論文 コンクリート系部材のねじり破壊メカニズムに関する実験的研究

秦 逸平^{*1}·大塚 久哲^{*2}·筬島 隆司^{*3}·陶 媛媛^{*4}

要旨:帯鉄筋量をパラメータとした RC 部材3体と無筋コンクリート部材1体を対象に,一定軸力下でねじ り荷重を与える実験を行い,コンクリート系部材のねじり破壊メカニズムに関する考察を行った。RC 部材に ついて,帯鉄筋量の違いによる破壊形式の違いが明確に見られ,帯鉄筋量が多いと立体トラス形式,少ない と斜め曲げ形式の破壊挙動を示した。無筋コンクリート部材に関して,斜めひび割れが生じて破壊面の一部 が形成されることで急激な剛性低下が生じ,その後破壊面が成長しつつ軟化して,最終的に破壊面における 斜め曲げ形式の変形により,圧縮域コンクリートが破壊することで完全な破壊面が形成されて耐力を失った。 キーワード: RC 部材,無筋コンクリート部材,ねじり,破壊メカニズム,軸力,帯鉄筋

1. はじめに

近年,複雑な構造形式の構造物の増加により,地震時 にねじりを受ける部材が増加している。RC部材がねじり を含む外力を受けると曲げの挙動に影響を与えることが 明らかになっており^{1),2)},ねじりの影響を適切に考慮す ることの重要性が高まっている。一方で,RC部材の設計 ではねじりの影響はあまり重要視されていないという現 状があり,その影響を適切に考慮することが部材の安全 で経済的な設計につながる。

これまで、ねじりを受ける RC 部材に関する研究が実 験結果の考察と理論構築の両面から行われており、ねじ り耐力の算定式等が提案されてきた^{3),4)}。著者らも、数多 くの RC 柱部材へのねじり載荷実験を行い、ねじりを受 ける RC 部材の力学特性や、種々のパラメータがねじり 挙動に及ぼす影響について実験、解析の両面から検討を 行ってきた。既往の研究^{5),6),7)}より、ねじりと曲げを同時 に受ける RC 部材の履歴復元力特性の特徴や相関特性、 帯鉄筋量がねじり挙動に与える影響が大きいことなどが 明らかにされており、剛性低下率の定式化が提案されて いる。

しかし, RC 部材のねじり実験は前例が多くないのが現 状である。実際の橋脚には死荷重による軸力が作用する が、軸力の作用下でねじりを与えた例は特に少ない。ね じりによる破壊挙動について実験結果から詳細に検討さ れた例もほとんどなく, RC 部材のねじり挙動には不明な 点が多い。RC 部材の耐震性能について検討を行うにあた って,その破壊挙動や耐荷メカニズムについて、単純な ねじり載荷状態の実験より明らかにしておくことは有用 なことであると考える。

そこで、本稿では、帯鉄筋量が RC 部材のねじり挙動 に与える影響を明らかにするため、RC 部材と無筋コンク リート部材を対象に、一定軸力下でねじり荷重を与える 実験を行った。実験結果より、耐荷力曲線、ひび割れ状 況、鉄筋とコンクリートのひずみ状態に着目し、ねじり 破壊メカニズムに関して検討した。

2. 実験概要

2.1 実験供試体

帯鉄筋間隔をパラメータとした RC 供試体 3 体, 無筋 コンクリート供試体 1 体の計 4 体の柱部材に対して, 一 定軸力下で単調漸増ねじり荷重を与える実験を行った。

実験供試体の寸法を図-1 に示す。柱部分は 400× 400mmの正方形充実断面で,長さは 1600mm である。局 部破壊を避けるために柱上下端にフーチングを設けた。

図-1 供試体寸法(mm)

コンクリートの設計基準強度は 40N/mm² である。

RC供試体の鉄筋には全てSD295を用い,主鉄筋はD13 を16本,帯鉄筋はD6を配置した。

無筋コンクリート供試体の柱中央部には鉄筋を設けな いが、フーチングと柱の境界付近での局部破壊を避ける ため、柱の上下端部から100mmの部分まで主鉄筋を設け、 帯鉄筋を2段配置した。

