論文 振動打設したコンクリートの分離および充填性に関する実験的考察

張 文博^{*1}·李 柱国^{*2}

要旨:振動締固めによるフレッシュコンクリートの充填性に及ぼす材料分離の影響を定量的に把握するため, 振動打設したコンクリートの充填性を調べ,分離程度を RI 密度計で評価した上,それらに及ぼす試料流動性 と分離抵抗性,障害鉄筋の間隔などの影響を検討した。また,分離抵抗性が振動打設した試料の充填性に与 える影響を定量的に考察した。その結果,振動打設した材料の分離程度は,その流動性,分離抵抗性および 鉄筋の間隔に依存した。また,鉄筋の間隔,スランプやスランプフローが大きいほど,振動による充填性が大 きかった。なお,振動打設による分離程度がある限界に達すると,充填性は急激に悪くなった。 キーワード:フレッシュコンクリート,振動締固め,RI密度計,充填性,密度分布,分離程度

1. はじめに

締固めが必要なコンクリートを打設する時に、コンク リートの品質に悪影響、すなわち材料分離を生じさせな いように、適度な振動締固めを加えなければいけない。 しかし、現状では施工指針に振動時間の目安は示されて いるものの¹⁾、振動締固めの程度は作業員の経験によっ て決められるのがほとんどである。普通コンクリートの 振動による充填を実現しながら、過度な材料分離を生じ させないために、フレッシュコンクリートに適切な分離 抵抗性が求められる。また、振動打設したコンクリート の硬化後の性質を評価・予測するために、振動打設によ るコンクリートの分離程度を把握する必要がある。

高流動コンクリートの自己充填性およびそれに及ぼ す分離抵抗性の影響に関する研究は多く報告されている ^{2,3,4)}が,普通コンクリートの振動打設による分離程度と 充填性の影響要因についての研究は少なく,コンクリー トの分離抵抗性がその振動打設による充填性と分離程度 に与える影響が明らかになっていない。

上記の背景を踏まえて、本研究では、U型ボックスに 振動打設する過程におけるコンクリートの分離程度と充 填高さに着目し、それらに与える障害鉄筋の間隔、流動 性、分離抵抗性、振動時間および粗骨材の最大寸法など の影響を考察する。また、振動締固めによって充填した コンクリートの分離程度と充填高さの関係を検討する。

2. 実験概要

2.1 振動打設したコンクリートの分離程度の評価方法

(1) 実験装置

振動締固めによって、U型ボックスに充填したコンク リートの分離程度は、スキャニング式 RI 密度計を用い て、流動側にあるコンクリートの垂直方向に沿って密度 の分布を測定し、密度分布の標準偏差(SD)によって評価 した。用いた実験装置を図-1 に示す。U型ボックス充

図-1 実験装置の写真

填試験器,バイブレーターと制御システム,RI密度計(線 源,検出ユニート,計数器),密度計の台座と昇降制御シ ステム(モータ,モータコントローラ)およびパソコン により構成される。図-2に用いたU型ボックスおよび その障害部の詳細を示す。このU型ボックスは,高流動 コンクリートの自己充填性の評価によく使われるもので ある。鉄筋の間隔を変えて3種類の障害を実験に使った。 また,U型ボックスの流動側に挿入したバイブレーター の先端は,試料底部から50mm位置とした。用いたバイ ブレーターの振動数と振幅はそれぞれ200Hzと1.5mmで あり,振動部の長さが230mm,直径が28mmである。ガ

*1 山口大学大学院 理工学研究科 情報・デザイン工学系専攻 大学院生 工修(正会員) *2 山口大学大学院 理工学研究科 情報・デザイン工学系専攻 准教授 博士(工学)(正会員)

図-3 分離抵抗性が異なる試料のスランプ試験の様子⁷⁾

ンマ線のRI密度計はU型ボックスの流動側に設置した。 鉛直方向における各区域のコンクリートを透過したガン マ線の減衰量によって各区域の試料の密度を推定した。 用いた RI 密度計の仕様を表-1に示す。

(2) 密度の推定式

本研究では、流動側の底部から 280mm の範囲におけるコンクリートを振動後の分離程度の評価対象とした。 高さが 280mm のコンクリートを 7 つの区域に分け、区域ごとの高さは 40mm であった。

