論文 非対称鉄骨を内蔵した SRC 長柱の強軸曲げ偏心圧縮実験

柴田 道生*1·林 和宏*2

要旨:非対称断面 SRC 長柱の耐力に関する研究は本論が初めてである。研究では一軸非対称の T 型鉄骨を内蔵した SRC 長柱の強軸曲げに関する偏心圧縮実験,対応する解析モデルの定義および耐力予測を試みた。この内偏心圧縮実験は、2 種類の材長、6 種類の偏心量について計 12 体行った。試験体は1辺 12cm 角のコンクリート中に板厚 6mm の鋼板を溶接組立した T 型断面鉄骨(T-56×50×6×6)を挿入し、主筋およびフープは9mm、3mm 丸鋼を用いた。

キーワード:合成長柱,非対称断面,偏心圧縮実験,最大耐力,耐力予測式

1. 序

1.1 はじめに

鉄骨鉄筋コンクリート構造(以後 SRC 構造と呼ぶ) 骨組みの内柱では、図-1(a)に示すような内蔵鉄骨と して十字形のウェブにフランジを付した部材(以後 十 字形鉄骨と呼ぶ)のような2軸対称断面材が用いられる。 しかし、建物周辺の柱の内蔵鉄骨は、図-1(b)に示す ようなT字形のウェブにフランジを付した部材のような 1軸対称断面材が用いられることが多い。このような部 材の断面は弱軸曲げに対しては対称性を持つが、強軸曲 げに対しては非対称の性質を示す。

実施設計では非対称鉄骨を内蔵する SRC 部材は多く 用いられており,鉄骨鉄筋コンクリート構造計算規準・ 同解説¹⁾では,そのような部材の全塑性モーメントにつ いて記述されているが,関連した研究は極めて少なく, 特に実験的な研究は西村・筒井などの短柱に関する成果 を除いては見られない^{2,3)}。また,長柱に関する研究は 皆無である。

本研究は,非対称鉄骨を内蔵する SRC 長柱が軸力と強 軸曲げ材端モーメントを受ける場合の設計手法を確立 することを目的とし,実験的・解析的検討を行う。

1.2 非対称 Hybrid 部材に固有の問題

対称断面材では存在軸力のレベルに関わらず,部材断 面に一様なひずみを生じさせる軸力の作用位置は常に 断面中心であり,この点は「図心」と定義される。また, このような載荷条件を中心圧縮と呼ぶ。

しかし、一般に複数の非線形材料で構成され、しかも それらの図心が一致しない部材(以後、非対称 Hybrid 部 材と呼ぶ)では、部材断面に一様なひずみを生じさせる 軸力の作用位置が、存在軸力のレベルによって変化する。 したがって、「図心」という定義は非対称 Hybrid 材に適 用できず、対称断面材における中心圧縮という概念も成

図-2 鋼材の偏心した SRC 部材

立しない。以上から、新たな定義に基づく非対称 Hybrid 材の理論を再構築する必要がある。

SRC 柱のコンクリート部中心を座標原点に選んだ時, 図-2のように鋼材図心が原点より*c*だけ離れていれば, 一様ひずみ圧縮によって発生する偏心モーメントは

$$M = N_s c$$
 (1)
対応する等価偏心 e は

$$e/c = N_s/N \tag{2}$$

となる。ここに、N および N_s は存在軸力および鋼材の 分担軸力である。

材料構成則を鋼材については完全弾塑性型, コンクリ ートは完全パラボラ型と仮定すれば, 一様ひずみ圧縮に よって発生する $M / (N_o c)$ および e/c と存在軸力比 n= N / N_o の関係は図-3のようになる。ここに N_o は部 材としての降伏軸力である。

図-3によれば、等価偏心は軸力レベルによって変動

*1 摂南大学 理工学部建築学科教授 工博 (正会員)

*2 摂南大学大学院 工学研究科創生工学専攻 大学院生 工修

試験体名	材長	材齢	F _c	e_y	No	M_o	n	m
	cm	日	MPa	cm	kN	kNm	$(=N/N_o)$	$(=Ne/M_{ov})$
A1L	120	91	23.2	3.94	550	11.07	0.398	0.779
A1m	120	114	28.1	1.47	630	12.51	0.716	0.530
Als	120	99	26.8	0.38	613	12.23	0.974	0.186
A2L	120	114	23.8	-3.01	567	11.50	0.482	-0.715
A2m	120	101	25.5	-0.86	610	12.25	0.724	-0.310
A2s	120	101	25.9	0.25	595	11.85	0.988	0.124
B1L	240	107	22.1	3.94	538	10.93	0.233	0.451
B1m	240	108	25.8	1.47	587	11.72	0.538	0.396
B1s	240	108	22.6	0.38	559	11.44	0.793	0.147
B2L	240	106	25.8	-3.01	595	11.87	0.316	-0.477
B2m	240	107	26.2	-0.86	607	12.09	0.528	-0.228
B2s	240	105	26.8	0.25	604	12.04	0.805	0.101

