超高強度コンクリートを用いた柱とその柱脚部に関する実験的研究 論文

竹中 啓之*1·菊田 繁美*1·濱田 聡*2·和泉 信之*3

要旨:超高強度コンクリートを用いた RC 造1 階柱とその直下の柱梁接合部近傍を模擬した試験体の載荷実 験をおこない,超高強度 RC 造柱の耐震性能,および超高強度 RC 造1 階柱が下階の柱梁接合部に与える影響 を実験的に検討した。実験に使用した1階柱部分のコンクリートの実強度は約180~190N/mm²であり,直下 の柱梁接合部のコンクリート強度は約 150N/mm² である。また、柱部および柱直下の接合部のコンクリート に鋼繊維を混入させることや、柱外周を鋼板で補強することで、超高強度 RC 造柱の耐震性能および靱性が向 上し、またコンクリート部分の損傷を抑える効果があることが確認できた。

キーワード:超高強度コンクリート,1階柱,柱脚柱梁接合部,鋼繊維補強,鋼板巻き補強

1. はじめに

著者らは、Fc130N/mm² 級のコンクリートを用いた 1 階柱とその柱脚部を模擬した試験体に関する載荷実験 を実施し,柱の耐震性能と,Fc130N/mm²級の1階柱が, その直下の、1 階柱よりコンクリート強度の低い柱梁接 合部に及ぼす影響を検討した¹⁾。また,柱のコンクリー ト強度については、実強度で約 150N/mm² のコンクリー トを用いた RC 造柱の実験を行い、その耐震性能を確認 している²⁾。本論文では、コンクリート強度については、 更に高強度を目指した1階のRC造柱とその直下の柱梁 接合部を模擬した試験体について載荷実験を行い、その

1400

ト加カスタブ

柱新面

500

耐震性能を確認した結果について報告する。また、超高 強度コンクリートを用いた RC 造柱に見られる大変形時 のかぶりコンクリートの飛散破壊や損傷を防止するた め、コンクリートに鋼繊維を混入³⁾させた試験体、およ び, 柱を鋼板で覆った試験体を用いて, 大変形時の破壊 性状の改善や耐力・靱性に及ぼす影響を検討した。

2. 実験概要

2.1 試験体

補強筋

-補硝筋

`¬

加力方向

ま合部/

1階柱

接合部

400

試験体の概要を図-1,試験体一覧を表-1に示す。試 験体は5体(UHRC21~UHRC25試験体)とし、大変形時の

> 柱かぶりコンクリート部の飛散破壊 の防止対策をとらない UHRC21 試験 体を基本試験体とする。試験体は, すべて, 柱とその直下の柱梁接合部, 基礎梁および下階の柱を模擬した約 1/4 縮尺とする。全試験体ともに柱せ ん断スパン比が 2.0, 1 階柱断面が 250mm×250mm, 下階柱断面が 315mm×315mm, 梁断面が 170mm× 250mm である。UHRC21 は, 柱コン クリートに鋼繊維を混入させない超 高強度コンクリート(以下,プレー ンコンクリートと呼ぶ)を用い,せ ん断補強筋比を 1.2%とする。 UHRC22 および UHRC23 は断面寸法 や鉄筋量はUHRC21と同じとし、柱 の耐震性の向上と大変形時のかぶり コンクリートの飛散防止を目的とし て, 柱部分のコンクリートに, UHRC22 では体積比で 0.5%,

下階柱断面

*3 千葉大学 大学院工学研究科建築・都市科学専攻教授 博(工) (正会員)

表一1 試験体一覧						
		UHRC21	UHRC22	UHRC23	UHRC24	UHRC25
柱	B×D(mm)	250×250				
	主筋	16+4-D13(USD685) Pg=3.25%				
	帯筋	4-U6.4@40(SBPD1275) pw=1.20%			4-U6.4@50(SBPD1275) pw=0.96%	
	軸力	3575kN(軸力比約 0.3)				
	備考	ວ°Lາວາກ/II_k	鋼繊維混入コンクリート		プレーンコンクリート	
)	0.50%	1.00%	PL4.5(SS400)鋼板巻き	0)鋼板巻き
	B×D(mm)	 下階柱を内包する 8 角形				
	横補強筋	4-U6.4(SBPD1275) 4 セット				
按口叩	備考	プレーンコンクリート 鋼繊		維混入コンクリート 1.00%		
		柱梁接合部にコーナー補強筋(D4(SD295A), 長さ330mm, 高さ方向に 50mm ピッチで配筋)				
梁	B×D(mm)	170×250				
	主筋	4-D13(SD390)				
	肋筋	4-D6@50(SD295)				
下階柱	B×D(mm)	315×315				
	主筋	12+(16+4)-D13(USD685)				
	帯筋	4-U6.4@40(SBPD1275) pw=1.90%				