2.2 載荷方法

図-2 に実験の載荷装置の図面を示す。基部フーチン

- *1 九州大学大学院 工学府建設システム工学専攻修士課程学生 (正会員)
- *2 九州大学大学院 工学研究院建設デザイン部門教授 工博 (正会員)
- *3 九州大学 工学部地球環境工学科学部生

*4 九州大学大学院 工学府建設システム工学専攻研究生

図-2 載荷装置図面

グを PC 鋼棒で載荷フレームに固定し,頭部フーチング を頭部固定用架台に固定する。

まず,供試体に所定の軸力を荷重制御で載荷した後, それを一定に保持した状態で,頭部フーチングにねじり 角制御による単調漸増ねじり載荷を行った。

軸力ジャッキは水平方向に可動であり,供試体に常に 一定の軸力を作用させ続けることができる。2本のねじ り載荷用ジャッキで偶力を作用させることで,柱にねじ りモーメントを与える。

水平変位は曲げ荷重載荷用のジャッキにより変位ゼロ を目標に制御した。実験中,ジャッキ位置における水平 変位が 0.1mm を上回ることはなかった。

初めてひび割れが確認されるまでは細かく載荷を停止 し、ひび割れの有無を確認した。急激に剛性が低下した (以下、部材降伏と呼ぶ)後は、部材降伏時のねじり角 の整数倍のねじり角に達した時点で載荷を停止し,ひび 割れ状況を確認した。

2.3 実験ケース

実験ケースを表-1 に示す。表には、載荷当日に行っ たコンクリート材料試験の結果を併記した。

RC 供試体には, 一般的な RC 部材に作用する標準的な 軸力比を想定し, 柱部分にコンクリート設計基準強度の 10%の軸圧縮応力が作用するような軸力 640kN を与えた。 無筋供試体には, 軸力を作用させた際にコンクリートに 導入される初期軸圧縮応力を RC 供試体と同等にするた め, 主鉄筋負担分を差し引いた軸力 596kN を与えた。

2.4 測定項目

実験の測定項目について以下に述べる。

ねじりモーメントをねじり載荷用ジャッキに設置した ロードセルにより測定した。

ねじり角を頭部フーチングに設置した傾斜計により測 定した。

図-3 に鉄筋ゲージとコンクリートゲージの設置位置 を示す。RC供試体の鉄筋のひずみは、帯鉄筋が配置され ている3断面(柱中央付近のA断面,最も基部フーチン グに近いC断面,A,C断面の中間付近のB断面)で計測 した。コンクリート表面のひずみは柱中央の4面で,三 軸ゲージを用いて測定した。ただし、ctc30 については、 部材の東面のひずみを2箇所(基部フーチング天端から 300mm,600mm)で計測した。

3. 実験結果

3.1 耐荷力曲線

図-4 に実験より得られた耐荷力曲線(ねじりモーメント Mt-ねじり角 θ 関係)を示す。

全ての供試体で、ねじり載荷開始後は弾性的な挙動を し、その後、部材降伏した。ctc60,120 ではそれぞれの供 試体で2箇所の帯鉄筋の破断が生じた。無筋は破壊面を 形成した時点で耐力を失った。

ctc60の部材降伏付近の曲線が滑らかになった。これは、 載荷停止後の再載荷の際、荷重が完全に回復する前に再 び載荷を停止したためである。ひび割れ確認のため載荷 を停止すると、わずかに荷重が低下し、再載荷すると変 形が進みつつ荷重が回復し、本来の履歴上に戻る。

	ctc30 ⁷⁾	ctc60	ctc120	無筋
帯鉄筋間隔(mm)	30	60	120	
帯鉄筋比(%)	1.16	0.58	0.29	
圧縮強度(N/mm ²)	52.7	46.2	44.2	48.3
引張強度(N/mm ²)	4.4	4.1	3.6	3.6
ヤング率 (kN/mm ²)	36.6	33.2	35.3	34.1
材齢(日)	31	16	14	10