表-1 試験体一覧

するが,ほぼ一定の値を保つ。また,偏心モーメントと 軸力の関係もほぼ直線的である。これは,非対称鉄骨を 内臓する SRC 部材を,仮の図心(例えば弾性図心)が座 標原点に一致しない対称断面部材として取り扱っても, 大きな誤差は生じないことを示唆する。

2. 合成長柱の強軸曲げ偏心圧縮実験

2.1 試験体

試験体概要を図-4に、試験体名・載荷条件・基本諸 量および無次元化した最大耐力を表-1に示す。試験体 は1辺12cm角のコンクリート中に板厚6mmの鋼板を溶 接組立したT型断面鉄骨(T-56×50×6×6)を挿入し、主筋 およびフープは9mm、3mm丸鋼を用い、材端に厚さ20mm のエンドプレートを溶接した。試験体名は、1文字目は 材長を(A:120cm,B:240cm),2文字目は曲げの種類 を(1:正曲げ,2:負曲げ),3文字目は偏心量を(L: 偏心大,m:偏心中,s:偏心小)、を表す。本研究では、 荷重線からみた材軸線への距離を偏心量と定義する。従っ て、等価偏心より大きな偏心を与えると正のたわみが、 小さな偏心を与えると負のたわみが生じる。

試験体強軸まわりの全塑性モーメントに関する n - m相関関係を図-5に示す。縦軸に降伏軸力比 $n = N / N_o$ を、横軸に材端曲げモーメント比 $m = M / M_o$ を取る。 ここに、 $N \ge M$ は存在軸力と存在材端モーメント、 N_o $\ge M_o$ は降伏軸力と強軸曲げの基準強度 (N - M 相関 関係における全塑性モーメントの最大絶対値) である。

また,図-4に示す非対称断面では,軸力 N_oにおける 全塑性モーメントは次式で表される(図-5参照)。

$$M_{1} = A_{f} \left({}_{s} \sigma_{y} - F_{c} \right) j$$
(3)
$$m_{1} = M_{1} / M_{o}$$

ここに、 A_f は鉄骨フランジの断面積, j はフランジの座 標原点からの距離、 $_{s}\sigma_{y}$ は鉄骨の降伏応力、 F_c はコン クリート強度である。従って、図-5に示すn - m 相関 関係上で、原点 (0,0) と降伏曲線の頂点 (1, m_1) を結 ぶ直線は、横軸に対して正曲げの領域で角度 θ , 負曲げ の領域で角度 $\pi - \theta$ を持つ。

ここで, **表**-1に示した試験体両材端の偏心量 *e_y* はそ れぞれ, 図-5における横軸と(0,0) - (1, *m*₁)線のな す角を3等分した方向に対応する。

次に,鋼材の引張試験結果を表-2に、コンクリートの 調合設計を表-3に示す。なお、コンクリートの調合では 細骨材の含水率に応じて水及び細骨材量の補正を行った。 また、コンクリートの強度-対数材齢関係を図-6に示す。 縦軸はコンクリート強度を,横軸は自然対数による材齢を 取る。図では、材齢100日前後までは、対数材齢とコンク リート強度がほぼ直線的な関係にあることがわかる。

2.2 支承

本研究では全方向回転自由な支承として,図-7(a)に示 す交差かまぼこ支承を用いた。

2.3 載荷・測定システム

試験体の材端に所定の偏心量を与えるための材端移 動装置を図-7(b)に示す。この材端移動装置は、図-7(b) に示す調整用ボルトAを動かすことでA'の枠が左右(x 方向)に移動し,試験体にx 方向の偏心を与える。また, ボルトBを動かすことでB'のプレートが上下(y 方向) に移動し, y 方向の偏心を与える。

また,試験体の立体的な変形性状を測定することを目 的とした測定システムを図-8に示す。この測定システ ムは軸方向(*z*方向)変位と,材長を8等分する点及び 材端位置での*x*,*y*方向変位を測定する。

3. 数值解析

たわみ曲線を差分近似した1次元連続体の変位増分 解析を行い実験結果を検証した。解析概要を以下に示す。

表-2 鋼材の引張試験結果

	降伏応力 MPa	引張強度 MPa	伸び率 %
鉄骨	284	426	27.37
鉄筋	303	430	29.62

表-3 コンクリートの調合

水セメント比	水	セメント	砂	粗骨材	AE 剤
W/C(%)	W(kg)	C(kg)	S(kg)	G(kg)	Ad(kg)
65	210	323	867	830	3.46