周辺設備や試料容器の材質と寸法の変動などがガン マ線の検出数に影響するため、同じ容器と試料であって も、測定部位によって検出したガンマ線のカウントが異 なる⁵⁾。そこで、本研究では、バックグラウンド数を区 域ごとに計測・キャリブレーションした上で、標準砂、 乾燥海砂、分離が生じないモルタルとコンクリートを用 いて、各試料・区域ごとにガンマ線検出数を測定した。 ガンマ線検出数を計測した際に、区域ごとの測定時間は 30 秒であった。検出した 30 個のカウント数を移動平均

表-1 RI密度計の仕様

型 式	SRD-2SC
検 出 器	Nal シンチレーション検出器
放射線源	⁶⁰ Co 3.7MBq
検出窓	高さ 5mm×幅 50mm
検出高さ	約 20mm

後に単純平均にして、平均ガンマ線検出数を得た。さらに、それと標準カウント数(10秒間計測の場合、117000である)との比を計数率 R として求めた。

得られた計数率 R と試料の密度 ρ との関係について 回帰分析を行い,各区域の密度推定式は,式(1)のように 得られた。

$$\rho = B \ln(R / A) \tag{1}$$

式(1)および予備試験で求めた係数 A と B の値を予め パソコンに組み入れて,コンクリート試料の各区域の密 度および密度分布の標準偏差(SD)を自動的に算出する。 2.2 フレッシュコンクリートの分離抵抗性の評価方法

フレッシュコンクリートの分離抵抗性の評価試験法が 多く提案された^{3,6}が,高流動コンクリートに適用しうる ものがほとんどであり,普通コンクリートの分離抵抗性 の試験法が確立されていない。普通コンクリートのスラ ンプ試験した後の形状は,図-3に示すように,大略 3 つのタイプに分類される⁷⁾。

分離抵抗性と流動性のバランスが良い試料の場合に は、形状は図-3のAに示すようである。分離抵抗性が 大きい試料のスランプ試験した後の形状を図-3のBに 示す。スランプは大きいが、スランプフローは相対的に 小さい。また、分離抵抗性が小さいと、スランプする際 に粗骨材は試料の中心に滞留して、スランプ試験した後 の形状は図-3のCのようになり、スランプフローが相 対的に大きい。

したがって、スランプに対するスランプフローの比 (SRA)は、普通コンクリートの分離抵抗性を反映でき、 SRA が大きいほど、試料の分離抵抗性が大きいと考えら れる⁸⁾。本研究では、SRA 値を用いてコンクリートの分

3/11-	W/C	s/a	単位量(kg/m ³)				フレッシュ時の性質					
ブリー ((%)	(%)	W	С	S	G	Sp (C×%)	<i>t</i> ₅₀ (s)	Sf. (cm)	Sl. (cm)	SRA	単位容積質量 (kg/m ³)
LC1	40.0	40.0	165.0	413	704	1060	0.2*	-	23.0	13.5	0.587	2471
LC2	45.6	43.6	172.4	378	770	1000	0.4*	-	28.5	17.0	0.596	2363
LC3	55.0	43.0	174.0	316	788	1029	0.4*	-	34.0	20.0	0.588	2330
LC4	35.0	35.0	170.0	486	587	1094	0.7**	-	46.0	22.5	0.613	2289
LC5	40.8	45.0	161.0	395	795	961	1.5**	2.87	61.4	25.5	0.415	2286
LAC	45.6	43.6	172.4	378	770	$1000^{ riangle}$	0.4*	-	41.5	21.0	0.505	2441

表-2 試験に用いたコンクリートの調合およびフレッシュ時の性質

注) W/C:水セメント比, W:水, C:セメント, S:海砂, s/a :細骨材率, G:砕石 R₂₀, G[△]:砕石 R₁₃, Sp*:標準 AE 減水剤, Sp**:遅延型高性能 AE 減水剤, t₅₀: 50cm フロー時間, Sf.:スランプフロー, Sl.:スランプ, SRA: スランプとスランプフローの比

図-4 振動締固めの時間に伴う密度分布の標準偏差(SD)の変化

衣一3 試料の床さ万円の密度分布										
測定位置(mm)	LC1	LC3	LC2	LC4						
260	2.376	2.417	2.406	2.399						
220	2.408	2.458	2.428	2.419						
180	2.413	2.489	2.459	2.420						
140	2.500	2.502	2.467	2.455						
100	2.500	2.499	2.479	2.455						
60	2.500	2.506	2.463	2.454						
20	2.526	2.511	2.490	2.463						
標準偏差 SD	0.055	0.031	0.027	0.023						

