論文 5N/mm² 級の低強度コンクリートを用いた高圧縮力を受ける RC 柱の弾塑性性状

根ロ 百世*1・吉岡 大介*2・高月 行治*3・南 宏一*4

要旨:本研究では,5N/mm²級の低強度コンクリートを用いた RC 柱の弾塑性性状を実験的に検討するために, 5 体の実験を行った。実験変数は,引張鉄筋比の違いおよび作用軸力比の違いとした。特に,健全なコンクリ ートが低強度コンクリートになったことによる影響を調べるために,作用軸力比を 0.6 および 0.8 という高圧 縮力を作用させ,主筋には丸鋼を使用し,主筋量は一定にして加力方向を変えることで引張鉄筋比を 0.44%, 0.74%としたことが特徴である。その結果,低強度コンクリートで,かつ,高軸力比の場合でも,柱部材角 3.0×10⁻²rad の変形能力を持つことが示され,その耐力は塑性理論によって概ね評価できることが示された。 **キーワード**:低強度コンクリート,丸鋼,終局せん断耐力,大野・荒川式,塑性理論

1. はじめに

現行の日本建築防災協会の耐震診断基準¹⁾では, コン クリート圧縮強度が 13.5 N/mm² 未満のもの [以下, 低 強度コンクリートという] については, 耐震診断および 耐震補強の対象外とされている。その理由の一つとして は, コンクリート強度の低い部材や架構の実験的および 理論的研究が十分ではなく, 力学的性能の把握が不明確 なことが起因していると考えられる。

そこで、低強度コンクリート柱部材の力学的性能について、昨年度までに行われた実験²⁾に引き続き、本論ではコンクリート圧縮強度が 5 N/mm² 級のコンクリートを用いて、主筋量を小さくした場合にどのような破壊性状となるのかを調べ、その耐力の評価方法について検討を行う。

2. 実験計画

本論では、コンクリート圧縮強度が 5 N/mm² 級のコン クリートを用いた柱試験体 [柱断面 300×300 mm²、内法 高さ 900 mm] を 5 体製作する。

図-1の試験体形状寸法に示されるように、本論では、 主筋に丸鋼[13 \[0]を用いているのが大きな特徴である。 主筋に丸鋼を用いたのは、1965 年以前に建てられたもの で低強度コンクリートとなっている学校校舎には、丸鋼 を用いられたものが多いからである。ただし、せん断補 強筋については、材料の入手が困難であったため、異形 鉄筋を用いた。なお、主筋の定着は、主筋の上下端の定 着部を介して行った。

本実験の主要な実験変数を表-1に示す。実験変数は, 引張鉄筋比,作用軸力比とした。引張鉄筋比の違いとは, 主筋量が等しく,力の作用方向による影響を調べるため に,強軸方向に力を受ける場合と弱軸方向に力を受ける 場合の2種類について行うものとする。既存建築物の柱

シリーズ名 (加力方向)	試験体 No.	試験体名	軸力比 N/(b・D・σ _B)	引張 鉄筋比 p _t [%]			
₩ シリーズ (弱軸方向)	17	L05240W	L05240W 0.4				
	18	L05260W	0.6	0.44			
	19	L05280W	0.8				
S シリーズ (強軸方向)	20	L05240S	0.4	0.74			
	21	L05280S	0.8	0.74			
N:軸力[N], b:柱幅[mm], D:柱せい[mm], σ _B :コ ンクリート強度[N/mm ²]							

*1 福山大学大学院 博士課程工学研究科地域空間工学専攻 修士(工学) (正会員)

*2 安藤建設(株) 広島支店工事部門

*3 広島県東部生コンクリート協同組合

*4 福山大学 工学部建築・建設学科 教授 工博 (正会員)

