論文 200N/mm² コンクリートを用いた RC 柱の曲げせん断実験

丸田 誠^{*1}·高稻 宜和^{*2}·永井 覚^{*3}·鈴木 紀雄^{*4}

要旨: コンクリート強度が 200 N/mm², 主筋が SD980, 横補強筋を 1275 N/mm² クラスとしたせん断スパン比 M/QD=1.5 の柱の曲げせん断実験を 8 体行った。コンクリートには鋼繊維を混入している。実験因子は主に横 補強筋量として, 2 体は内柱を想定した一定軸力下, 6 体は外柱を想定した変動軸力下での載荷を行い, その 性状を確認した。内柱試験体では横補強筋比 p_w =0.9%以上で, 外柱試験体では p_w =1.35%以上で ACI の曲げ強 度計算値以上の強度を発揮した。限界変形角 Ru は, 横補強筋量($p_w \cdot \sigma_{wy}$)と相関があり, $p_w \cdot \sigma_{wy}$ =17.2 N/mm² の外柱試験体では $p_w \cdot \sigma_{wy}$ =11.5 N/mm²の試験体より, Ru が約 3 倍大きくなることが分かった。 キーワード:高強度コンクリート, RC 柱,高軸力,曲げせん断性状,靱性能,変動軸力

1. はじめに

近年, コンクリートの高強度化が材料分野から推進され, Fc150N/mm²を超えるコンクリートも超高層鉄筋コ ンクリート (RC) 建物の下層階柱の一部に使われ始めて いる¹⁾。RC 部材の高強度化により, (1)60 階以上の RC 造超高層建物の実現化, (2)既往の RC 建物の部材断面の 縮小化が図られる。このような背景の基に, 200N/mm² クラスのコンクリートを用いた柱の実験研究が報告さ れてきている²⁾。一方,鉄筋も高強度化が進み SD980 ク ラスの主筋も実用化されてきている。

コンクリートの高強度化に伴って発生する構造的な 問題点が報告されてきている。まず(1)早期の小変形時に、 柱のかぶりコンクリートが爆裂的に飛散する。次に(2) 部材性能に寸法効果が顕著に現れてくる。(1)について木 村・石川は, Fc150N/mm²の柱コンクリートに鋼繊維を 混入し,飛散防止や強度上昇に鋼繊維の効果があったこ とを報告している³⁾。(2)については,河野らが寸法効果 を考慮した実験式を提案してきている⁴⁾。

高強度 RC 柱の強度や靱性能などの構造性能を把握す ることを本研究の目的とし、上記問題点の克服とデータ の蓄積も鑑み、SD980 の主筋と鋼繊維を混入した 200N/mm²のコンクリートの組み合わせ下で、部材寸法 を従来²⁾より大きくした試験体を用いて、軸力や横補強 筋量を主因子とした柱の曲げせん断実験を実施した。

			x	10 00 00 00 00 00 00 00 00 00 00 00 00 0				
			主筋 [n (%)]	横補強	筋	コンクリート		
試験体	軸力 1)	繊維 2)		细種	間隔(mm)	圧縮強度	ヤング係数	
				如何小生	$[p_w(\%)]$	N/mm ²	kN/mm ²	
H20A 1100 C					@63	216	167	
H20A-009-C	0.3cNu	H20A	24-D19		[0.90%]	210	40./	
H20A-U14-C	(一定)	1120A			@42	207	16.9	
1120A-014-C				U9.0	[1.35%]	207	40.7	
H20A-U09-V				SBPD1275 $\sigma_{wy}=$	@63	212	49.6	
112011 009 1					[0.90%]	212	.,	
H20A-U14-V			SD980	1313 ³⁹ N/mm ²	@42	212	48.1	
	0.75tNu	H20A	[3.4%]		[1.35%]			
H20A-U16-V	\sim		$\sigma_{wy} = 1106^{3}$		@35	211	48.5	
	0.2cNu		N/mm ²		[1.63%]			
H20A-H16-V	\sim			D10 SD785	@39	212	48.6	
	0./cNu (亦動)			$\sigma_{wy}=902^{37} \text{ N/mm}^2$	[1.63%]			
H20B-U14-V	(変動)	H20B		U9.0	@ 42	208	48.3	
				SBPD1275	@42			
H20C-U14-V		H20C		$\sigma_{wy} =$ 1212 ³ N/mm ²	[1.55%]	203	45.8	
				1515 N/mm				