注: 測定位置の基準点(0mm)は流動側の底面である。

離抵抗性を評価することにした。

2.3 コンクリートの調合

表-2 に、実験に用いたコンクリートの調合およびフ レッシュ時の性質を示す。これらの流動性と分離抵抗性 が異なる6シリーズの試料を用いて、振動打設による充 填性と分離程度に与える各影響要因を検討した。

コンクリートの練混ぜとしては、砂とセメントをミキ サに投入して 30 秒間攪拌してから水と混和剤を加えて 60 秒間練り混ぜた。さらに砕石を投入して 90 秒間攪拌 した。普通ポルトランドセメント,海砂(表乾密度: 2.59g/cm³, 吸水率: 1.60%), 砕石 R₂₀ (粒径: 5~20mm, 表乾密度: 2.73g/cm³)または砕石 R₁₃ (粒径: 5~13mm, 表乾密度: 2.73g/cm³)および高性能 AE 減水剤を用いた。 2.4 実験方法

U型ボックスに振動打設したコンクリートの分離程度 および充填性の実験手順は以下の通りであった。

(1) U型ボックスの仕切り板を閉め、練り混ぜた直後の コンクリート試料を流動側に 680mm まで充填した。 流動側の鉛直方向に沿った 0~280mm の範囲にお ける7区域の密度を RI 密度計により計測し, 密度 分布の標準偏差 SD を求めた。なお,各区域を計測 する際に,密度を 1s ごとに計測して,一つの区域

あたりの計測時間を 30s とした。

- (2) 仕切り板を引き上げ,充填側に流動した試料の高 さをボックス側壁の透明アクリル板から観察して 計測した。
- (3) ある時間に(予想した分離の容易さによって予め 決定した)振動させ、試料が安定になると、密度 分布の標準偏差を算出する。充填側の試料高さが 300mmになるまで、この「振動-計測」操作を繰り 返しする。

自己充填コンクリートの充填性の基準を参考に して(JSCE-F 511), 充填側の充填高さが 300mm に なると、充填性が確保できるとした。そこで、そこ まで振動を加え,流動側の密度分布の標準偏差およ び充填側の充填高さを繰り返して測定した。

(4) 障害程度が異なる鉄筋の付いた板を変えて、同じ 試料に対して,上述した実験を繰り返した。

実験結果および考察

3.1 振動打設したコンクリートの分離程度及び影響要因 (1) 試料の深さ方向の密度分布

表-3 に, 充填側の試料高さが 300mm になるとき, 試 料 LC1~LC4 の深さ方向の密度分布を示す。この結果に よると、振動によってコンクリート材料分離が発生する と、試料の密度が圧密により大きくなり、その値も深さ の増加に伴う大きくなることが分かった。また、各層の 密度差と密度の標準偏差の変化傾向が同じであるため, 密度の標準偏差を用いて試料の深さ方向の密度分布を表 すことにした。

(2) 分離程度と振動時間の関係

図-4 に,鉄筋間隔と粗骨材最大寸法との比(e)が 2.25 と一定とした場合について加振時間に伴う各試料の密度 (ρ)分布の標準偏差の経時変化を示す。この図によると, いずれの試料に対しても、振動時間が長くなるほど、各

図-5 300mm まで充填した時の SD に与える e 値の影響

試料の密度の標準偏差は大きくなることが分かった。こ れは、フレッシュコンクリートが振動を受けると、粗骨 材の沈降およびブリーディングが発生して、上下試料区 域の密度が異なるためである。また、粗骨材の実績率お よびブリーディングの限界があることにより、振動時間 がある限界以上になると、試料の SD 値はやや横這いと なることが見られた。即ち、測定した分離程度の上限値 が存在すると思われる。

図-4(a) に示す SD 値に与えるスランプの影響に注目 すると, 普通コンクリート試料 (LC1-LC4) の SD とス ランプは、ほとんど無関係である。振動による分離程度 とスランプの間に一義的な関係がないのは, 分離抵抗性 の影響のためであると推測している。しかし, 増粘剤や 粉体材料を使用しない高流動コンクリート試料 LC5 の SD 値は, いずれの普通コンクリート試料の SD 値よりも 大きかった。

また,図-4(b)に,SD と振動時間の関係に与えるス ランプとスランプフローの比(SRA)の影響を示す。同 図によれば,SRA 値が小さいほど,ρの標準偏差 SD が 大きいことが認められた。前に述べたように,SRA 値が

