論文 自己充填コンクリートの多層配筋構造における圧力損失現象に関す る研究

大森 祐助*1・藤原 浩已*2・丸岡 正知*3

要旨: 自己充填コンクリートの間隙通過試験を行い圧力損失簡易推定式との比較を行った。さらに粗骨材体 積割合の変化や流動挙動を把握するため、モデル自己充填コンクリートの間隙通過試験を行った。その結果、 圧力損失簡易推定式は、間隙幅 L が大きく、圧力損失の少ない条件では概ね傾向を捉えることができる。ま た、圧力損失簡易推定式の精度向上のためには、濃縮および閉塞現象が生じにくい間隙幅 L の把握および間 隙幅 L が小さい場合に確認できる、粗骨材の廻り込みによる粗骨材同士の衝突に関して、圧力損失簡易推定 式に組み込むことにより精度向上が可能である。

キーワード:自己充填コンクリート,圧力損失現象,多層配筋構造,粗骨材体積割合

1. はじめに

自己充填性を有する高流動コンクリート(以下,自己 充填コンクリート)は、締固めなしに型枠内を充填する ことが可能なコンクリートである。しかし、実際には型 枠内の流動途中で圧力損失現象により充填不良が生じる 可能性があることが指摘されている¹⁾。

このような充填不良を解決するためには,圧力損失現 象がどのようなメカニズムで生じているかを解明するこ とが必要である。

これまでの研究で、流動障害となる鉄筋が一段の単層 配筋構造と二段の多層配筋構造について、モデル自己充 填コンクリートを用いた可視化実験^{2),3)}を行い、仮想細 管モデル⁴⁾を用いた流動挙動の解析や混相流体力学の概 念を用いた圧力損失メカニズムの解析⁵⁾を進めてきた。

さらに, 圧力損失メカニズムの理論的な検討を行い, 圧力損失簡易推定式⁶⁾を導出した。そこで本研究では, 既往の研究から得られた圧力損失簡易推定式が実際の自 己充填コンクリートに適応可能かを検討し, 問題点を抽 出することで圧力損失簡易推定式の改善および精度向上 を目的とした。

2. 自己充填コンクリートの間隙通過試験

2.1 試験概要

本章では、自己充填コンクリートを用い、多層配筋構 造の間隙通過試験を行った。本試験では、流動障害を二 段の二層配筋構造とし、粗骨材の絶対容積割合を示す粗 骨材体積割合 Xv を一定とした。さらに、試験結果と圧 力損失簡易推定式からの推定値を比較し、推定式が適用 可能かを検討した。

また、コンクリートを硬化させた後の水平流動部を抽

*1 宇都宮大学大学院	工学研究科地球環境デザイン学専攻	(正会	員)
*2 宇都宮大学大学院	工学研究科地球環境デザイン学教授	工博	(正会員)
*3 宇都宮大学大学院	工学研究科地球環境デザイン学助教	工博	(正会員)

出し,水平方向に切断した。その切断面をカメラで撮影 し,粗骨材体積割合の解析を行った。

- 2.2 間隙通過試験
- (1) 試験条件

使用材料,配合条件および示方配合を表-1,表-2, および表-3に示す。配合については、スランプフロー 値および空気量が条件を満たすように、高性能AE減水 剤および消泡剤を添加し調整した。また、粗骨材の最大 寸法は20mm,粗骨材体積割合Xvは30%とした。また、 本試験に使用した型枠を図-1示す。流動障害の条件は、 図-2に示す間隙幅Lが32,36.5,42.5mmの3水準, 障害の前後間隔Gは粗骨材最大寸法の3,5,7,10倍の 4水準とした。

表一1 使用材料

材料	記号	材料名		
水	W	水道水		
セメント	С	普通ポルトランドセメント(密度:3.15g/cm ³)		
細骨材	S	栃木県鬼怒川産川砂(密度:2.58g/cm ³)		
粗骨材	G5	茨城県笠間産5号砕石(密度:2.65g/cm ³)		
	G6	茨城県笠間産6号砕石(密度:2.65g/cm ³)		
高性能AE減水剤	SP	ポリカルボン酸エーテル系		
消泡剤	DF	ポリアルキレングリコール誘導体		

