機械式定着工法によるRC造T形およびL形柱梁部分架構の構造性能 論文 に及ぼす直交梁の影響

足立 将人*1·益尾 潔*2

要旨:機械式定着工法による RC 造 T 形, L 形柱梁部分架構について、コンクリート目標圧縮強度および柱 梁接合部への直交梁接続の有無を実験因子とした加力実験を行った。 柱梁接合部への直交梁の接続によって, T 形接合部における柱主筋の抜け出しおよび T 形・L 形接合部におけるせん断変形の低減,これに伴う最大 耐力の増大が確認された。また, T 形および L 形部分架構において, 直交梁付き試験体では, 直交梁側面か らの横拘束に起因し、直交梁無し試験体に対して柱曲げ降伏後の変形性能が改善されることを明らかにした。 キーワード:機械式定着,T形部分架構,L形部分架構,終局耐力,変形性能,直交梁

1. はじめに

RC 造柱梁接合部のせん断耐力を算出する際, 靱性保 証型設計指針¹⁾では実験結果に基づき,直交梁の有無に よる補正係数を考慮している。筆者らは、過去に行った 機械式定着工法による RC 造卜形部分架構について直交 梁の有無を変数とした加力実験において、直交梁の存在 が接合部せん断耐力の増加のみならず、梁主筋の定着耐 力を向上させるとともに、部分架構の変形性能が向上す ることを明らかにした²⁾。

本論文では, 直交梁の有無を主な実験因子として, 機 械式定着工法による RC 造 T 形, L 形柱梁部分架構につ いて加力実験を行い、両部分架構の終局耐力と変形性能 に及ぼす直交梁の影響について検討を行った。

2. 実験計画

2.1 実験因子および試験体

(1) T 形部分架構試験体

実験因子は、表-1に示すように、コンクリートの目 標圧縮強度(27N/mm², 54N/mm²), 直交梁の有無であり, 試験体数は6体である。試験体の形状寸法を図-1,接 合部詳細を図-2 に示す。柱主筋定着部では、図-1 に 示す铸鉄製定着金物をネジ節鉄筋に嵌合させ, 無機グラ ウトを注入した。

直交梁無し試験体 T27-390-0, T54-490-0 では, 文献 3) による T 形接合部の終局耐力の算定式に基づき, 柱曲げ 降伏が先行した後、柱主筋定着破壊を起こすよう、柱お よび梁の配筋を定め、接合部せん断余裕度 Qpu/Qcu を 1.2 ~1.5 程度とし, 接合部横補強筋比 pjwh を 0.3%程度とし た。ここで、Qpu は接合部せん断終局耐力時柱せん断力、 Qcu は柱曲げ終局耐力時せん断力であり、これらの計算 耐力は、鉄筋およびコンクリートの実強度を用い、文献 3)の提案による算定式を用いて求めた。

片側直交梁付き試験体 T27-390-P1, T54-490-P1 および 両側直交梁付き試験体 T27-390-P2, T54-490-P2 の直交梁 の断面寸法は、文献2)によるト形部分架構と同様、柱梁 接合部に対する被覆率が50%となるように定めた。直交 梁は、片側、両側直交梁付きともに、後述のL形試験体 と同位置として柱せい中央より偏心させた位置に配置 し、接合部コンクリートと一体打ちとした。

加力方法は文献4)と同様とし、載荷履歴は、目標層間 変形角 R が(5,10,20,30,40,60)/1000 rad. の2 サイクルずつ の正負繰り返し載荷およびその後の正加力方向への単

37_200163【金物詳細】 32 5 39

【直交梁断面寸法】

*1 (財)日本建築総合試験所 構造部構造物試験室 博士(工学) (正会員)

*2 (財)日本建築総合試験所 構造部長 工博 (正会員)