	水	セメント	石粉	混和剤	細骨材率	フ	、結合材比				
	[kg/m ³]	[kg/m ³]	[kg/m ³]	[kg/m ³]	[%]		[%]				
	210	95.0	228.1	2.58	49.9	49.9					
	210	107.8	215.2	2.58	50.0		65.0				
	表-3 材料試験結果										
W シリーズ		圧縮強度	芰 [N/:	mm ²]	6.93						
コンクリート			ヤング信	系数 [10	⁴ N/mm ²]	0.82					
Sシリーズ		圧縮強度	吏 [N/	mm ²]		4.55					
コンクリート			ヤング信	系数 [10	⁴ N/mm ²]	0.62					
主筋 13 φ		降伏強度	更 [N/:	mm ²]		320					
		ヤング信	系数 [10	⁵ N/mm ²]		2.01					
せん断補強筋		降伏強度	芰 [N/:	mm ²]	320						
D6		ヤング信	系数 [10	⁵ N/mm ²]	1.92						

表-2 調合表

 せん断補強筋 D6
 降伏強度 ヤング係数
 [N/mm²]
 320

 は、設計段階から低強度コンクリートとなるように意図
 1.92

 は、設計段階から低強度コンクリートとなるように意図
 位語 して作られたものではなく、何らかの原因で低強度コン クリートになったと考えられることから、部材に作用す
 を終 る軸力比は、コンクリート強度が小さくなるほど大きく
 をが なるといえる。また、地震時には、さらに高軸力を受け
 水平

 なことも考えられるため、0.6 や 0.8 といった高軸力比の
 っ方

3. 使用材料

実験を行うものとする。

コンクリートは引張鉄筋比別に2度にわたって打設を 行った。コンクリートの調合は表-2に示されるとおり である。表-3に使用材料の機械的性質を示し,図-2 に応力度-ひずみ度関係を示す。

4. 載荷方法

載荷は建研式載荷装置を用い,制御方法は変位振幅を 材長で除して表した部材角Rによる変位制御によって行 う。 0.2×10^{-2} radの変位部材角で正負2回ずつ繰り返した 後に, 0.2×10^{-2} radずつ増加させて載荷を行い,変位部材 角 3.2×10^{-2} radで2回繰り返した時点で実験を終了する。

5. 実験結果

図-3 に荷重-変形関係を,写真-1 に最終破壊状況 の写真を示す。図-3 には,コンクリートの圧壊が生じ たときの位置を〇印で示している。

加力方向に関わらず,逆S字形のループを描き,最大耐力以降の耐力低下があまり生じていないのが特徴である。弱軸方向に加力した,No.19(L05280W)の試験体は,変位部材角 3.0×10²rad のときに軸力の保持ができなくなり,写真-1 (c)に示されるように,主筋が座屈しているのが確認された。いずれの試験体も,材端部のコンクリートの圧壊を伴いながらも,3.0×10⁻²rad あるいは最終変

位部材角 3.2×10⁻²rad という大きな変形に対しても耐力 を維持していることが特徴である。

弱軸方向に加力した試験体と強軸方向に加力した試験 体では実験開始時のコンクリート強度に差があるため, 水平力Qをb·D·σ_Bで除して無次元化したqを縦軸にと った図-4 に示される包絡線を描き,軸力比別,加力方 向別に比較を行う。図-4(a),(b)は,それぞれ加力方向 別に軸力比を比較した包絡線である。加力方向の違いに 関わらず,全体的な傾向としては,軸力比が大きいほど 耐力は大きく,最大耐力以後の耐力低下は軸力比が大き いものほど激しいことが示された。図-4(c),(d)は,軸 力比別に加力方向の違いについて比較を行ったものであ る。軸力比に関わらず,強軸方向の試験体の方が高い耐 力を示しているが,最大耐力以後の耐力低下の違いはみ られなかった。

6. 大野・荒川式による耐力の検討

式(1)に示す大野・荒川式は, **RC** 部材の終局せん断耐 力を求める耐力式としてよく用いられている¹⁾。

$$Q_{sU1} = 0.053 p_t^{0.23} \frac{\sigma_B + 18}{\frac{M}{O \cdot d} + 0.12} + 0.85 \sqrt{p_w \cdot \sigma_{wy}} + 0.1 \sigma_0$$

(1)

ここに, p_t:引張鉄筋比 [%], σ_B:コンクリート 圧縮強度 [N/mm²], M/(Q·d):反曲点高 さ[mm], p_w:せん断補強筋比, σ_{wy}:せ ん断補強筋降伏強度 [N/mm²], σ₀:軸方 向応力度 [N/mm²]