表-1 試験体一覧

cNu= 0.85 σ_B(bD - ΣA_g) + ΣA_gσ_y, tNu=ΣA_gσ_y, b, D: 断面の幅とせい, σ_B: コンクリート強度, A_g: 主筋断面積, σ_y: 主筋降伏強度
 H20A: 径 0.2mm, 長さ 22mm のストレート繊維を 0.3% Vol.混入, H20B: 径 0.2mm, 長さ 22mm のストレート繊維を 0.5% Vol.混入, H20C: 径 0.38mm, 長さ 30mm のフック型繊維を 0.5% Vol.混入

3) 0.2%オフセット値

*1 島根大学	総合理	里工学部	材料プロセス工学科	教授	博士(工学)	(正会員)
*2 鹿島建設	(株)	技術研究	こ所建築構造グループ	研究員	博士 (工学)	(正会員)
*3 鹿島建設	(株)	技術研究	こ所建築構造グループ	上席研究員	工修	(正会員)
*4 鹿島建設	(株)	技術研究	已所	副所長	工博	(正会員)

図-1 試験体形状・配筋の例(H20A-U14-V)

2. 実験計画

試験体は、断面 450mm 角、せん断スパン比 1.5 の柱部 材 8 体とした。

試験体の一覧を表-1に、配筋例を図-1に示す。試 験体の因子の関係を図-2に示す。試験体の縮尺は実物 の約1/2とした。8体中2体を内柱試験体として一定軸 力下(0.3cNu, cNu: 柱の圧縮軸耐力), 他の6体を外柱試 験体として,変動軸力下(0.75tNu~0.7cNu, tNu: 柱の 引張軸耐力)の実験を行った。全ての試験体とも、鋼繊 維入りの 200N/mm² コンクリートと SD980 の主筋は共通 とした。降伏強度 1275 N/mm² クラスの高強度横補強筋 を中心とし、比較用の SD785 を実験因子の一つとした。 内柱試験体の実験因子は横補強筋比 pwで,外柱試験体の 実験因子は、(1)鋼繊維種類(3種)、(2)横補強筋量(横 補強筋比 pw×降伏強度 σwv)とした。コンクリートには, 長さ 22mm, 径 0.2mm の鋼繊維を体積比 0.3% Vol.混入す るものを基本とし、その量を 0.5% Vol.とした試験体と、 フック型(長さ 30mm, 径 0.38mm)繊維を 0.5% Vol.混 入した試験体を製作し、比較を行った。

軸力と曲げモーメントの載荷ルールを図-3 に示す。 全ての試験体で部材角 R=1.25, 2.5, 5, 10, 20, 30, 40 ×10⁻³rad.を目標に変形制御での繰返し載荷を行った。外 柱では,長期軸力(0.2cNu)を作用させた後,圧縮軸力側 では M-N 関係上で軸力 0.7cNu 時に 0.5Mu (Mu: ACI 曲 げ終局モーメント) になる点,引張軸力側では軸力 0.75tNu 時に Mu に達する点を目指し,曲げモーメントに 比例する変動軸力を加えた。ただし圧縮軸力の上限は 0.7cNu まで,引張軸力の上限は 0.75tNu までとした。こ れ以降,外柱では変動軸力載荷の際に圧縮側を正に引張 側を負の載荷として記す。鉄筋の機械的性質及び実験時 の封緘養生供試体から求めたコンクリート強度を表-1 中に示す。計測は主要な変形と鉄筋のひずみについて行 った。

写真-1に加力装置を含む実験状況を示す。建研式に 倣い,試験体の上下スタブを平行に保つように載荷した。

50000 ∎ 水平力:P Nu 柱内法 ۰h 40000 寸法 変動軸力 (1) 220000 天 0.7cNu 宇軸ナ 0.3cN **口** 0.2cNi tΜι 0.5cMu cMu -10000 <u>0.75000</u> -1000 -3000 -2000 -1000 0.75tNu τNu 0 1000 2000 3000 モーメントM(kN·m) 図-3 軸力と曲げモーメントの載荷ルール

