2 | 9.83                          | 8.23 | 8.28 | 133.4                         | 100.9 | 121.1 |
| 120                             | 17.1                          | 20.3 | 22.6 | 9.12                          | 7.84 | 8.21 | 99.6                          | 103.5 | 119.4 |
| 150                             | 20.0                          | 19.2 | 22.4 | 9.17                          | 8.18 | 8.35 | 120.8                         | 100.6 | 114.7 |

表-3 部材降伏時の水平荷重,水平変位およびエネルギー吸収量の一覧

うち, 力学的鉄筋パラメータρ<sub>a</sub>·m 値がおおよそ3.5%お よび5.2%(表中の)ととで示されている値)を有す る供試体(それぞれ3体)を対象として, 同値の力学的 鉄筋パラメータを有する供試体の変形特性の違いについ ても比較・検討を行う。

なお、以下の考察で必要となる、各供試体の降伏荷重  $P_y$ 、降伏変位 $\delta_y$ および降伏時吸収エネルギー $E_y$ を表-3 に示す。ここで、降伏時吸収エネルギー $E_y$ とは部材が降 伏するまでに外力が行った仕事である。

## 4.1 水平荷重一水平変位関係

#### 全体的な考察

横拘束筋間隔ごとにまとめた,全供試体の水平荷重− 水平変位関係を図−3 (a) ~ (g) に示す。なお,図中の 数値は,水平荷重および水平変位ともに,降伏荷重  $P_y$ および降伏変位  $\delta_y$  (表−3 参照) によりそれぞれ無次元 化してある。表−3 から分かるように,コンクリート強 度が高くなるに従い,降伏荷重  $P_y$  が大きくなる (20 MPa: 18.8 kN → 60MPa: 23.0 kN < いずれも平均値>) のに対し,降伏変位  $\delta_y$ は小さくなる (20 MPa: 9.25 mm → 60 MPa: 7.98 mm < いずれも平均値>) 傾向を示す。 −8  $\delta_y$ までの履歴特性:

 $-8 \delta_y$ までの履歴特性を比較すると、全体的に大きな 差異は認められないが、コンクリート強度が 20 MPa, か つ横拘束筋間隔が 65 mm 以上の場合(ただし、120 mm の場合は除く。)には、除荷側(unloading 側)での耐力 が他のケースと比べて低くなっており、横拘束筋間隔お よびコンクリート強度の違いによる影響が生じている。  $-8 \delta_y$ から+16  $\delta_y$ までの履歴特性:

 $-8 \delta_y$ から+16  $\delta_y$ にかけての載荷(すなわち,  $-8 \delta_y$ から+0  $\delta_y$ に向かう載荷)では,横拘束筋間隔が大きく, かつコンクリート強度が高くなるに従い, ピンチング

(pinching)部(図中にシンボル▼で示す。)にて耐力が 他のケースに比べて低下するとともに,履歴曲線の湾曲 具合が大きくなる傾向にある。さらに,当該サイクルに おけるピーク耐力(最大耐力)の低下およびピーク耐力 以降の荷重-変位関係の軟化勾配が大きくなる。この理 由としては,横拘束筋間隔の大きい供試体ほど軸方向筋 のはらみ出しが早期に生じ,かぶりコンクリートのみな らず,内部コンクリートに多数のひび割れが発生すると ともに,圧壊が進展し,柱基部周辺のコンクリートが有 する耐荷性能が低下するためと考えられる。また,コン クリートの軟化挙動は圧縮強度が高いものほどより脆性 的な挙動を示すことから,コンクリート強度が高い供試 体ほどピンチング部での耐力が低下する傾向があると考 えられる。