表一2 配合条件

W/C(%)	Xv(%)	flow (mm)	空気量(%)
31.8	30	650 ± 50	2.5±1.0

表-3 示方配合

単位量(kg/m ³)							
W	С	S	G5	G6			
175	550	840	397.5	397.5			

-1211-

図一2 水平流動部

(2) 試験方法

二層の流動障害を配置した, 図-1の型枠のA槽に自 己充填コンクリートを満たし,ゲートを開き自重のみで 流動させた。流動停止後,A槽およびB槽の自由面高さ の差を測定し,損失高さを Δh_1 とする。ここで,コンク リートと型枠との壁面摩擦を排除し,間隙通過による影 響のみを抽出するため,鉄筋を配置しない場合について も同様の試験を行った。このときの損失高さを Δh_2 とし, 圧力損失 ΔP は,式(1)より算出した。

 $\Delta P = \rho \cdot g \cdot (\Delta h_1 - \Delta h_2)$ (1) \rho : コンクリートの密度 (kg/m³)

g : 重力加速度 (m/s²)

(3) 圧力損失簡易推定式

既往の研究から導いた圧力損失簡易推定式⁶⁾を式(2) に示す。

$$\Delta P = \left\{ \frac{2xD}{xD + (x+1)L} \cdot \tau_c \right\} \times n$$

$$+ \left\{ \frac{xD}{xD + (x+1)L} \cdot \rho g H X v \cdot \sum_{m=1}^{n} \left(1 - \frac{xD}{xD + (x+1)L} \right) \right\}^{n-m}$$
(2)

x : - 層における鉄筋数 D:鉄筋径(m) L:間隙幅(m) $<math>n : 層数 \rho : 密度(kg/m³) Xv : 粗骨材体積割合(%)$ $<math>g : 重力加速度(m/s²) \tau_c : コンクリートの降伏値(Pa)$ H : A 槽高さ(m) 本試験において、1つの層における鉄筋数x=3であり、 二層配筋構造であるのでn=2となるので、式(3)で表 わせる。

$$\Delta P = \left\{ \frac{6D}{3D + 4L} \cdot \tau_c \right\} \times 2 + \left\{ \frac{3D}{3D + 4L} \cdot \rho g H X v \cdot \left(1 - \frac{3D}{3D + 4L} \right) \right\}$$
(3)

また,コンクリートの降伏値 τ_c は,既往の研究⁷⁾から回転粘度計を用いたツーポイント法より算定した式を用いた。この式を式(4)および(5)に示す。

$$\frac{\tau_c}{t_c} = 0.196Xv - 3.426 \tag{4}$$

$$\tau_m = -0.384R_0 + 128.23\tag{5}$$

 τ_c : コンクリート降伏値 (Pa) τ_m : モルタル降伏値 (Pa) R_0 : モルタル 0 打フロー値 (mm)

2.3 試験結果

 τ_m

間隙通過試験結果および推定値を図-3に示す。図-3から、自己充填コンクリートは間隙幅 *L* が大きいほど 圧力損失 Δ*P* は小さくなる傾向が認められた。

推定値と比較すると、間隙幅Lが42.5mmの場合にの み試験結果と同程度の値を示した。よって、圧力損失ΔP が小さくなる間隙幅の場合、既往の研究から導いた圧力 損失推定式は傾向を捉えることができる。

しかし,間隙幅 L が 32mm,障害の前後間隔 G が 100, 140 および 200mm の場合について,推定値との差が非常 に大きい。これは、コンクリートの流動を停止させる閉 塞現象を生じたことが原因であり、これにより大きな圧 力損失を生じたと考えられる。また圧力損失簡易推定式 は、コンクリートが障害を通過する際,粗骨材の流れに 停滞が生じ,局所的に粗骨材量が増大する現象⁵⁾(以下, 濃縮と称す)に関しては考慮しているものの,閉塞現象 については考慮していないため,試験結果と推定値に大 きな差が生じたと考えられる。