式(1)の大野・荒川式に対して、山本は、低強度コンク リートに対するせん断耐力の修正の方法として、式(3)に 示されるようなコンクリート強度に応じて耐力を低減さ せる低減係数 k_rの導入を提案している³⁾。

式(1)および式(2)に基づいて計算した結果を実験結果 とともに,表-4に示す。

式(1)の大野・荒川式は,第1項目のコンクリートの項, 第2項目のせん断補強筋の項,第3項目の軸力の項で構 柱幅, j: 応力中心間距離] で除してせん断応力度 τ_1 , τ_2 , とし, 各せん断応力度についてコンクリート(τ_c), せん断補強筋(τ_w), 軸力(τ_N)の項目ごとに表した ものと正荷重時および負荷重時の実験値 Q_{su0} , $-Q_{su0}$ を b·jで除してせん断応力度として表した τ_0 , $-\tau_0$ を比較

試験体 No.	試験体名	压縮強度 σ _B [N/mm ²]	実験結果		累加強度式に よる曲げ耐力	大野・荒川式			
			正荷重時 Q _{sU0} [kN]	負荷重時 Q _{sU0} [kN]	Q _{mU} [kN]	Q _{sU1} [kN]	Q _{sU2} [kN]	k _r	
17	L05240W	6.97	105.8 -93.9		118.3	117.2	74.4	0.63	
18	L05260W	7.17	110.4	-113.5	119.7	125.8	81.2	0.65	
19	L05280W	7.25	115.7	-121.9	120.3	134.2	87.2	0.65	
20	L05240S	4.57	72.6	-71.3	146.4	107.1	53.6	0.50	
21	L05280S	4.69	95.0	-83.6	128.6	120.8	61.2	0.51	

表-4 大野・荒川式による実験結果の検討

図-5 大野・荒川式による終局せん断耐力の検討

したグラフである。弱軸方向に加力した3体に対しては 大野・荒川式で概ね評価できているが、強軸方向に加力 した2体については、良い対応が得られておらず、低減 係数を用いた場合の対応も良くないことが指摘される。

図-6に,終局曲げ耐力,大野・荒川式および山本式に よるせん断耐力の n-q 相関関係を示す。図中の耐力線は, W シリーズではコンクリート強度 6.97N/mm²を用い,S シリーズでは4.57N/mm²を用いて算定している。Wシリ ーズは,実験値は大野・荒川式に近い値が得られているの に対してSシリーズでは,実験値は大野・荒川式と山本 式の中間に位置していることが特徴である。

7. 塑性理論による検討

せん断抵抗機構は、トラス機構とアーチ機構の混在を 許容するが、トラス機構による耐力は、図-7 に示され るように、主筋の付着力によって決まると考え、その付 着力を伝達するための未降伏のせん断補強筋 [帯筋] と 傾斜角を 45° と仮定した一様なコンクリートの圧縮場 は、コンクリート圧縮強度 σ_B を保持するものとして終 局せん断力 Q_{Ut}を求める。なお、付着応力度 τ_bは、式(4) によって求める。

$$\tau_{\rm b} = \min(0.09\sigma_{\rm B}, 0.098 \times 20.25) \tag{4}$$

ここに、 σ_B : コンクリート圧縮強度 [N/mm²] この τ_b を用いて、トラス機構による終局せん断力 Q_{Ut}

$$Q_{\rm Ut} = \tau_{\rm b} \cdot \Sigma \ \phi \cdot j_{\rm t} \tag{5}$$

ここに、φ:主筋の周長 [mm]

として求められる。なお、トラス機構が成立するときの コンクリートの圧縮場の幅 **b**_tは、次式で求められる。

$$\mathbf{b}_{\mathrm{t}} = 2 \cdot \frac{\tau_{\mathrm{b}}}{\sigma_{\mathrm{B}}} \cdot \Sigma \ \phi \tag{6}$$

一方,部材の対角線上に直接的に圧縮されるコンクリートの圧縮束の形成によるせん断力の伝達機構であるアーチ機構については,図-8 および図-9 に示される 2 種類について検討を行う。