写真-1 実験状況

3. 実験結果

3.1 実験経過および変形性能

表-2 に実験結果の一覧を,図-4 に各試験体の P-Δ 効果を考慮した,せん断力と部材角(以下 R と称す)の 関係を示す。この図中に ACI ストレスブロック法⁵⁾ によ る曲げ耐力を示しており,コンクリート平均圧縮強度を 与える係数を 0.85,圧縮合力位置を与える係数を 0.65, 圧縮縁ひずみを 0.3%として算定した。部材角は剛なスタ ブ間の変形をクリアスパンで除して求めた。

代表的な試験体のR=10×10⁻³rad.時の損傷状況と最終

	主筋圧縮降伏		主筋引張降伏		横補強筋降伏		1次ピーク		最大強度		
試験体	Q	R	Q	R	Q	R	Q	R	Q	R	
	(kN)	$(\times 10^{-3} \text{rad.})$	(kN)	$(\times 10^{-3} \text{rad.})$	(kN)	$(\times 10^{-3} \text{rad.})$	(kN)	$(\times 10^{-3} \text{rad.})$	(kN)	$(\times 10^{-3} \text{rad.})$	
H20A-U09-C	3273	15.9	_	—	2874	18.5	3206	10.7	3364	10.0	
H20A-U14-C	3337	15.3	_	_	2653	33.0	3097	10.0	3768	29.6	
H20A-U09-V	1501	5.3	—	_	2033	14.8	2083	5.2	2453	10.0	
H20A-U14-V	1949	6.7	-416	-11.8	2156	31.9	1883	5.1	3106	20.0	
H20A-U16-V	1930	6.9	-409	-20.0	2233	5.0	2233	5.0	3364	30.4	
H20A-H16-V	1699	6.4	-419	-18.2	918	7.0	1891	4.9	2688	19.3	
H20B-U14-V	2178	7.1	-414	-19.3	2034	31.3	2227	6.2	3258	20.0	
H20C-U14-V	2166	7.1	-402	-20.0	2807	29.8	2241	6.6	3168	20.0	

表-2 実験結果一覧

山一5 破壕状》

状態を図-5 に示す。内柱試験体(H20A-U09-C, H20A-U14-C)の破壊経過は,R=4×10⁻³rad.時に曲げひび 割れとコンクリートの端部圧壊が観察された。その後, R=10×10⁻³rad.程度で,大きな音と伴にかぶりコンクリー トの圧壊が際立った。せん断力一部材角関係は,このか ぶり剥離(1 次ピーク)以降,横補強筋が少ない H20A-U09-C 試験体では,強度上昇が見られなかった。 最終的には,H20A-U09-C は圧壊が進み,荷重低下が著 しくなった時点で,H20A-U14-C はR=50×10⁻³rad.を経験 した時点で載荷を終了した。

外柱試験体の試験経過は、圧縮側の挙動を中心に記述 する。いずれの試験体も圧縮側加力の R=1.5×10³rad.程度 の初期からコンクリートの圧壊が観察された。その後 R=5×10³rad.程度でかぶりコンクリートが顕著に剥落し て強度が低下した。その後主筋の圧縮降伏が観察され, 部材角の増大と伴にコンクリートの圧壊がコアコンク リート部分まで進み,R=10×10³rad.付近で,縦方向ひび 割れが生じた。最終的には,H20A-U14-V を除き,横補 強筋の破断と伴に軸力が保持できず最終に至った。

すべての実験の破壊状況から,文献3),4) で報告され ているような,かぶりコンクリートの爆裂的な飛散は防 止できた。これは,鋼繊維をコンクリートに 0.3%Vol. 以上混入した効果と思われる。