図-7 支承と材端移動装置

図-8 測定システム

3.1 解析モデル

部材の両端に等しい偏心 e_vを与えた偏心圧縮柱を図 -9のようにモデル化し、各点の曲率をたわみの2次差 分で近似する。また、解析における断面は図-10に示す ようにコンクリートを12分割,鉄骨はウエブを10分割, フランジを1要素,鉄筋1本を2分割とした。

3.2 仮定

- 1) 平面保持仮定が成立する。
- 2) 垂直応力および軸力の符号は圧縮を正,軸ひずみは縮み を正とする。
- 3) 材料構成法則は図-11のパラボラ型とし,比例限度 r はコンクリートではr = 0, 鋼材ではr = 0.6とする。
- 4) コンクリートには引張強度およびコンファインド効果を 期待しない。

4. 合成長柱の強軸曲げ偏心圧縮実験

4.1 荷重 - 中央点たわみ関係

図-12に、正曲げを与えた試験体の荷重 - 中央点たわ み関係を示す。縦軸は作用荷重と降伏軸力の比 n を, 横軸は 中央点たわみ量を表す。図中の -- ◆-- は実験で得られた y方向の中央点たわみ δ_c を、実線はこれに対応する数値解 を, 鎖線は偏心量に対応する弾性解

$$\delta_{c} = P e_{y} L^{2} / 8 E I \tag{4}$$

を示す。

弾性解と実験結果の対応は,原点近傍の弾性立上りで 良好であり、これは所定の偏心量が正しく与えられたこ とを示している。また、実験結果と数値解析の対応は、 荷重条件によらず概ね良好である。

しかし、図-12(f)の荷重条件では、数値解析において 最大耐力以後に変形方向が逆転するのに対し、実験値で は同じ方向に変形が進行する。

4.2 荷重 - 支点回転角関係

図-13に,正曲げを与えた試験体の荷重-支点回転角 関係を示す。縦軸は作用荷重と降伏軸力の比nを、横軸 は部材両端の支点回転角を表す。図中の -- ◆-- と --〇-- は、実験で得られた x 軸周りの試験体下端お よび上端回転角、実線はこれに対応する数値解を示す。

前節の検討同様,荷重-支点回転角関係でも実験結果 と数値解析の対応は概ね良好であるが,図(f)の荷重条件 では、やはり最大耐力以後の変形方向が異なる。これは、 非対称断面における等価偏心量が、軸力レベルによって 変動する事が原因と考えられる。

図-14は図-4に示す試験体の強軸まわりに関する

等価偏心量の変動と,試験体 Bls に与えた偏心量の関係 を示す。図中の鎖線が等価偏心量,実線矢印が試験体 Bls に与えた偏心量である。図から試験体 Bls の荷重条件で は,軸力が増えるとともに等価偏心量が増加し,軸力 n1 を境にたわみの発生方向が逆転することがわかる。よっ て,偏心圧縮実験では,軸力が n1 に達するまでは正の たわみが単調に増加する。しかし,軸力が n1 を超える と試験体には,等価偏心量の増加に起因する負の成分 (試験体に負のたわみを生じさせようとする力)と,軸 力が n1 に達するまでに生じた正のたわみに起因する正 の成分の双方が作用する。

図-12(f)と図-13(f)に示す数値解では,上記の正負両 成分の作用によって,最大耐力以後に変形の方向が逆転 したものと考えられる。しかし,実験では部材が最大耐 力に達した直後に,コンクリート部分の割裂および剥離 を伴った急激な耐力低下が起こっており,正方向への変 形が卓越した。以上の考察から、図-12(f)と図-13(f) における最大耐力以後の実験値と数値解の変形方向の 違いは、数値解析で用いた材料構成法則が材料劣化を考 慮していないためと考えられる。

3章で定義した数値解析モデルは、最大耐力以後の部 材変形性状に関しては実験結果と異なる場合もある。し かし、本研究の目標は最大耐力予測および最大耐力時の 部材変形性状の把握であるため、3章の解析モデルは一 方向載荷を受ける部材に関しては有効である。

5. 耐力予測式

5.1 SRC 長柱の耐力予測式

対称断面鉄骨を内蔵する SRC 長柱の耐力予測式は,文献4 ~11)等ですでに示されている。中でも,文献 11)で示され たモーメント拡大係数を用いた耐力予測式(以後,拡張モ ーメント拡大法)は,対応領域が非線形弾塑性部材に拡張