図-8 に示される Model 1 は,対角線上に一様な断面 積をもつ圧縮束を考えたものである。いま,このアーチ 機構によってのみせん断力が伝達されると考えると,そ の終局せん断耐力 Q₃₁₁₃は

$$Q_{sU3} = \left[\sqrt{1 + \eta^2} - \eta \right] \cdot \frac{\mathbf{b} \cdot \mathbf{D} \cdot \sigma_B}{2}$$

$$= \zeta \cdot \zeta, \quad \eta = \mathbf{h}/\mathbf{D}$$
(7)

は

試験体 No.				実験結果		塑性理論式						
	試験体名	σ_{B} [N/mm ²]	p _w [%]	正荷重時	負荷重時	Mod	lel 1		Model 2	2	τ _b	λ
				Q _{sU0} [kN]	Q _{sU0} [kN]	Q _{sU3} [kN]	Q _{sU4} [kN]	Q _{sU5} [kN]	Q _{sU6} [kN]	Q _{sU7} [kN]	[N/mm ²]	
17	L05240W	6.97	0.21	105.8	-93.9	50.9	65.3	78.6	91.0	105.5	0.63	1.20
18	L05260W	7.17		110.4	-113.5	52.3	67.2	80.8	93.6	108.0	0.65	1.19
19	L05280W	7.25		115.7	-121.9	52.9	67.9	81.7	94.6	109.1	0.65	1.19
20	L05240S	4.57		72.6	-71.3	33.4	49.1	51.5	65.1	78.8	0.41	1.30
21	L05280S	4.69		95.0	-83.6	34.2	50.4	52.9	66.8	80.5	0.42	1.30

表-5 実験結果の検討

図-10 支圧強度の考え方

として求めることができる。

次に,式(5)による付着力で決定されるトラス機構の耐 力 Q_{Ut}とアーチ機構の耐力 Q_{Ual} との累加による終局せん 断耐力 Q_{sU4} を

$$\mathbf{Q}_{\mathrm{sU4}} = \mathbf{Q}_{\mathrm{Ut}} + \mathbf{Q}_{\mathrm{Ua1}} \tag{8}$$

としたものを考える。

$$Q_{\text{Ual}} = \left[\sqrt{1 + \eta^2} - \eta \right] \cdot \frac{\mathbf{b}_a \cdot \mathbf{D} \cdot \sigma_B}{2}$$
(9)

この Model 1 において、トラス機構とアーチ機構が混 在する場合のアーチ機構のコンクリートの圧縮束のせい は $D/(2\cos^2 \theta)$ であり、かつ、その圧縮束の有効な幅は、 トラス機構で用いられた b_t の残りの幅である b_a が寄与 するものと考えている。

一方, 図-9に示される Model 2 は, 若林・南⁴によっ て提案された, 局部的な圧縮効果を考慮した対角線方向 のコンクリートの圧縮束の断面積が線形的に変化する圧 縮束ものである。その場合の支圧強度の考え方は図-10 に示される通りである。コンクリートの圧縮束のせいは 柱せい D の 1/2 にあると仮定し, かつ, その圧縮束の有 効な幅は, トラス機構で用いられた b_t の残りの幅である b_a が寄与するものと考えて式(10)によって求める。この 場合の終局せん断耐力 Q_{Ua2} は

$$\mathbf{Q}_{\mathrm{Ua2}} = \left[\sqrt{4 + \left(\frac{\eta}{c \mathbf{n}_0}\right)^2 - 4_c \mathbf{n}_0^2} - \left(\frac{\eta}{c \mathbf{n}_0}\right) \right] \cdot \frac{\mathbf{b}_{\mathrm{a}} \cdot \mathbf{D} \cdot \sigma_{\mathrm{B}}}{2}$$
(11)

ここに,

$${}_{c}n_{0} = \sqrt{\frac{\sqrt[3]{\eta^{2} + \eta^{2}\sqrt{1 + \eta^{2}}}}{2}} + \frac{\sqrt[3]{\eta^{2} - \eta^{2}\sqrt{1 + \eta^{2}}}}{2}$$
(12)