せん断カー部材角関係の包絡線を**図ー6**に示す。外柱 試験体は、(1)鋼繊維種類、(2)横補強筋量と因子別に示し た。内柱試験体では、横補強筋量によって強度低下の傾 向が明確に異なることが分かる。外柱試験体では、鋼繊 維種類、量の違いによる各試験体のせん断カー部材角包 絡線の違いは大きくなかった。しかし、横補強筋量によ る違いは大きく、横補強筋比 $p_w=0.9\%$ の H20A-U09-V で は、 $R=5\times10^3$ rad.程度で発生した、かぶりコンクリート剥 落以降、殆どせん断力が上がらずに $R=20\times10^3$ rad.へ向か う途中で軸破壊した。一方、SD785・ $p_w=1.6\%$ の H20A-H16-V は、 $R=20\times10^3$ rad.確認後軸破壊した。他の 試験体は $R=30\times10^3$ rad.まで軸破壊は生じなかった。

3.2 軸変形

内柱試験体の2体と外柱試験体で代表的なH20A-U14-

VとH20A-U09-Vの軸変形−部材角関係を図−7に示す。
 内柱試験体では、横補強筋比が小さいH20A-U09-Cの
 ほうが、繰り返しに伴い軸変形(縮み)が進展しており、
 R=40×10⁻³rad.時のH20A-U09-Cの軸変形(縮み)は、

H20A-U14-Cの2倍程度となっている。従って、横補強 筋比を増やすことは、軸縮みの進展抑制に有効と言える。

外柱試験体では, 圧縮側に着目すると, 部材角の増大 とともに軸変形(縮み)も進展している。横補強筋比が 小さい H20A-U09-V では, H20A-U14-V に比して破壊時 の軸変形が半分以下となっており、横補強筋の効果が内 柱試験体と同様に確認された。

3.3 横補強筋ひずみ

内柱試験体の2体と外柱試験体で代表的な H20A-U14-V と H20A-U09-V の横補強筋のひずみ分布 (加力方向外周筋)を図-8 に示す。なお、外柱試験体 では、圧縮側加力の分布とした。全ての試験体で、端部 より中央部のひずみが大きい傾向となっている。内柱試 験体では、せん断ひび割れが発生した R=10×10⁻³rad.から その傾向が強い。内柱試験体間の比較から、pw=0.9%の H20A-U09-C と1.35%のH20A-U14-Cのひずみ分布は, R=10×10⁻³rad., R=20×10⁻³rad.時とも, 最大ひずみは約 2 倍程度 H20A-U09-C の方が大きい。

外柱試験体間の比較から、pw=0.9%の H20A-U09-V と 1.35%の H20A-U14-V のひずみ分布は, R=10×10⁻³rad.時 までは両者で大きく変わらないが, H20A-U09-V は R=10×10⁻³rad.の繰り返し後,約 R=15×10⁻³rad.時に軸崩壊 しており、その直前のひずみをプロットした。この時点 でH20A-U09-Vの横補強筋のひずみが急激に増大してい ることが分かる。一方, H20A-U14-V は R=30×10⁻³rad.ま

で安定したひずみ分布を示した。0.3cNu一定軸力の内柱 試験体(H20A-U14-C)と H20A-U14-V を比べると、中央 部だけでなく端部ひずみも大きく、試験部分全体で高軸 力(0.7cNu)に抵抗していることも分かる。

高強度せん断補強筋の降伏ひずみは、0.2%オフセット 値であり、明確な線形部分は6000μ程度であることを鑑 みると,非線形ゾーンに入るとせん断抵抗及び横補強筋 の拘束効果が減少することが窺える。

以上より, 高強度コンクリートを用いて大きな軸力負 担させる場合,大きな補強筋比が必要であり,高強度横 補強筋は有効であることが分かった。

4.実験結果の検討

4.1 最大強度

表-3 に既往の計算式と実験で得られた最大耐力との 比較を示す。コンクリート強度には材料試験結果を用い, AIJ せん断耐力 ⁶算出時のコンクリートの圧縮強度有効 係数voは CEB 式⁷⁾を用い,応力中心間距離jiには1段 目主筋間距離を用いた。実験時最大強度 eQmax と曲げ強 度計算値 ACIQfuの比と、せん断強度計算値 Qsu と曲げ強 度計算値 $ACIQ_{fu}$ の比を図-9に示す。