### +16 S<sub>v</sub>から終局状態までの履歴特性:

+16  $\delta_y \rightarrow -16 \delta_y$ に至る軟化勾配,さらには-16  $\delta_y \rightarrow$ 終局状態に至る軟化勾配は,横拘束筋間隔が大きくなる に従い,大きくなる傾向を示した。この理由としては, 上述したように基部周辺の内部コンクリートの耐荷性能 が低下するに伴い,軸方向筋が繰り返し力を負担する割 合が大きくなる耐荷機構に移行し,軸方向筋のはらみ出 し量がより大きくなることにより,供試体全体の耐荷性 能が著しく低下したためと考えられる。なお,横拘束筋 間隔 s = 150 mm,  $f'_{ck} = 60$  MPa を有する供試体では,繰 り返し劣化によって横拘束筋が破断し,耐力が急激に低 下する挙動を呈した(図-3 (g) に示すシンボルマ)。

## 同値の力学的鉄筋パラメータを有する実験結果の考察

力学的鉄筋パラメータρ<sub>α</sub>·m = 3.5 %および 5.2 %を有 する供試体(それぞれ 3 体)の水平荷重-水平変位関係 を図-3 (h)および(i)に示す。

変位レベル-8 $\delta_y$ までの履歴特性を考察すると,力学 的鉄筋パラメータ $\rho_a$ ·*m*=3.5%の場合には、コンクリー ト強度 20 MPa を有する供試体の unloading 側での耐力が 他の 2 ケースと比較して低い。一方、力学的鉄筋パラメ ータ $\rho_a$ ·*m*=5.2%の場合には、コンクリート強度 60 MPa を有する供試体の unloading 側での耐力が他の 2 ケースと 比較して高いことが分かる。

 $-8 \delta_y$ から終局状態までの領域では、力学的鉄筋パラ メータに関係なく、低いコンクリート強度(この場合に は、大きい横拘束筋間隔)を有する供試体では、ピーク 耐力の低下および履歴曲線の軟化勾配が大きくなる傾向 が確認できる。とくに、 $+16 \delta_y$ から終局変位にかけての 領域では、コンクリート強度の低い供試体の耐荷性能が 大きく低下し、水平変位軸に偏平な挙動を呈する。この ことからも、コンクリート強度および横拘束筋間隔が大



変位領域での変形特性に影響を及ぼすと考えられる。

# 4.2 吸収エネルギー-累積変位関係

#### <u>全体的な考察</u>

ー例として、水平荷重一水平変位関係から得た、コン クリート強度 $f'_{ck}$ =40 MPa を有する供試体の吸収エネル ギーー累積変位関係を図ー4(a)に示す。ここで、吸収 エネルギーとは柱頂部に作用する荷重により柱に入力さ れる外力エネルギーの総和であり、一方、累積変位 D と は柱頂部の変位量の軌跡である。なお、それぞれの値は 部材降伏時の外力エネルギー量  $E_y$ および降伏変位  $\delta_y$ に より無次元化してある。

図-4 (a) から分かるように、いずれの供試体も累積 変位  $D = 50 \delta_y$  (変位レベル+8 $\delta_y$ , 図中のシンボルマ) から累積変位  $D = 100 \delta_y$  (変位レベル+16 $\delta_y$ , 図中のシ ンボルマ)までの挙動は概ね一致しており、横拘束筋間 隔およびコンクリート強度の違いによる影響は少ないと 考えられる。

一方,累積変位 $D = 100 \delta_y$ 以降の大変位レベルにおいて,横拘束筋間隔の違いにより徐々に吸収エネルギーに

差異が生じ始める。すなわち,横拘束筋間隔が大きいものほどエネルギー吸収能がより低下することが分かる。 これは,横拘束筋間隔が大きくなるに従い,軸方向筋の はらみ出しおよびコンクリートの圧壊などの繰り返し劣 化が柱基部周辺に大きく進展するためと考えられる。

図には示さないが、コンクリート強度 20 MPa および 60 MPa の場合にも、エネルギー吸収能は横拘束筋間隔に 関係なく、それぞれ累積変位  $D = 75 \delta_y$ および  $110 \delta_y$ 程 度までは概ね同じ傾向を示した。例外として、コンクリ ート強度 20 MPa かつ横拘束筋間隔 35 mm 有する供試体 の場合は、全供試体の中で最も大きなエネルギー吸収能 を示した。