										- v
		古云	柱西	已筋		梁配筋		接合語	部配筋	
試験体	Fc N/mm²	直文 梁の 有無	主筋 (pg)	定着長 _{ℓac}	主筋 (pt)	上端筋 定着長 _{ℓdh}	下端筋 定着長 _{ℓag}	横 補強筋 (pjwh)	柱頭 補強筋 (pjwv)	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
L27-390-0		無	12-D19		3-D19					
L27-390-P1	27	片側	SD345		SD390			2-D10	2-D10	
L27-390-P2]	両側	(2.15%) 342mm	n (0.80%)	300 mm	267mm '	3組 3;	3組	┃ 00 8 ┃ ↓ 【梁断面寸法】400×300	
L54-490-0		無	12-D19	=0.80D =18db	4-D19	=0.75D =15.8db	=0.07D =14db	SD295A	SD295A	┃ ⁻
L54-490-P1	54	片側	SD490	SD490			(0.33%)	(0.33%) $(0.34%)$	(寸法単位:mm	
L54-490-P2		両側	(2.15%)		(1.06%)					$ \left[\begin{array}{c} +Q_{c} \mathbf{T}^{+}Q_{g} \\ \mathbf{I}_{1} \rightarrow \mathbf{I}_{2} \rightarrow \mathbf{I}_{2} \rightarrow \mathbf{I}_{1} + \mathbf{I}_{4} \rightarrow \mathbf{I}_{2} \end{array} \right] $
(注) 1) D・	一涩廿	いキた	け柱せい	・ dh・主	: 窋径					[LZ7-390-P1, L34-490-P1]

(注) 1) D:梁せいまたは柱せい、db:主筋径

調載荷とした。

(2) L 形部分架構試験体

実験因子は、表-2に示すように、T形部分架構試験 体と同様, コンクリート目標圧縮強度(27N/mm², 54 N/mm²), 直交梁の有無であり, 試験体数は6体である。 接合部詳細を図-3,試験体の形状寸法を図-4にそれぞ れ示す。柱主筋および梁主筋定着部で用いた定着金物は, T形試験体と同一とした。

直交梁無し試験体 L27-390-0, L54-490-0 では, 文献 3) によるL形接合部の終局耐力の算定式に基づき,梁曲げ 降伏が先行した後, 接合部せん断破壊を起こすよう, 柱 および梁の配筋を定め、正加力時の接合部せん断余裕度 Qpu/Qcu を 1.0~1.2 程度とし, 接合部横補強筋比 pjwh を 0.3%程度とした。Qpuは接合部せん断終局耐力時柱せん 断力, Qcu は梁曲げ終局耐力時せん断力であり, これら は鉄筋およびコンクリートの実強度を用い, T 形部分架 構試験体と同様, 文献 3)の提案による算定式を用いて求 めた。

加力方向梁の上端主筋の投影定着長さℓ th は, 直交梁の

表-3 コンクリートおよび鉄筋の強度試験結果

図-4 L形部分架構試験体の形状

(a) コンクリート

		. ,			
系列	強度 種別	σB (N/mm ²)	ϵco (×10 ⁻³)	Ec (kN/mm ²)	σt (N/mm ²)
TIN	Fc27	30.9	1.80	27.1	2.86
1775	Fc54	54.8	2.27	35.1	3.59
I IIX	Fc27	33.1	1.79	29.0	2.81
∟лэ	Fc54	58.4	2.31	35.8	4.42
σB	: 圧縮	<u> </u>	o:σB時()ずみ度	

E_c: ヤング係数, σt: 割裂強度

(b) 鉄筋

使用 部位	呼び 名	鋼種	σ_y (N/mm ²)	$\sigma_{\rm u}$ (N/mm ²)	伸び (%)
		SD345	368	535	26
柱·梁	D19	SD390	410	602	24
主筋		SD490	528	737	19
	D22	SD490	610	832	15
横補強筋	D10	SD295A	366	521	26
かんざし筋	D10	SD295A	352	495	29

σy:降伏点, σu:引張強度

有無に係わらず(3/4)Dcとし、下端主筋の定着長さlagは、 (2/3)Dcかつ14dbとした。Dcは柱せい、dbは梁主筋の直

径を示す。

片側直交梁付き試験体 L27-390-P1,L54-490-P1 および 両側直交梁付き試験体 L27-390-P2, L54-490-P2 の直交梁 の断面寸法は,T形試験体と同様,柱梁接合部に対する 被覆率が 50%となるように定めた。片側,両側直交梁付 きともに,直交梁は,梁主筋定着部の配筋の収まりから, 柱せい中央より偏心させた位置に配置し,接合部コンク リートと一体打ちとした。加力方法は文献 4),載荷履歴 はT形試験体とそれぞれ同様とした。