2.4 粗骨材体積割合の数値的解析

粗骨材が障害を通過する際,粗骨材の流れに停滞が生 じる濃縮が確認されている。障害通過後の粗骨材体積割 合 Xv'_n%は,間隙通過試験中の図-2に示す各 AREA に おける Xv を示すものであり,濃縮の程度が大きいほど 大きくなるものと考えられる。

そこで間隙通過試験後,コンクリート中の各 AREA の 粗骨材量を把握するために,硬化後のコンクリートを切 断,撮影,および画像処理を行い,粗骨材の分布状況を 調べた。手順は次の通りとした。

試験後, コンクリートを硬化させた後の水平流動部を 抽出し, 水平方向に切断した。その切断面をカメラで撮 影し, 静止画像を図-4のように二値化処理した。ここ ではペースト部分を白色, 骨材を黒色となるように画像 処理し, 図-2の各 AREA に黒色の占める面積割合を, 画像解析ソフトを用い測定した。また解析対象は粗骨材 のみとしたが, 画像処理に際し, 細骨材も骨材として黒 色に処理してしまうため, 細骨材分を差し引く目的で高 流動モルタルを用い, 流動障害条件毎に間隙通過試験お よび画像処理を行い, 各 AREA に黒色の占める細骨材面 積割合を測定した。骨材の面積割合から細骨材の面積割 合を差し引くことにより, 粗骨材面積割合とした。

これにより, 障害通過後の粗骨材体積割合 Xv'は式(6) で表されるとした。

$$Xv'_{n} = \frac{S_{n}(A_{1} + A_{2} + A_{3})}{A_{1}S_{1} + A_{2}S_{2} + A_{3}S_{3}}Xv$$
(6)

ここに n=1, 2, 3 とする。

Xv'_n:障害通過後の粗骨材体積割合(%) Xv:配合時の粗骨材体積割合(%) A₁, A₂, A₃: AREA1, 2, 3の検査領域面積(mm²) S₁, S₂, S₃: AREA1, 2, 3の粗骨材面積割合(%)

図-4 検査領域の二値化(例:G=90mm, L=30mm)

2.5 解析結果

粗骨材体積割合の解析結果を図-5~図-7に示す。 図-5より, AREA1における粗骨材体積割合は配合時の Xvよりも増加し, AREA2 での粗骨材体積割合は減少し ている。しかし, AREA3 では配合時の Xv である 30%程 度の値を示していることから,濃縮の程度はあまり大き くないと考えられる。また図-6では,障害の前後間隔 G が 60 および 200mm である 3G および 10G おいて,

AREA1~AREA3 における粗骨材体積割合の若干変化は あるものの,配合時のXvと同程度の値を示しているこ とから、濃縮の程度はあまり大きくないと考えられる。 しかし、障害の前後間隔 G が 100 および 140mm である 5G および 7G おいては, AREA1 から AREA3 にかけて粗 骨材体積割合は減少傾向にある。また 5G および 7G は, 図-3からも圧力損失△Pが3Gおよび10Gと比べ大きな 値を示していることから、AREA1において濃縮を生じた と考えられる。図-7の5Gにおいては、一層目の障害 で閉塞現象を生じ測定不能であった。10Gに関しては, 二層目の障害で閉塞現象を生じたため, AREA3 について 測定不能であった。しかし、3Gに関しては、図-5と同 様に AREA1~AREA3 における粗骨材体積割合の若干変 化はあるものの, AREA3 では配合時の Xv である 30% 程 度の値を示していることから,濃縮がほとんど生じなか ったため、圧力損失は小さな値を示したと考えられる。

図-5~図-7より,濃縮を生じにくいと考えられる 間隙幅の条件においては,式(2)の圧力損失簡易推定式 は概ね傾向を捉えることができる。よって,圧力損失推 定式の精度向上のためには,濃縮および閉塞現象を生じ にくい間隙幅Lの把握が必要であると考えられる。また, 圧力損失ΔPと粗骨材の分布状況には関係があることが 確認された。よって,可視化可能なモデル自己充填コン クリートを用いた流動挙動の検討を行った。