表-1 実験ケース一覧、コンクリート材料試験結果

(1) 初期剛性

初期剛性は全ての供試体でほぼ同じである。コンクリ ート物性が同程度であるこれらの供試体で,初期剛性が ほぼ同じであったことから,部材降伏までの挙動はコン クリート物性の影響が支配的である⁷ことが,この実験 結果からも確認できる。

(2) 部材降伏耐力

ctc60, 120, 無筋の部材降伏耐力は同程度であるが, ctc30 はそれより 30kN・m 程度大きい。この点に関する 考察は4.2 (5)で述べる。

(3) 部材降伏後の勾配

帯鉄筋量が部材降伏後の勾配に与える影響が大きい。 帯鉄筋量が多いほど勾配が大きく,高い靱性を有する。 3.2 ひび割れ状況

図-5 に、それぞれの供試体の部材降伏時点と約 0.05rad 時のひび割れ状況を示す。図には、ひび割れ本数 (部材軸線を通るひび割れの本数)を併記した。

全ての供試体で,部材軸方向と約45度の角をなす,ね じり特有の斜めひび割れが生じた。

帯鉄筋量がひび割れの分散度に与える影響が大きく, 帯鉄筋量が多いとひび割れの分散度が高い。

実験時のひび割れ状況の観察より, RC 供試体は, 初め に微細なひび割れが生じ, それが徐々に広がった。一方 で, 無筋供試体は, 微細なひび割れが確認される前に,

目に見えるほどのひび割れが急激に生じた。その時点で 急激な荷重低下が起こった。

また,全ての供試体で,最大耐力以後は一箇所のひび 割れが卓越し,ひび割れ本数の増加はほとんど見られな かった。最大耐力以後は,ねじり変形によるひずみは卓

越する一箇所のひび割れ幅の増大によって吸収される。 3.3 コンクリート表面ひずみ

図-6に ctc60, 120 のコンクリート表面の主圧縮ひずみ ーねじり角関係を示す。ゲージを貼り付けた部分をひび 割れが通過することにより,載荷途中でひずみの計測が 不能となった。

ctc60 は全面のひずみがほぼ同様の傾向で単調増加した。一方で,ctc120 は,部材降伏までは一様にひずみを 生じるが,その後は下面のひずみが上昇してゆき,その 他の面のひずみは減少した。

ctc30は一面のひずみを計測したため、4面のひずみ状態の違いを確認できないが、ひび割れ状況の観察等により、全面が一様にひずみを生じたと考えられる。

無筋は ctc120 と同様に,部材降伏以後,下面のひずみ のみが増加し,その他の面のひずみは減少した。

3.4 鉄筋ひずみ

全ての RC 供試体で, 主鉄筋は最大耐力以前に降伏ひ ずみに至らなかった。

図-7にRC供試体3体の帯鉄筋の引張ひずみ-ねじり 角関係を示す。帯鉄筋の降伏ひずみは約1800 µ である。

全ての RC 供試体で、C 断面の鉄筋ひずみは他の断面 より小さかった。例えば、ctc30 の C 断面の主鉄筋、帯鉄 筋ひずみの最大値はそれぞれ 617 µ, 1282 µ であった。

ctc30,60のA,B断面の帯鉄筋ひずみは全て同じ傾向で 増加して降伏ひずみに達した。一方で、ctc120の場合,3 つの帯鉄筋は降伏ひずみに達しないが、卓越するひび割 れの直下の1つの帯鉄筋ひずみが降伏を超えて増加した。

4. ねじり破壊メカニズムに関する考察

4.1 RC 部材の破壊形式の分類

既往の研究で, RC 部材のねじりによる破壊形式として 立体トラス形式,斜め曲げ形式の2つが提案されている⁸⁾。それぞれの破壊形式の特徴を以下にまとめる。 立体トラス形式