写真-1 接合部概要

UHRC23 では体積比で1.0%の鋼繊維(長さ30mm,太さ 0.6mm)を混入させている。1 階柱直下の柱梁接合部に ついて、UHRC21 およびUHRC22 はプレーンコンクリー トとし、HHRC23 は柱部分と同様に体積比で1.0%の鋼繊 維をコンクリートに混入させている。UHRC24 は柱部分 にプレーンコンクリートを使用し、厚さ4.5mmのSS400 鋼板を巻き付けたもので、断面は基本試験体UHRC21 と 同様にしているが、せん断補強筋比は 0.96%と鋼板を巻 いていない柱よりも小さくしている。UHRC25 は UHRC24 の 45°方向加力とし、断面などはUHRC24 と 同様としている。UHRC24 およびUHRC25 の柱直下の接 合部はUHRC23 と同様に体積で1%の鋼繊維を混入させ ている。全試験体ともに、柱直下の柱梁接合部には、接 合部のコーナー補強として下階の柱を内包する大きさ

表-2 コンクリート材料試験結果

-				
試驗休夕	部位	圧縮強度	わか 係数	割裂強度
마시께저 [가 기]	비미고	(N/mm^2)	(N/mm^2)	(N/mm^2)
	柱(コア)	186	47400	-
	柱	191	45700	6.1
UHRC21	接合部	143	43200	6.3
	下階柱	98	40700	6.0
	梁・壁	64	36000	4.3
	柱(コア)	187	45200	-
	柱	186	46700	7.5
UHRC22	接合部	153	44500	-
	下階柱	104	40700	6.4
	梁・壁	70	36300	4.7
	柱(コア)	187	46500	-
	柱	189	46800	9.1
UHRC23	接合部	143	45400	7.3
	下階柱	105	41300	6.1
	梁・壁	69	35900	4.4
	柱(コア)	192	46700	-
	柱	183	48700	7.5
UHRC24	接合部	152	45800	6.5
	下階柱	107	42300	5.2
	梁・壁	71	36300	4.3
	柱(コア)	192	46700	-
	柱	190	47800	7.7
UHRC25	接合部	152	45800	6.5
	下階柱	108	43100	4.9
	梁・壁	69	37500	5.1

のハンチを設けており、ハンチにはコンクリートの割裂 防止のためコーナー補強筋を配筋している。コンクリー ト材料試験結果を表-2に、鋼材・鉄筋の材料試験結果

部位	径 厚さ	材種	降伏 強度 (N/mm ²)	ヤング 係数 (N/mm ²)	引張 強度 (N/mm ²)
柱主筋	D13	USD 685	761	188400	958
梁主筋	D13	SD390	424	187600	600
帯筋	U6.4	SBPD 1275	1282	182000	1334
肋筋	D6	SD295	401	185700	526
コーナー 補強筋	D4	SD295	310	165400	530
柱鋼板	PL4.5	SS400	306*	206500	453

表-3 鉄筋・鋼材材料試験結果

*0.2%オフセット

写真-2 加力装置

図-2 加力スケジュール

を表-3 に示す。 コンクリートの圧縮強度は柱部分が プレーンコンクリート (UHRC21,24,25 用) で 183~ 191N/mm², 鋼繊維を 0.5%混入させたもの(UHRC22 用) で 186N/mm², 1.0%混入させたもの(UHRC23 用)で 189N/mm² となった。また, 試験体柱部分と同一の寸法 (250mm×250mm×1000mm) のコンクリートコア抜き 用の供試体を製作し, コア抜きテストピースの強度も調 べた。コア抜き強度はプレーンコンクリートで 186~ 192N/mm², 鋼繊維を 0.5%混入させたもので 187N/mm², 1.0%混入させたもので 187N/mm²となった。なお, 試験 体の柱部分とそれらのコンクリートテストピースは, コ ンクリートを打設してから 48 時間後に蒸気養生をおこ なった (80℃で 48 時間)。柱梁接合部コンクリートは, プレーンコンクリートで 143~153N/mm², 鋼繊維を 1.0% 混入させたコンクリートで 143~152N/mm² であった。 また, 下階柱は 98~108N/mm², 梁は 64~71N/mm²であ り, 柱主筋には USD685 材,梁主筋には SD390 材を, 柱・ 柱梁接合部および下階柱のせん断補強筋には SBPD1275 材,梁せん断補強筋には SD295A 材を使用した。