3. モデル自己充填コンクリートの間隙通過試験

3.1 試験概要

本章では、可視化可能なモデル自己充填コンクリート (以下、モデルコンクリート)を用い、多層配筋構造に おける間隙通過試験を行い、自己充填コンクリートの流 動挙動の検討に用いた。本試験は、流動障害を二段の二 層配筋構造とし、モデルコンクリートの粘性および粗骨 材体積割合 Xv は一定とした。

また,モデルコンクリートの流動挙動を目視だけでは なく数値的に捉えるため,撮影した映像を画像解析ソフ トおよび流体解析ソフトを用いて映像を処理し,条件毎 に粗骨材体積割合 Xv の変化および流動挙動についての 解析を行った。

3.2 モデルコンクリートの間隙通過試験

(1) 使用材料

本研究では既往の研究⁵⁾ 同様,自己充填コンクリート をモルタルと粗骨材の固液二相系流体と捉えた。コンク リート中の粗骨材を可視化するため,モデルモルタルと して,水道水に増粘剤(アルキルアリルスルフォン酸塩, 密度:1.08g/cm³)を添加したものを,粗骨材はカラーリ ングを施した人工軽量骨材(最大寸法:15mm,絶乾密 度:1.34g/cm³)を用い,これらを混合してモデルコンク リートとした。

(2) 試験方法

試験方法は、自己充填コンクリートの間隙通過試験と 同様とする。また、モデルコンクリートの間隙通過試験 では、試験中図-8に示す水平流動部の様子を上方より ビデオカメラで撮影し、各種解析に用いた。

図-9 水平流動部

(3) 試験条件

モデルコンクリートの配合条件は,粗骨材体積割合 Xv が 30%,増粘剤添加率 V を 15%とした。増粘剤添加率 については,予備実験を行い,モデルモルタルの0打フ ローが 250mm 程度になるように調整した結果より設定 した。

また,モデル型枠の条件として,図-9に示す間隙幅 Lが21,24,26,30mmの4水準,障害の前後間隔Gは, モデル粗骨材最大寸法の3倍~10倍に相当する45,60, 75,90,105,120,135および150mmの8水準とした。 3.3 試験結果

間隙通過試験結果と推定値を図-10に示す。ここで は、実際の自己充填コンクリートとの傾向を比較するた め、障害の前後間隔 G が 45、75、105 および 150mm の 3G、5G、7 および 10G についてのみ記載する。図-10 から、自己充填コンクリートと同様に間隙幅 L が大きい ほど圧力損失 ΔP は小さくなる傾向が認められた。また推 定値と比較した場合においても、自己充填コンクリート と同様に間隙幅 L が大きい場合についてのみ、傾向を捉 えることができる。

3.4 可視化実験結果の数値的解析

まず AREA1, AREA2 および AREA3 における静止画 像を図-11のように二値化処理を行い,本章では白色 を粗骨材,黒色をモルタル部分とみなし,領域毎に白色 が占める粗骨材面積割合を,画像解析ソフトを用い測定

図-11 検査領域の二値化(例:G=90mm, L=30mm)

した。さらに、2.4 と同様にして AREA1, AREA2 および AREA3 における粗骨材面積割合をそれぞれ S₁, S₂および S₃とし,粗骨材体積割合 Xv'は式(6)を用いて算出した。

3.5 解析結果

解析結果を図-12~図-15に示す。図-12およ び図-13においては、各AREAとも配合時のXvと同 程度の値を示していることから、濃縮をあまり生じてい ないと考えられる。これは図-10において圧力損失が 小さな値を示していることからも確認できる。また、図 -14および図-15においては、AREA1からAREA3 にかけて粗骨材体積割合は減少傾向にある。この条件で は圧力損失も大きいため、濃縮を生じていることが原因 であると考えられる。これらの結果から、自己充填コン クリートとモデルコンクリートの圧力損失および粗骨材 体積割合の変化は、概ね同様の傾向を示していることが

確認され,粗骨材体積割合の変化は,間隙幅 L の影響が 大きいことが確認された。さらに,粗骨材の流動挙動に ついての解析を行い,圧力損失を生じる原因を検討する 必要がある。