され,実験結果および数値解析との対応が良好であった。

拡張モーメント拡大法では部材の曲げ耐力 M_d が,存 在軸力 N に対応した全塑性モーメント $M_o(N)$ を,モー メント拡大係数 μ で除した値として求められる。

$$M_d = M_o(N)/\mu \tag{5}$$

文献 11) のモーメント拡大係数は,非対称断面であって も塑性断面係数等を求めれば算出できる。本研究では,文 献 11) で示されたモーメント拡大係数を用いて,強軸曲げ を受ける非対称鉄骨内臓 SRC 長柱の耐力予測を試みる。

ただし文献11)では、部材の中心圧縮状態を基準として、モーメント拡大係数を適用した。同法を非対称断面材に適用する場合は、一様ひずみ圧縮状態を基準とすべきである。1.2節に記したように、非対称断面での一様ひずみ圧縮における荷重-材端曲げモーメントの関係は、厳密には線形とはならない。しかし、本研究で取り扱う図-4の断面では、一様ひずみ圧縮が図-5中の鎖線のようになり、原点(0,0)と降伏曲線の頂点(1,m1)を結ぶ直線でほぼ近似できる。

以上から、本研究では部材の曲げ耐力 Md を

 $M_d = M_o(N)/\mu + M_1(1-1/\mu)$ (6)

のように求める。ここに、式(6)の右辺第1項までは式(5) に同じ、第2項は非対称断面において一様ひずみ圧縮状 態を基準とした事に関する補正の項である。

5.2 耐力予測式と実験結果

図-15は今回の実験結果と耐力予測式(6)の比較を示 す。縦軸は作用荷重と降伏軸力の比*n*を,横軸は材端モ ーメントと強軸曲げの基準強度の比*m*を表す。図中の 細実線は全塑性理論解,太実線は耐力予測式(6),破線は 3章で定義した数値解を示す。また,●と○は材長 120cmと240cmの試験体の実験値を示す。提案式と実験 値および数値解の対応は概ね良好である。また,提案式 は実験結果および数値解に対しておおよその場合安全 側の値を与える。

6. 結論

非対称断面鉄骨を内蔵する SRC 長柱の強軸曲げ対称 偏心圧縮実験とそれに対応する数値解析を行うととも に,文献 11)に基づいた耐力予測式(6)との比較を行い, 以下の結論を得た。

1) 偏心圧縮実験において, 所定の偏心量は正しく与えら れた。

- 実験結果と数値解析の対応は、部材が最大耐力に到る までは良好である。
- 本研究が提案する解析モデルは、一方向載荷に関する 最大耐力予測では有効である。
- 4)実験結果と耐力予測式(6)の対応は良好であり、ほぼ 安全側の結果となった。

謝辞

コンクリートの打設に関して便宜を賜ったタイコー KK 藤木英晴氏・入澤享氏に厚く感謝します。

参考文献

- 日本建築学会:鉄骨鉄筋コンクリート構造計算規準, 2001
- 松田聖一・筒井茂行・馬場望・西村泰志: T 字形鉄骨 を内蔵する SRC 柱の曲げ破壊性状,日本建築学会近 畿支部研究報告集, No.43, 2003.06
- 松田聖一・筒井茂行・馬場望・西村泰志: 圧縮力を受ける T 字形鉄骨を内蔵する SRC 柱の曲げ破壊性状, 日本建築学会近畿支部研究報告集, No.44, 2004.06
- Basu, A.K. : Computation of Failure Loads of Composite Columns, Proceedings Inst. Civil Engrs., Vol.38, pp.557-578, 1967.03
- Basu, A.K. and Hill, W.F. : A More Exact Computation of Failure Loads of Composite Columns, Proceedings Inst. Civil Engrs., Vol.40, pp.37-60, 1968.05
- 若林 實・吉田 望:細長い合成柱の設計式,日本 建築学会論文報告集,No.278, pp.27-36, 1979.04.
- 柴田道生:SRC 梁-柱の耐力,構造工学論文集,日本建築学会,Vol.40B, 1994.3, pp.359-366.
- 柴田道生:2 軸曲げを受ける SRC 長柱の耐力,日本 建築学会構造系論文集,No.519, pp.135-141, 1999.05.
- (7) 藤永 隆・津田恵吾・松井千秋:種々の形状の鉄骨を 内蔵する SRC 長柱の累加耐力,日本建築学会構造系 論文集,No.531,pp.173-179,2000.05.
- 柴田道生:非対称主軸曲げおよび2方向曲げを受ける合成長柱の耐力予測,日本建築学会構造系論文集, No.586, pp.235-241, 2004.12
- 11) 柴田道生:2 軸曲げを受ける SRC 長柱の耐力予測, 日本建築学会構造系論文集, No.539, pp.159-165, 2001.01