2.2 加力装置・加力スケジュール

加力装置を**写真-1**に、加力スケジュールを図-2に 示す。すべての試験体について、コンクリート強度に柱 断面積を乗じた値の約 0.3 倍の一定軸力を負荷させた状 態で、柱中央が反曲点となるように正負交番繰り返し水 平加力をおこなう。

3. 実験結果

3.1 実験経過

各試験体の 1/100rad.ピーク時と 1/20rad.ピーク時の状 況を写真-2 に、荷重変形角関係を図-3 に示す。荷重 変形関係の図には、P-δ効果を示す一点鎖線を併せて 記す。各試験体とも、1/100rad.で柱主筋が圧縮降伏した。 鋼板を巻いていない UHRC21, 22, 23 は 1/100rad.から 1/50rad.に向かうときに、柱端部コーナーのかぶりコンク リートが大きな音とともに、UHRC21は飛散し、UHRC22, 23は、鋼繊維の効果で圧壊および僅かなコンクリート表 面のみの飛散が見られた。かぶりコンクリートの飛散に より、荷重変形関係において一時的な耐力低下が見られ た。柱に鋼板を巻いた UHRC24, 25 も、他の試験体と同 様に 1/100rad.から 1/50rad.へ向かう最中にコンクリート が割れる音がしたが、鋼板を巻いていない試験体に見ら れた一時的な耐力低下は見られず、安定した履歴を示し た。1/50rad.以降は、すべての試験体で 1/20rad.の大変形 時まで耐力低下は見られず、安定した履歴を描いた。 柱直下の接合部については、各試験体ともに、1/300~ 1/200rad.で接合部側面に斜めひび割れが発生した。 1/25rad.終了時において,柱直下の接合部に鋼繊維を混入 させていない UHRC21 の接合部側面残留ひび割れ幅が 0.1~0.15mm であったのに対して、鋼繊維を混入させた UHRC23,UHRC24 の残留ひび割れ幅が 0.04~0.08mm 程 度と小さかったことから、ハンチを付けて接合部を拡幅 することで柱からの支圧力に対する接合部の損傷を小 さくでき¹⁾, さらに今回, 鋼繊維を混入させることによ ってひび割れ幅をより小さく抑える効果があることが わかった。

3.2 接合部状況

接合部に設けたハンチ部分のコーナー補強筋のひず み分布を UHRC21, UHRC23, UHRC24 について図-4 に示す。コーナー補強筋は図-1に示すように,接合部 のハンチに沿って縦方向に6段直筋を配している。図-4には,柱下面から数えて2番目3番目5番目のコーナ

ー補強筋のひずみ分布を示している。 3 体とも接合部上方のコーナー補強 筋は最大変形時にほぼ降伏ひずみに 達しており,コーナー補強筋が接合部 ハンチの割裂防止に効果があること が分かる。また, UHRC21, UHRC23, UHRC24 の順でコーナー補強筋のひ ずみが大きくなっているが,これは大 変形時において柱脚位置での柱コー ナーかぶりコンクリートは,コンクリ ートに補強をしていない UHRC21 で は柱端部の圧壊が進み,柱から接合部 に入る圧縮力が減少するためと考え られる。UHRC21 よりもコーナーか ぶりコンクリート部の圧壊の少ない UHRC23, さらには鋼板で柱を補強し, かぶりコンクリートの圧壊がさらに 少ない UHRC24 の順で接合部に入力 される圧縮力が増え,コーナー補強筋 のひずみが大きくなっていると考え られる。実験終了時の接合部の状況を 写真-3に示す。

3.3 鋼板のひずみ分布

UHRC24,UHRC25 の柱に巻いた鋼 板の水平方向ひずみの分布を図-5 に示す。UHRC24 において,加力方 向と並行する面では最終サイクルま で鋼板は降伏には至らなかった。加力 方向と直行する面の鋼板は1/50rad.で 降伏に至り,そのひずみ分布形状から, 特に柱の上下で拘束効果を発揮して いることが分かる。45 度方向加力と した UHRC25 の鋼板のひずみ分布に ついても,柱水平変形角1/50rad.以降 で降伏に至ることなど,UHRC24 と ほぼ同様な傾向を示していることが わかる。