3.6 可視化実験結果の流動挙動解析

間隙通過試験中において撮影した映像を,画像処理計 測法⁸⁾の一つである PTV (Particle Tracking Velocimetry) を用いた流動解析ソフトを使用し,粗骨材が間隙を通過 する際の流動挙動の把握を行った。このソフトを用いる ことにより,粗骨材の流速,流動方向,移動距離等を計 測することができる。本解析では,粗骨材がどのように 流動しているかを把握するため,各々の粗骨材の流線の 解析を行った。

3.7 解析結果

図-16および図-17に、障害の前後間隔Gが 150mm、間隙幅Lが30mmおよび21mmについての解析 結果のみを示す。間隙幅Lが大きい場合の図-16では、 障害を通過する際には障害を廻り込む流動挙動を示して いるが、障害の前後においては、流動挙動に大きな変化 は見られない。しかし、図-17の間隙幅Lが小さい場 合には、障害を通過する際に障害を大きく廻り込むよう な流動挙動を示し、障害の前後における粗骨材の流動に 乱れを生じている。このような障害を大きく廻り込む流 動挙動や流動が乱れることにより、粗骨材同士が接触す る可能性が高くなると考えられ、これも圧力損失現象の 要因の一つであると考えられる。よって、この粗骨材の 廻り込みによる粗骨材同士の衝突と間隙幅 *L* との関係を 圧力損失簡易推定式に組み込むことで、より精度が向上 すると考えられる。

図-16 粗骨材の流線 (G=150mm, L=30mm)

図-17 粗骨材の流線(G=150mm, L=21mm)

4. まとめ

自己充填コンクリートの間隙通過試験,モデルコンク リートの間隙通過試験,粗骨材体積割合の解析および粗 骨材の流動挙動の解析を行い,そこから得られた知見を 以下に示す。

- (1) 既往の研究から導いた圧力損失簡易推定式は、間隙
 幅 *L* が大きく、圧力損失の少ない条件では概ね傾向を 捉えることができる。
- (2) 二層配筋構造において, 圧力損失簡易推定式の精度 向上のためには, 濃縮および閉塞現象が生じにくい間 隙幅 L の把握が必要である。
- (3) 間隙幅Lが小さい場合に確認できる,粗骨材の廻 り込みにより,粗骨材同士の衝突をする可能性が高い ため,これを圧力損失簡易推定式に組み込むことで, より精度の向上が可能である。

謝辞

本研究で使用した増粘剤を提供していただいた花王 (株)関係者各位に御礼申し上げます。 また,本研究の実験結果の一部は平成18年度文部科学省 科学研究費補助金(基盤研究(C),課題番号:18560447, 研究代表者:藤原浩已)により実施したものである。付 記し,謝意を表します。

参考文献

- 藤原浩已:自己充填性を有する高流動コンクリートの特性に関する研究,東京工業大学位論文,1996.3
- 2) 例えば,橋本親典,吉田正宏,安積淳一,辻幸和: フレッシュコンクリートの可視化実験手法に関す る相似則の検討,コンクリート工学年次論文報告集, Vol.13, No.1, pp89-94, 1991.7
- 谷川恭雄ほか:超流動コンクリートにおける粗骨材 連行性に関するレオロジー的考察,超流動コンクリ ートに関するシンポジウム論文報告集, pp.79-84, 1993.5
- 4) 芦澤良一ほか:高流動コンクリートの鉄筋間通過に おける圧力損失に関する研究,第57回セメント技 術大会講演要旨,pp.254-255,2003.4
- 5) 渡邊暢ほか:多層流動障害通過時の自己充填コンク リートの圧力損失メカニズムに関する実験的検討, コンクリート工学年次論文報告集, Vol.29, No.2, pp73-78, 2007.7
- (6) 渡辺有寿ほか:高流動コンクリートの鉄筋間隙通過 時における圧力損失メカニズムに関する研究、コン クリート工学年次論文報告集, Vol.28, No.1, pp1139-1144, 2006.7
- 7) 石澤由:高流動コンクリートの間げき部流動挙動に 関するレオロジー的考察,宇都宮大学大学院,工学 研究科,建設学専攻,修了論文,2004
- 8) 可視化情報学会:可視化情報ライブラリー,光学的 可視化法,2001