## 同値の力学的鉄筋パラメータを有する実験結果の考察

力学的鉄筋パラメータ $\rho_a \cdot m = 3.5$ %および 5.2%を有 する供試体(それぞれ 3 体)の吸収エネルギーー累積変 位関係を図ー4 (b)および (c) に示す。図から分かるよ うに、力学的鉄筋パラメータ $\rho_a \cdot m = 3.5$ %の場合には、3 供試体とも累積変位  $D = 75 \delta_y$  (変位レベルー8 $\delta_y$ , 図中 のシンボル▼) 程度まで概ね一致した傾向を示す。ただ



し、横拘束筋間隔が小さい (50 mm および 90 mm) 供試 体のエネルギー吸収能は終局状態までほぼ同じ傾向にあ る。一方、横拘束筋間隔が 150 mm と大きい供試体では、 累積変位  $D = 75 \delta_y$ 以降から低いエネルギー吸収能を示 す。

また、力学的鉄筋パラメータ $\rho_a \cdot m = 5.2$ %の場合についても、3供試体のエネルギー吸収能は累積変位 D = 75 $\delta_y$ (変位レベル-8 $\delta_y$ ,図中のシンボル▼)程度までは同じ傾向を示すが、ピンチング現象に差異が生じ始める 累積変位  $D = 75 \delta_y$ 以降では、横拘束筋間隔が小さくかつ コンクリート強度が高い供試体の方が、エネルギー吸収 能が大きくなる。この理由としては、1)横拘束筋間隔が 小さくなるに従い、軸方向筋のはらみ出しが遅れること により内部コンクリートへの拘束効果が持続すること、 2)拘束効果によりコンクリートの応力-ひずみ関係が延 性的になりエネルギー吸収能が高まること、などが考え られる。

以上のことより、力学的鉄筋パラメータまたはコンク リート強度などの指標によっては多少のばらつきが見ら れるが、本実験で行った載荷パターンの下では、RC 柱 のエネルギー吸収特性は少なくとも累積変位  $D = 75 \delta_y$ (変位レベル-8 $\delta_y$ )までの範囲ではそれら指標に関係 なく同様の傾向を示すことを確認した。

# 4.3 同値の力学的鉄筋パラメータを有する供試体の破 壊進展状況

ー例として,力学的鉄筋パラメータρ<sub>a</sub>·m = 5.2%を有 する供試体 (3 体)の柱基部から高さ 2 D 区間 (D:柱幅) での破壊進展状況を**写真-2** に示す。いずれの供試体も 破壊域の大きさは 1 D 以内であった。

写真としては掲載していないが、いずれの供試体も横 拘束筋に沿った水平ひび割れが変位+1.5 mm 前後より 進展し、 $\pm 1 \delta_y$ 区間の載荷終了時には、左右両面からの 水平ひび割れが貫通した。また、 $\pm 2 \delta_y$ 区間の繰り返し 載荷では、既存ひび割れの開口幅の拡大のみで、水平ひ び割れの進展はほとんど確認できなかった(写真参照)。



±4  $\delta_y \sim \pm 8 \delta_y$ にかけての繰り返し載荷過程では,力 学的鉄筋パラメータが同値であっても,横拘束筋間隔が 小さい供試体では,水平ひび割れが卓越する傾向を示す のに対し,横拘束筋間隔が大きくなるに従い,斜めひび 割れが卓越する傾向を示している。コンクリート強度 40 MPa かつ横拘束筋間隔 50 mm の供試体では,柱基部付近 でのひび割れが細部にまで進展する傾向が確認できる。 さらに,  $-8 \delta_y$ 以降の繰り返し載荷過程において,力学 的鉄筋パラメータが同値であっても,横拘束筋間隔が大 きく (コンクリート強度が小さく)なるに従い,終局時 には軸方向筋のはらみ出しならびにコンクリートの圧壊 などの繰り返し劣化が生ずる傾向が確認できた。