4. 考察

4.1 包絡曲線と試験体耐力の比較

各試験体の包絡曲線の比較を図-6に、諸耐力の比較を表-4に示す。 包絡線の比較より,柱を鋼板で巻いた もの以外は柱水平変形角 1/100rad.か ら1/50rad.へ向かうサイクルで、かぶ りコンクリートの圧壊により柱の耐 力が一時的低下した影響で耐力の上

写真-4 実験終了時の接合部の状況

図-5 鋼板のひずみ分布

昇割合が小さくなり,耐力が頭打ちとなっていることが 分かる。UHRC21は1/50rad.に最大耐力(703.7kN)を示し た。UHRC22 は UHRC21 より 1%, UHRC23 は 2%しか 最大耐力は増加しなかったものの, UHRC23 では最大耐 力発生点が 1/33rad. となり、また最大耐力以降も UHRC21 より高い耐力を維持し、鋼繊維の効果によって 柱の靱性が向上したことが分かる。UHRC24はUHRC21 と同じく 1/50rad.で最大耐力を示したが、その値は鋼板 を巻いていない UHRC21 に比べて約 20%上昇した。 1/50rad.以降も UHRC23 以上の耐力を維持しつづけ、鋼 板を巻くことによって最大耐力・靱性ともに向上したこ とが分かる。また、UHRC24 と UHRC25 の比較により、 45 度方向加力になると最大耐力で約 7%最大耐力が小 さくなった。実験時の曲げひび割れ強度は、UHRC21と UHRC22 ではほぼ同じであったが、鋼繊維を 1.0%混入 させた UHRC23 では1割程度の強度の上昇が見られた。

実験値と計算値を比較すると、断面分割法により得ら れた UHRC21 の最大曲げ強度計算値について、UHRC21 ~UHRC23 では、(実験値/計算値)が 0.95~0.99 とな り,計算値は若干大きめの値となっているが、概ね強度 を評価できると考えられる。また、UHRC24 については 0.93 となり、計算値は実験値をやや大きめに評価してい る。UHRC24 については、コンクリート部分をすべてコ ンファインドコンクリートとした。

4.2 等価粘性減衰定数

各試験体の等価粘性減衰定数の推移を図-7 に示す。 UHRC22 の推移が他に比べて若干低く, ばらつきはある ものの, すべての試験体で柱主筋降伏後の 1/100rad.以降 は, ほぼ同じ傾向を示した。

5. まとめ

実強度で 180~190N/mm² のコンクリートを用いて, プレーンコンクリート柱・コンクリートに鋼繊維を混入 させた柱・鋼板を巻いた柱について行った載荷実験結果 より得られた知見を以下に記す。

- (1) 柱コンクリートに鋼繊維を混入させたものはプレー ンコンクリート柱より靱性が向上し、鋼板を巻いた ものは耐力・靱性ともに向上することが分かった。
- (2) 180~190N/mm² 級のコンクリート柱直下の接合部は 2割程度強度を落とした 150N/mm²級のコンクリート を用いて、コーナーを拡幅させることや、コンクリ ートに鋼繊維を混入させるなどの対策をとることで 接合部の損傷を小さくできることが分かった。
- (3) コンクリートに鋼繊維を混入させた柱は、靱性能の 向上は確認できたが、今回の混入量では最大曲げ耐 力に及ぼす影響は小さく、鋼繊維を考慮しない断面 分割法で概ね曲げ耐力を評価できると考えられる。

表一4 試験体諸耐力

UHRC	21	22	23	24	25
exMc	194	195	213	—	—
cMc	182	—	—	—	—
exMmax	346	349	359	422	393
cMmax	362	_	_	455	_

exMc:曲げひび割れ強度実験値(kN·m) cMc:曲げひび割れ強度計算値(kN·m) exMmax:最大曲げ強度実験値(kN·m)

cMmax:コアコンクリートを New RC で提案されたコンファイ ンドコンクリートとした断面分割法による最大曲げ強度計算値 (kN·m)

参考文献

- 菊田繁美,和泉信之,濱田聡,竹中啓之:超高強度 コンクリートを用いた1階柱とその柱脚接合に関す る実験的研究,コンクリート工学年次論文報告集, Vol.29, No.3, pp.553-558, 2007.7
- 菊田繁美,千葉脩,羽鳥敏明,飯塚信一:超高強度 材料を用いた鉄筋コンクリート柱に関する実験研 究,コンクリート工学年次論文報告集, Vol.26, No.2, pp.781-786, 2004.7
- 井戸康浩,菊田繁美,梅本宗宏,端直人:鋼繊維補 強した超高強度コンクリートの基礎的研究,日本建 築学会大会学術講演梗概集(中国)A-1分冊, pp.527-528,2008.9