図-6 300mm まで充填した時の SD と SRA の関係

図-8 SD 限界に与えるスランプの影響

小さいほど,コンクリートの分離抵抗性が低い。したが って,振動時間が同じであれば,SRA 値が小さい試料の 分離程度は大きく,SD 値は大きい。

(3) 密度分布の標準偏差の影響要因

図-5に、充填高さが 300mm である時の SD と鉄筋間 隔と粗骨材最大粒径の比(e)の関係を示す。同図を見ると、 e 値の増大に伴い、いずれの試料の SD も小さくなる傾向 が見られた。e 値が大きいほど、鉄筋間隙が粗骨材の最 大寸法に比べて相対的に大きく、コンクリートが鉄筋障 害を通過しやすくなるため、300mm まで充填するための 振動時間が短く、振動締固めによる分離の程度は小さい ものと考えられる。

e値が 2.25 である場合,300mmまで充填した時の SD に与える SRA の影響を図-6 に示す。この図により,充 填高さを 300mm としたとき,普通コンクリート LC1-LC4 の場合,SRA が大きいほど,SD が小さい。すなわち, 振動打設した後の分離程度が小さかった。しかし,高流 動コンクリート LC5 の SRA が小さく,振動による分離 程度は大きいはずであるが,流動性が高いため,300mm の充填高さまでの振動時間が極めて短く,測定した SD,

図-9 単位振動エネルギーあたりの充填高さと振動時間の関係

図-10 単位振動エネルギーあたりの充填 高さと SD の関係に与える e の影響

図-11 単位振動エネルギーあたりの充填高さと密度分布の標準偏差 SD の関係に及ぼす流動性の影響

つまり分離程度はそれほど大きくなかった。

図-7 に、充填高さの増加に伴うコンクリートの密度 分布の標準偏差 SD の変化を示す。充填高さの増加に伴 って、SD 値、つまり振動による分離程度は大きくなっ たが、ある分離程度に達すると、充填高さの増加速度が 急激に減少することが見られた。したがって、図-7 に 示す方法によって、300mmの充填高さを確保するための 密度分布の標準偏差値(以下,SD 限界という)を図-8 に示した。図-8 によると、普通コンクリートの SD 限 界は、スランプの増加に伴って小さくなることがわかっ た。したがって、普通コンクリートの場合、振動打設に よる分離程度が各自の限界値になるまでに、分離抵抗性 より流動性のほうが充填性に与える影響は大きい。非自 己充填の普通コンクリートは、充填するための振動によ る分離がある限界を超えないように適切な分離抵抗性を 有しなければならない。

3.2 振動打設による充填性および影響要因

普通コンクリートを充填するための振動時間が異なっ たため、単位振動エネルギーあたりの充填高さを用いて 充填性を評価することにした。振動エネルギーは,式(2) によって計算される⁹。

$$Wv = m(\pi A f)^2 T \tag{2}$$

ここに,

Wv: 振動時間 T であるときの振動エネルギー(J)
m: 振動を受けたコンクリートの質量(kg)
A: バイブレーターの振幅(1.5×10⁻³m)
f: バイブレーターの振動数(200Hz)

図-9に、単位振動エネルギーWvあたりの充填高さ ΔH と振動時間の関係を示す。この図を見ると、単位振動エ ネルギーあたりの充填高さは、振動時間とともに減少し、 最後にゼロに近づく傾向が見られた。振動時間の増加に 伴って、充填側のヘッド圧が増大し、試料の分離程度も 大きくなるため、流動させ充填することが徐々に難しく なるためである。

Δ*H/Wv*と*SD*(標準偏差)の関係に与える*e*(鉄筋間 隔と粗骨材最大粒径の比)の影響を図-10に示す。同図 より,*e*値が大きいほど,同じ*SD*に対応するΔ*H/Wv*が 大きい。即ち,分離程度が同じであっても,鉄筋間隔と

図-12 △H/Wv とスランプの関係

粗骨材最大粒径の比は大きいほど,試料の充填高さは大 きい。

 $\Delta H/Wv \ge \rho$ の標準偏差 SD の関係に与える流動性の影響を図-11 に示す。図-11(a)を見ると、鉄筋間隔と粗骨材最大寸法の比 e が小さい(=2.25)場合、 $\Delta H/Wv$ の値は試料の流動性の増加に伴って大きくなる傾向が見られた。ただし、流動性が近い試料 LC2、LC3 および LC4の $\Delta H/Wv$ 値に大きな違いが見られなかった。