- 部材全体が一様にねじられる。
- ・ 部材全体にひび割れが分散する。
- 部材全体の鉄筋が一様にひずみを生じる。

・ 部材全体の鉄筋の降伏により終局に至る。
 斜め曲げ形式

- ・ ねじり変形によるひずみが破壊面近傍に集中する。
- ・ 破壊面のひび割れが卓越する。
- 破壊面近傍の鉄筋にひずみが生じる。
- 破壊面近傍の鉄筋の降伏,破壊面の圧縮域コンクリートの破壊により終局に至る。

4.2 RC実験供試体の破壊メカニズム

部材降伏以後の挙動に着目し,3 章で述べた実験結果 より考察される RC 供試体3 体の破壊メカニズムについ て(1)~(4)で述べる。また,部材降伏耐力の差に関する 考察を(5)で述べる。

(1) ctc30 の破壊挙動

図-5 より, ctc30 は部材全体にひび割れが分散した。 また,3.3 で述べたコンクリートのひずみ状態,3.4 で述 べた鉄筋のひずみ状態から,最大耐力(約0.05rad)以前 は,部材全体が一様にひずみを生じ,部材全体の鉄筋が 降伏に至ったといえる。以上より,最大耐力以前は立体 トラス形式の破壊挙動であるといえる。

一方,最大耐力以後は、卓越するひび割れが生じ,そ のひび割れ幅が増大した。また,鉄筋ひずみは増加しな かった。これより,最大耐力以後はねじり変形が破壊面 近傍のひずみに集中したといえ,斜め曲げ形式の挙動で あるといえる。鉄筋ひずみの計測位置は,破壊面から離 れた位置であり,破壊面近傍では鉄筋ひずみが増してい ったものと考えられる。

(2) ctc60 の破壊挙動

図-5より, ctc60 はひび割れが部材全体にある程度分散した。また, コンクリートのひずみ状態と鉄筋のひずみ状態は, 概ね ctc30 と同様であり, 立体トラス形式の破壊挙動であるといえる。

また,最大耐力以後の挙動について,ひび割れ状況, 鉄筋ひずみ状態は ctc30 と同様の特徴を示した。以上より,最大耐力以後は斜め曲げ形式の挙動であるといえる。

(3) ctc120 の破壊挙動

図-5 より, ctc120 はひび割れがほとんど分散せず, 一箇所のひび割れが卓越した。ひび割れ状況,および図 -6.7 より斜め曲げ形式の破壊挙動であると考察される。

つまりコンクリートひずみが増加した下面は、破壊面における斜め曲げ形式の変形における圧縮域であり、他のひずみが増加しない3面は、破壊面から離れた部分である(図-6)。帯鉄筋ひずみが一箇所で増加した(図-7)のは、その計測位置が破壊面近傍であったためである。

図-7で、ctc120 は約 0.04rad まで、破壊面から離れた 部分の鉄筋にひずみが生じている。ひび割れ状況の観察 より、同時点まで、破壊面から離れた部分で新たにひび 割れが生じたことが確認された。これより、約 0.04rad までは、斜め曲げ形式の変形により、破壊面近傍にひず みが集中するが、破壊面から離れた部分にもねじり変形 が生じたことが考察される。約 0.04rad 以後は、破壊面近 傍の鉄筋が降伏することにより、ねじり変形によるひず

みの大部分が破壊面近傍のひずみに集中したため、破壊 面から離れた部分の鉄筋ひずみは増加しなかった。

(4) RC 供試体の破壊挙動のまとめ

上記(1)~(3)で, ctc30, 60 は立体トラス形式, ctc120 は斜め曲げ形式の破壊挙動を示したことが考察された。 図-8に ctc30 の最大耐力時, ctc120 の最終状況の写真を 示す。写真から見て取れるひび割れ状況や変形状況から も、両者で破壊形式が異なることが明らかである。

また、最大耐力以後は全ての供試体で斜め曲げ形式の 挙動となったことから、ねじり荷重の低下は、斜め曲げ 形式の変形が進むことによって起こるといえる。従って, 部材降伏後に荷重が上昇する場合は立体トラス形式の挙 動で最大耐力に至るといえる。