として求められる。

式(11)における $b_a & b_a = b \\ & b_a = b \\$

$$Q_{sU6} = Q_{Ut} + Q_{Ua2}$$
 (13)

として計算したものを表-5に示す。

さらに、せん断補強筋によるコンクリート圧縮強度に 対する拘束効果を考慮したコンクリートの圧縮強度 σ_B

は Chan⁵⁾の研究を基に,

$$\sigma_{\rm B} = \lambda \ \sigma_{\rm B} \tag{14}$$

$$\zeta \zeta \ell \zeta, \quad \lambda = 1 + 2.05 \frac{p_w \cdot \sigma_{wy}}{\sigma_B}$$
 (15)

として評価し、式(11)の σ_B を式(14)の σ_B に置換すると、 Q_{Ua2} に拘束効果を考慮したアーチ耐力 Q_{Ua3} となり、

 $Q_{Ua3} = \lambda \cdot Q_{Ua2}$ (16) と表すことができる。この Q_{Ua3} と Q_{Ut} とを累加して求め た終局せん断耐力を Q_{sU7} として下式によって求める。

$$Q_{sU7} = Q_{Ut} + Q_{Ua3}$$
 (17)

以上の式に基づいた Model 1 および Model 2 による計 算結果を表-5 および図-11 に示す。図-11 は, 終局せ ん断耐力 $Q_{sU3} \sim Q_{sU7}$ をそれぞれ b·j で除して, せん断応 力度にしたものを $\tau_3 \sim \tau_7$ として示したものである。図 中の τ_t はトラス機構によるせん断応力度を示し, τ_a は アーチ機構によるせん断応力度を示している。また, τ_0 および- τ_0 は, それぞれ正荷重時および負荷重時の実験 値を示している。

Model 1 による計算値 τ_3 および τ_4 は,実験値に対し て小さく評価することが示されるが,Model 2 によって 評価するとせん断補強筋による拘束効果を考慮したアー チ機構とトラス機構の累加によるもの仮定した場合の τ_7 について特に実験値との対応が良いことが特徴である。

図-12は、強軸方向の実験値と塑性理論による耐力を b・D・ σ_B で除して無次元化した n-q 相関関係である。ま

た,参考値として,文献2)の実験値をプロットしている。 主筋が丸鋼の場合には,付着力がほとんどないことから, 軸力に対してせん断力は一定値をとるといえる。

8. まとめ

主筋に丸鋼を用いた 5 N/mm² 級の低強度コンクリート RC 柱は、引張鉄筋量に関わらず 3.0×10^{2} rad 程度まで耐 力の低下があまり生じないことが示された。終局せん断 耐力は、塑性理論を用いれば、低減係数を考えずとも精 度良く評価できることが示された。

大野・荒川式は丸鋼の場合,主筋の付着力が喪失される ことによる影響は直接的に説明できていないが,塑性論 では,主筋の付着力はトラス機構の喪失に関連し,その 代わりに,アーチ機構によるせん断力の伝達が支配的に なるという,せん断力の伝達機構の移行を考慮すること によって,低強度コンクリートのせん断耐力を合理的に 評価することができる。

参考文献

- 日本建築防災協会:2001 年改訂版 既存鉄筋コンク リート造建築物の耐震診断基準・同解説,2001.1
- 根口,南他:低強度コンクリートを用いた丸鋼を主 筋とする RC 柱のせん断破壊性状、コンクリート工 学年次論文集,vol. 29, No.3, pp.157-162, 2007.7
- 山本泰稔:「第30回建築士事務所全国大会埼玉大会 分科会,地震と補強 — 耐震改修における低強度コ ンクリートの問題点」,pp.77-91,2005.9
- 4) 若林實,南宏一:鉄筋コンクリート柱のせん断破壊
 防止法に関する実験的研究,京都大学防災研究所年
 報,第22号 B-1, pp.295-316, 1979
- Chan, W. W. L. : The Ultimate Strength and Deformation of Plastic Hinges in Reinforced Concrete Frameworks, Magazine of Concrete Research, Vol.7, No.21, pp.121 -132, 1955.11