2.2 使用材料

試験体に用いたコンクリートおよび鉄筋の強度試験結 果を**表-3**に示す。

3. 実験結果および考察

3.1 T 形部分架構試験体

(1) 荷重-変形関係および破壊性状

各試験体のQc-R関係を図-5, R=+30/1000時の代表 的な試験体の状況を写真-1に示す。Qcは柱せん断力, R は層間変形角である。同図中には、柱主筋と接合部横 補強筋の降伏時期および最大耐力 cQmax,限界層間変形 角 R80を併記した。R80は、耐力が cQmax の 80%に低下し た時の層間変形角実験値である。

各試験体ともに,柱主筋の引張降伏後,R=17/1000~ 30/1000 時に最大耐力 cQmax に達した。その後,試験体 T27-390-0 および T27-390-P1 では,柱主筋定着金物近傍 のかぶりコンクリートの損傷を伴い耐力が低下した。試

【T54-490-0】 【T54-490-P1】 写真-1 R= +30/1000 時の試験体の状況

験体 T54-490-0 および T54-490-P1 では, 接合部せん断ひ び割れの進展および拡大が顕著となり耐力が低下した。 両側直交梁付き試験体 T27-390-P2 および T54-490-P2 で は, R=100/1000 まで耐力が急落せず, 直交梁の接続が接 合部せん断変形の低減に寄与することを示している。

各試験体とも,正加力時最大耐力に対し,負加力時の 最大耐力が低下している。これは,正加力時に受けた損 傷の影響および柱芯に対する直交梁の偏心に伴う加力 方向の違いによる影響を受けたためと考えられる。

写真-1 によると, 試験体 T54-490-0 と比較して, T54-490-P1 では, 定着金物を起点とした接合部せん断ひ び割れによる損傷が少なく, 片側のみに直交梁が接続し ている場合でも, 接合部の損傷を低減させる効果を有す ることが確認できる。

(2) 最大耐力および限界層間変形角

前項で示したように,本実験では正負加力方向による 試験体の最大耐力が異なった。通常,T形接合部の場合, 直交梁は柱梁接合部に対して偏心しない場合が多いので、ここでは、各試験体の正加力時および負加力時のQc-R関係包絡線を用いて、正負平均包絡線を作成した。

コンクリート目標圧縮強度別に直交梁無し,片側直交 梁付き,両側直交梁付きの場合をそれぞれ比較した Qc -R 関係正負平均包絡線を図-6 に示す。同図には,正 負平均包絡線における限界層間変形角 Rao および柱曲げ 終局耐力計算値 Qcu,接合部せん断終局耐力計算値 Qpu

(Qpul:直交梁無しおよび片側直交梁付き試験体, Qpu2: 両側直交梁付き試験体)を併示した。

同図で示すように, Fc27 試験体および Fc54 試験体と も, 直交梁無し試験体では, 正負平均包絡線に基づく最 大耐力は, Qcu を下回った。これは、正加力時と比較し て、負加力時の耐力が低下する傾向が直交梁無し試験体 で顕著であったことが要因として挙げられる。

両側直交梁付き試験体 T27-390-P2 では、最大耐力後 の耐力低下が小さく、R80は 100/1000 を上回った。この ように、直交梁無し試験体、片側直交梁付き試験体、両 側直交梁付き試験体の順で、最大耐力および R80の増加 が見られ、特に接合部両側に直交梁が接続していること で、R80 が顕著に増大した。

(3) 直交梁からの接合部側面圧縮応力

図-7 に, 接合部せん断応力度 $\tau p - R$ 関係包絡線およ び直交梁の接続により生じる接合部側面平均圧縮応力 $\sigma o - R$ 関係を示す。同図では, 横軸に R, 縦軸正方向は $\tau p として \tau p - R$ 関係包絡線を, 縦軸負方向は $\sigma o として$ $\sigma o - R$ 関係を示しており, 両関係は正負加力時の平均と した。 τp および σo は, それぞれ次式で算出した。