部材降伏耐力は作用軸力やコンクリート物性の影響を 受ける ⁷⁾ことから、ねじり破壊形式は、帯鉄筋量、作用 軸力、コンクリート物性等により決定されるといえる。

(5) 部材降伏耐力に関する考察

ここで, ctc30の部材降伏耐力が他に比べて大きいこと に関する考察を以下に述べる。部材降伏は、ひび割れが 断面の中心まで進展することで起こることが明らかにさ れている⁷が, 図-5の部材降伏時のひび割れ状況より, ctc60, 120, 無筋では1本のひび割れが中心まで進展した ことが推測できる。一方, ctc30 は部材降伏時にひび割れ が分散しており, 複数のひび割れが断面中心まで進展し たものと考えられる。コンクリート物性が同程度である にも関わらず, ctc30の部材降伏耐力のみが大きくなった のは、中心まで進展するひび割れの本数の違いが原因で あると考えられる。

4.3 無筋コンクリート供試体の破壊メカニズム

無筋供試体の破壊挙動や破壊面の観察から考察される 破壊メカニズムについて(1)~(3)で述べる。また、既往 の長方形断面の無筋コンクリート部材のねじり破壊との 比較について(4)で述べる。

(1) 破壊面形成時の様子

図-9 に載荷後の無筋供試体の写真を示す。0.018rad

立体トラス形式

図-8 破壊状況

に達した時点で、破壊面でずれが生じるとともに、ねじ り荷重と軸力が急激に低下した。軸力は荷重制御で載荷 したため、軸力が抜けたことで軸力ジャッキが供試体を 押し続け,頭部側に押された基部側の柱の一部が脱落し た。頭部側にねじりによる破壊面を見ることができる。

(2) 形成された破壊面の特徴

図-10に頭部側の柱の破壊面の座標を計測して作成し たねじり破壊面のイメージ図を示す。ねじり荷重により, 西,上,東面がねじり特有の斜めひび割れの方向の螺旋 状の縁を形成した。その3面の縁から部材表面とほぼ垂 直方向に断面中心付近まで広がる概ね平面といえる破壊 面を形成した。残る下面は、3 面の破壊面を結ぶような 湾曲した面を形成した。

(3) 破壊の進展, 破壊メカニズムについて

まず、ねじり載荷開始後は弾性的な挙動を示す。

初めにひび割れが生じる時点で荷重が急激に低下した。 この時点で部材の2面(上,東面)にひび割れが生じた。 図-10の上面,東面から広がる破壊面の一部が形成され たものと考えられる。この面の垂直方向はねじり荷重に よる主引張応力の作用方向と一致する。その後、荷重が 低下しつつねじり変形が進む。

この軟化の挙動を示す領域では、既に一部が形成され ている上, 東面の破壊面が成長し, 断面中心付近まで広 がる。また,同様の破壊面が西面から徐々に形成される。 下面は、破壊面における斜め曲げ形式の変形による圧縮 域となり、ひずみが増してゆく。

図-9 無筋供試体 載荷後の様子

西側

図-12 長方形断面部材の破壊面⁷⁾

0.018rad に達すると、部材が完全に耐力を失った。この時点で、完全な破壊面が形成された。圧縮域コンクリートのひずみが限界に達し、破壊する。それにより完全な破壊面が形成される。

(4) 長方形断面のねじり破壊面との比較

既往の研究⁹により得られた,長方形断面の無筋コン クリート部材のねじり破壊面を図-11に示す。

図の手前の面の縁はねじり特有の斜めひび割れの方向 であり,奥面の縁は短辺の縁を結ぶような直線である。 手前の長辺の縁から広がる破壊面は,部材表面とほぼ垂 直方向に広がる平面であり,断面中心付近まで広がって いる。短辺の奥側半分の縁は斜めひび割れ方向であり, 奥面の縁から広がる破壊面はそれを結ぶような湾曲した 面を形成している。

参考文献 9)では、破壊面の観察より、ねじり破壊は図 -11 に示した軸に関する曲げ、つまり斜め曲げによって 起こると考察されている。ここで、手前側の平面は引張 を受け、奥側の湾曲した面は圧縮域である.