#### 5. まとめ

本研究では、以下の知見を得た。

 コンクリート強度が 20 MPa かつ横拘束筋間隔が 65 mm以上の供試体を除いては、変位レベル-8 δ<sub>y</sub>まで の繰り返し変形特性は同じ傾向を示すことを確認し た。しかし、-8 δ<sub>y</sub>以降の変位レベルでは、ピンチン グ部での耐力、その後のピーク耐力に対して横拘束筋 間隔およびコンクリート強度の違いが影響している ことを確認した(第4章1節)。



(c) 力学的鉄筋パラメータ p<sub>a</sub>·m = 5.2 % <横拘束筋間隔 s = 35 mm (f<sub>ck</sub> = 60 MPa) >
 写真-2 部材の破壊進展状況(一例) ※[]内は累積変位 D(図-4 参照)を示す。

- 2) コンクリート強度 20 MPa, 40 MPa および 60 MPa の 場合,エネルギー吸収能は,横拘束筋間隔に関係なく, それぞれ累積変位  $D = 75 \delta_y$ , 100  $\delta_y$ および 110  $\delta_y$ 程 度までは概ね同じ傾向を示した(第4章2節)。
- 3) 上記 2) ならびに同値の力学的鉄筋パラメータを有す る供試体の実験結果より、少なくとも累積変位 D = 75 $\delta_y$  (変位レベル-8 $\delta_y$ ) までの RC 柱のエネルギー吸 収特性については、力学的鉄筋パラメータに関係なく 同様な傾向を示した(第4章2節)。
- 4) 力学的鉄筋パラメータが同値であっても、「横拘束筋 間隔」および「コンクリート強度」の違いにより、累 積変位  $D = 75 \delta_y$  (変位レベル $-8 \delta_y$ ) 以降では、履歴 特性、吸収エネルギーおよび破壊進展などの変形特性 に差異が生じることを確認した。コンクリート強度に 関係するが、面積鉄筋比が大きな供試体は高いエネル ギー吸収能を示した(第4章)。
- 5)供試体の破壊進展状況については、力学的鉄筋パラメ ータが同値であっても、横拘束筋間隔およびコンクリ ート強度に関連して異なったひび割れ進展および破 壊形態を示した(第4章3節:**写真-2**)。

謝辞:本研究では,平成20年度中部大学総合工学研究所 研究補助金(第5部門)の助成を得た。また,愛知工業 大学構造研究室:新川慶太・東野翔太両君には,実験で お力添えを頂いた。ここに記して謝意を表す。 参考文献:

- 1) 土木学会編: 阪神淡路大震災被害分析と靭性率評価式 [阪神大震災調査研究特別委員会 WG 報告], コンク リート技術シリーズ 12, 土木学会, pp.4-10, 1996.
- 2) 星隈順一ら:鉄筋コンクリート橋脚の地震時保有水平 耐力の照査に用いるコンクリートの応力-ひずみ関係,土木学会論文集,No.520/V-28,pp.1-11,1995.8.
- 3)秋山充良ら:普通強度から高強度までの構成材料を用いたRC柱の一軸圧縮試験と圧縮破壊エネルギーを介したコンファインドコンクリートの平均化応力-ひずみ関係,土木学会論文集,No.768 / V-67, pp.81-98, 2005.5.
- 4) 塑性域の繰り返し耐力劣化と耐震性能研究委員会報告
  書,日本コンクリート工学協会,JCI C62,2004.9.
- 5) 衣笠秀行・野村設郎:正負繰り返し履歴による曲げ降 伏ヒンジの破壊性状,コンクリート工学論文集,第5 巻第2号, pp.21-32, 1994.7.
- 6) 亀田好洋ら:軸圧縮下で曲げを受ける RC 柱の力学特 性に関する実験的ならびに解析的研究,土木学会応用 力学論文集, Vol.10. pp.457-466, 2007.8.
- 7) 亀田好洋・水野英二ら: 圧縮下で繰り返し曲げを受ける鉄筋コンクリート柱の変形特性に関する実験的研究, コンクリート工学年次論文集, Vol.30, No.3, pp.145-150, 2008.7.
- 8)日本道路協会編:道路橋示方書・同解説(V:耐震設 計編)2002年度版, pp.160-163, 2002.