$\tau p = V_{ph}/(b_j \cdot D_{jh})$	(1)
· r · r · (-J · J /	

$V_{nh} = \xi_{ha} \cdot \Omega_a/2$	(2)	١
$v pn - \zeta na^2 Qc/2$	(2	J

 $\xi_{\text{ha}} = (h/\ell) \cdot (\ell_0/j_{\text{gt}}) - 1 \tag{3}$

ここに、Vph: 接合部入力水平せん断力, Qc: 柱せん 断力実験値, *l*o: 内法スパン, jgt: 梁主筋重心間距離, bj: 接合部有効幅(=(bg+bc)/2, bg: 梁幅, bc: 柱幅), Djh: 接合部水平方向有効せい(=Dc)

$\sigma \circ = \sigma BO$	(両側直交梁試験体)	(4)
$\sigma = \sigma BO/2$	(片側直交梁試験体)	(5)
σ BO= Σ PBOi/A	v p	(6)

ここに、 ε BOi: 直交梁主筋ひずみ(ε BOi> ε yの場合, ε BOi= ε y, ε y (= σ sy/Es): 直交梁主筋の降伏ひずみ),

PBOi= ε BOi · Es · As

Es: ヤング係数(=205 kN/mm²), As: 直交梁主筋公称断面 積, Ap: 接合部側面の全面積

式(5)では、片側直交梁付き試験体の場合,直交梁が接続している面からは圧縮応力を受けるものの、反対面は 無応力であるため、 σoを2で除している。

図-7 によると、柱主筋の抜け出しが顕著となって耐

図-8 Δ τ p-R 関係および σ o-R 関係(正負平均)

力が低下した試験体 T27-390-P1 および T27-390-P2 では, 最大耐力前後(R=20/1000)までσοが増加するものの, その後ほぼ一定値となった。また,接合部せん断変形が 顕著となった試験体 T54-490-P1 および T54-490-P2 では, 最大耐力以降もσοが増加し,R=60/1000時には Fc27 試 験体の2倍程度となった。

図-8 に $\Delta \tau_p$ -R 関係包絡線および σ_0 -R 関係を重 ねて示す。 $\Delta \tau_p$ は、図-7 に基づき、直交梁付き試験体 と直交梁無し試験体との τ_p の差、すなわち直交梁の接 続に伴う接合部水平せん断応力増加分とした。

同図に示すように、各試験体とも最大耐力 R=20/1000 前後以降において、 $\Delta \tau p \geq \sigma_0$ が同程度の値を示した。 すなわち、片側および両側直交梁付きともに、T 形接合 部では、柱主筋引張降伏以降における水平せん断応力の 増加分 $\Delta \tau p$ は、直交梁による面外からの横拘束に伴う 接合部側面平均圧縮応力 σ_0 と同程度である。

(7)

3.2 L 形部分架構試験体

(1) 荷重 - 変形関係および破壊性状

各試験体のQc-R 関係を図-9, R=+40/1000 時の代表 的な試験体の状況を写真-2 に示す。図中の記号の定義 はT形試験体と同じである。

正加力時において,各試験体とも,梁主筋の引張降伏 後,R=18~20/1000時に最大耐力 cQmax に達し,その後, 接合部せん断ひび割れの拡大および柱上面背面への進 展,柱主筋定着金物近傍かぶりコンクリートの剥落を伴 い,耐力が低下した。

負加力時において,各試験体ともに,梁主筋の引張降 伏後,R=-20~-58/1000時に最大耐力-cQmax に達した。 Fc27 試験体では,その後の耐力の低下は殆ど見られず, Fc54 試験体では接合部せん断ひび割れの拡大,かぶりコ ンクリートの剥落を経て,緩やかに耐力が低下した。

(2) 最大耐力および限界層間変形角

コンクリート目標圧縮強度別に直交梁無し,片側直交 梁付き,両側直交梁付きの場合をそれぞれ比較した Qc -R 関係正負平均包絡線を図-10に示す。限界層間変形 角 R80 および梁曲げ終局耐力計算値 Qcu,接合部せん断 終局耐力計算値 Qpu (Qpul:直交梁無しおよび片側直交 梁付き試験体,Qpu2:両側直交梁付き試験体)を同図に 併示した。

正加力時において, Fc27 試験体および Fc54 試験体と も,同図(a)で示すように,最大耐力は梁曲げ終局耐力計 算値 Qcu を上回った。試験体 L54-490-0 および L54-490-P1