図-11(b)に示すように,鉄筋間隔と粗骨材最大寸法の比 e が大きい(=4.75)場合,流動性は,単位振動エネルギーあたりの充填高さと SD の関係にあまり影響しなかった。鉄筋間隔が粗骨材の最大寸法よりかなり大きければ,試料は,分離が振動によって生じても,鉄筋の間を通過して充填できるため,充填性への分離程度の影響が小さいと考えている。

3.1(3)に述べた結果に基づいて, e 値が 2.25 であり, 充 填高さが 200mm の場合, $\Delta H/Wv$ と試料のスランプとの 関係を図-12 に示す。この図によると, 試料のスランプ の増加に伴い, $\Delta H/Wv$ は大きくなることがわかった。 しかし, 試料 LC2, LC3, LC4 では, 水セメント比と細骨 材率などの違いが大きかった, つまり分離抵抗性が異な ったため, $\Delta H/Wv$ への流動性の影響があまり見られな かった。

また,各試料(LC5 を除く)の ΔH/Wv とそのスランプ SL, 鉄筋間隔と粗骨材最大粒径の比 e, 振動時間 t および分離 抵抗性指数 SRA の関係について重回帰分析を行い,式(3) が得られた。

$$\Delta H / Wv = 0.010Sl. + 0.130e - 0.029t + 0.692SRA, \quad R = 0.918$$
(3)

式(3)によると, Sl., e, SRA の増加または t の減少に伴い, $\Delta H/Wv$ は大きくなることがわかった。

4. まとめ

本研究では,U型ボックスに振動打設したコンクリートの分離および充填性を考察した。得られた知見が以下のようにまとめられる。

(1) 非自己充填コンクリートの場合,スランプ,スラン

プとスランプフローの比および鉄筋間隔と粗骨材 最大寸法の比が大きいほど,振動による充填性を確 保するための分離程度が小さい。

- (2) 単位振動エネルギーあたりの充填高さは、鉄筋間隔 と粗骨材最大寸法の比および分離抵抗性の増加に 伴い大きくなる。
- (3) 振動打設したコンクリートは、その分離がある程度 以下であるとき、その流動性がその充填性に決定的 な影響を与えるが、ある分離程度を超えると、分離 が充填性の主影響要因になる。

今後,充填側のコンクリートの品質についても検討し ていく。また,ヘッド圧の影響を無くすために,充填側 の形を変えて検討を行う予定である。

謝辞

この研究を遂行するにあたり,ソイルアンドロックエ ンジニアリング(株)技術開発部吉村貢氏と松浦良信氏 より,装置の設計・製作にご協力をいただきました。こ こに付記し,感謝の意を表します。

参考文献

- 1) 土木学会 コンクリート委員会:コンクリート標準仕 方書 [施工編], pp.121-122, 2007
- 西林新蔵ほか:フレッシュコンクリートの流動性評価に関する研究、コンクリート工学年次論文報告集, Vol.14, No.1, pp.375-380, 1992
- 3) 三浦律彦ほか:ロート流下試験法による超流動コンク リートの品質判定に関する一考察,超流動コンクリー トに関するシンポジウム論文報告集,pp.9-16,1993.5
- N. Roussel: A Theoretical Frame to Study Stability of Fresh Concrete, *Materials and Structures*, Vol.39, pp.81-91, 2006
- 5) 李柱国,張文博,吉村貢:フレッシュコンクリートの分 離抵抗性の定量的評価法に関する研究,日本建築学 会大会学術講演梗概集(東北),A-1, pp.571-572, 2009.8.
- 6) M.Sonebi, M.Rooney and P.J.M.Bartos: Evaluation of the Segregation Resistance of Fresh Self-compacting Concrete Using Different Test Methods, *First International Symposium on Design*, *Performance and Use of Self-compacting Concrete*, pp.301-307, 2005.5
- 7) 田中享二, 三上貴正, 横山裕:新・建築材料 I [構造材 料編], 数理工学社, pp.32-33, 2004.5
- 8) 李柱国ほか:スランプ試験およびフロー試験による 中流動コンクリートの分離抵抗性の評価に関する研究,日本建築学会大会学術講演梗概集(東北), pp.965-966,2000.9
- 9) (社)日本コンクリート工学協会 フレッシュコンクリートの挙動研究委員会:コンクリートの振動締固めに関する実験報告書, pp.6-7, 1990.3