長方形断面の場合,ひとつの長辺から広がる破壊面が 平面になるのに対し,正方形断面の場合,3辺から広が る破壊面がほぼ平面となった。従って,正方形断面の場 合,図-10に示す3つの軸に関する斜め曲げの成分が存 在するといえる。

5. まとめ

帯鉄筋量をパラメータとした RC 部材 3 体と無筋コン クリート部材 1 体を対象に,一定軸力下でねじり荷重を 与える実験を行い,コンクリート系部材のねじり破壊メ カニズムに関して考察を行った。

帯鉄筋量がコンクリート系部材のねじり挙動に及ぼす 影響について,帯鉄筋量が多いと靭性に富んだ挙動を示 し,ひび割れは部材全体に分散する。

RC供試体のねじり破壊メカニズムに関しては,帯鉄筋 量が多いと立体トラス形式,少ないと斜め曲げ形式の破 壊挙動を示した。また,最大耐力後は斜め曲げ形式の変 形の進展によりねじり荷重が低下する。

これより,部材降伏後にねじり耐力が上昇する部材, つまり,帯鉄筋が十分に配置された部材に対しては,最 大耐力の算定には立体トラス理論,斜め曲げ理論のどち らを用いても、想定する破壊状況と実際の破壊状況に矛 盾がないことが明らかとなった。

無筋コンクリート供試体のねじり破壊メカニズムに関 して、斜めひび割れの発生によって剛性が急激に低下し、 破壊面が徐々に形成されつつ軟化して、最終的には3つ の軸に関する斜め曲げ形式の変形により圧縮域コンクリ ートが破壊することによって完全な破壊面が形成され、 耐力を失う。

謝辞

実験の実施にあたっては、九州大学工学研究院建設デ ザイン部門の山崎氏に多大なるご協力を頂いた。また、 宇山氏をはじめとする九州大学工学研究院建設振動工学 研究室の皆様に多くの助言と手助けを頂いた。ここに記 して謝意を表する。

参考文献

- 浦川洋介,大塚久哲,竹下永造:軸力,曲げおよび ねじりを同時にうける RC 部材の非線形挙動に関す る実験的研究,構造工学論文集, Vol.51A, pp.885-892, 2005.3
- 大塚久哲,竹下永造,浦川洋介:軸力,曲げ/せん 断,及びねじりの複合荷重を同時に受ける RC 部材 の耐震性能と相関特性,土木学会論文集,No.801/ I-73, pp.123-139, 2005.10
- 泉満明:コンクリート部材の終局ねじり強度の算定 と設計法に関する研究,土木学会論文報告集, No.305, pp.111-124, 1981
- 4) 志村和紀, 佐伯昇: 有効かぶりを考慮した鉄筋コン クリート部材の純ねじりの変形・耐力解析, 土木学 会論文集, No.599/V-40, 81-90, 1998.8
- 5) 大塚久哲,王尭,高田豊輔,吉村徹:純ねじりを受けるRC部材の履歴特性に影響を及ぼすパラメータに関する実験的研究,土木学会論文集,No.739/V -60, pp.93-104, 2003.8
- 6) 大塚久哲,宇山友理,秦逸平: RC 柱部材のねじり剛
 性低下の定式化と動的解析への適用の研究,構造工
 学論文集, Vol.55A, pp.1048-1057, 2009.3
- 大塚久哲,秦逸平,宇山友理:純ねじり荷重を受ける RC 部材の三次元非線形有限要素解析,構造工学 論文集, Vol.55A, pp.680-690, 2009.3
- 8) 泉満明:円形断面を有するコンクリート部材のねじ り挙動,プレストレスト・コンクリート, Vol.38, No.5, pp.69-77, 1996.9
- HSU T. T. C.: Torsion of Structural Concrete-Plain Concrete Rectangular Sections, Torsion of Structural Concrete, pp.203-238, 1968