【L54-490-0】 【L54-490-P1】 写真-2 R= +40/1000 時の試験体の状況

では、R80 がそれぞれ 21/1000, 31/1000 程度に留まった。 これは、同図(a)で示すように、Qpul と Qcu の値が同程度 であり、接合部耐力余裕度 Qpu/Qcu が 1.0 に近かったこと がその要因として挙げられる。Fc27 試験体および Fc54 試験体とも、直交梁無し、片側直交梁付き、両側直交梁 付き試験体の順で、R80 の増加が見られ、特に接合部両 側に直交梁が接続していることで、R80 が顕著に増大し た。

負加力時において,試験体 L54-490-0 を除く各試験体 では,同図(b)で示すように,最大耐力が梁曲げ終局耐力 計算値 Qcu を上回った。試験体 L54-490-0 および L54-490-P1 では, R80 が-50/1000 程度となったが,他の 試験体では,各試験体とも R80が-60/1000 以上であった。

(3) 直交梁からの接合部側面圧縮応力

図-11 に, 正加力時における接合部せん断応力 τ_p -R 関係包絡線および直交梁の接続により生じる接合部側 面平均圧縮応力 σ_o -R関係を示す。 τ_p および σ_o は, T 形試験体と同様,式(1),(4),(5)にて算出した。ただし, 接合部水平方向有効せい Djh は梁上端主筋投影定着長さ ℓ_{dh} とした。各試験体とも、 σ_o は、接合部せん断ひび割 れ発生後に増加し始め、梁主筋引張降伏時にほぼ相応す る R=10/1000 以降、その増加度合いが増している。

図-12 に、正加力時における $\Delta \tau p$ -R 関係包絡線お よび σo -R 関係を重ねて示す。 $\Delta \tau p$ は、T 形試験体と 同様に算出した。

同図によると、 $\Delta \tau_p \geq \sigma_o t$ 、T形試験体における対応関係ほど良くないが、Fc27試験体において、対応関係が認められる。したがって、T形接合部と同様、L形接合部についても、梁上端主筋の引張降伏における接合部水平せん断応力増加分 $\Delta \tau_p t$ 、直交梁による面外からの横拘束に伴う接合部側面平均圧縮応力 σ_o に起因して生じたと考えられる。すなわち、直交梁無しに対する直交梁付きのL形部分架構試験体における梁曲げ降伏後の変形性能の改善効果は、T形部分架構試験体と同様、接合部側面に対する直交梁からの拘束に起因すると考えられる。

4. まとめ

コンクリートの目標圧縮強度および柱梁接合部への 直交梁の接続の有無を実験因子としたT形およびL形部 分架構実験を行った結果,以下の知見を得た。

- T 形部分架構について,直交梁を有する試験体では,直交梁の無い試験体と比較して,最大耐力および限界層間変形角の増加,柱主筋抜け出し量および接合部せん断変形の低減が確認された。
- 2) L 形部分架構について, 直交梁を有する試験体

図-11 τ_p -R関係および σ_o -R関係(正加力時)

では,直交梁の無い試験体と比較して,正負加 力時における最大耐力および限界層間変形角 の増加が確認された。

3) T形およびL形部分架構において、直交梁付き 試験体では、接合部側面に対する直交梁からの 拘束に起因し、直交梁無し試験体に対して柱曲 げ降伏後あるいは梁曲げ降伏後の変形性能が 改善される。

謝辞 本実験は、ダイワスチール(株)が開発した機械式 定着具に関する確認実験の一環として行ったものであ り、ここに記して謝意を表する。

参考文献

- 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説,8章 柱梁接合部の設計, pp.241-277, 1999.8
- 益尾潔,足立将人:機械式定着による RC 造ト形柱 梁接合部の構造性能,日本建築学会構造系論文集, 第 627 号, pp.819-826, 2008.5
- 益尾潔,井上寿也,岡村信也:機械式定着工法によるRC造T形およびL形柱梁接合部の終局耐力に関する設計条件,日本建築学会構造系論文集,第590号,pp.95-102,2005.4
- 井上寿也,益尾潔,岡村信也:機械式定着工法による曲げ降伏先行型・L形およびT形RC造部分架構の終局耐力と変形性能,コンクリート工学年次論文集,Vol.25,No.2, pp.499-504, 2003.6