高軸力下で横補強筋量の少ない H-20A-U09-V を除き, 各試験体とも P-Δ効果を考慮した実験値は ACI の曲げ 耐力よりも大きい結果となった。

AIJ 付着強度計算値も実験結果に比べ(eQmax/Qbu0),か

一天	灰胆	日 昇 旭									
最大	、強度		曲げ	強度	せん断強度						
ax D	_e R _{max} (×10 ⁻³ rad)	_{ACI} Q _{fu} (kN)	$\frac{{}_{e}Q_{max}}{{}_{ACI}Q_{fu}}$	_{fib} Q _{fu} (kN)	$\frac{{}_{e}Q_{max}}{{}_{fib}Q_{fu}}$	Q _{su0} (Rp=0) (kN)	$\frac{{}_{e}Q_{max}}{Q_{su0}}$	Q _{su1} (Rp=0.01) (kN)	$\frac{e^{Q_{max}}}{Q_{su1}}$		
	10.0	01.10	1.0=	0011		0.450	0.00		1		

を一3 最大耐力及ひ諸耐力計算値一	筫
-------------------	---

試験 体名	最大強度		曲げ強度				せん断強度				付着強度	
	eQ _{max} (kN)	${}_{e}R_{max}$ (×10 ⁻³ rad)	_{ACI} Q _{fu} (kN)	$\frac{{}_{e}Q_{max}}{{}_{ACI}Q_{fu}}$	_{fib} Q _{fu} (kN)	$\frac{{}_{e}Q_{max}}{{}_{fib}Q_{fu}}$	Q _{su0} (Rp=0) (kN)	$\frac{{}_{e}Q_{max}}{Q_{su0}}$	Q _{su1} (Rp=0.01) (kN)	$\frac{{}_{e}Q_{max}}{Q_{su1}}$	Q _{bu0} (Rp=0) (kN)	$\frac{{}_{e}Q_{max}}{Q_{bu0}}$
H20A-U09-C	3364	10.0	3143	1.07	3044	1.11	3672	0.92	2703	1.24	2010	1.67
H20A-U14-C	3768	29.6	3029	1.24	2940	1.28	4251	0.89	3777	1.00	2161	1.74
H20A-U09-V	2453	10.0	2467	0.99	2081	1.18	3659	0.67	2703	0.91	1990	1.23
H20A-U14-V	3106	20.0	2463	1.26	2081	1.49	4295	0.72	3819	0.81	2182	1.42
H20A-U16-V	3364	30.4	2459	1.37	2078	1.62	4512	0.75	3965	0.85	2296	1.46
H20A-H16-V	2688	19.3	2463	1.09	2082	1.29	4082	0.66	3463	0.78	2302	1.17
H20B-U14-V	3258	20.0	2418	1.35	2043	1.59	4262	0.76	3787	0.86	2166	1.50
H20C-U14-V	3168	20.0	2345	1.35	1989	1.59	4206	0.75	3734	0.85	2139	1.48

なり大きい値となる。実験 状況からは,かぶりコンク リートが全て剥離した後も 耐力は上昇しており,コン クリートが軸力により膨張 し,横補強筋による拘束効 果によって,拘束筋内の鉄 筋とコンクリート間の付着 が健全に保たれ,せん断力 を伝達できたと考えられる。 しかし,データ的には未だ

少なく,高強度材料を用いた部材における高軸力下の付 着強度に関しては今後の課題である。

拘束コンクリートを六車・渡邊モデル⁸⁾ としたファイ バーモデルの計算値 $_{fib}Q_{fu}$ は、ACI による計算値 $_{ACI}Q_{fu}$ より、変動軸力の外柱試験体で特に大きな値となったが、 これは今後の検討課題としたい。

4.2 限界変形角

図-10 に限界変形角と横補強筋量 ($p_w \cdot \sigma_{wy}$)の関係 を示す。限界変形は、New RC⁹⁾に倣い P- Δ 効果を考慮 したせん断力-部材変形角関係において最大耐力の 95% まで耐力が低下したときの変形と定義した。内柱試験体 は、横補強筋量 $p_w \cdot \sigma_{wy}=17.5$ N/mm² 程度まで、 $p_w \cdot \sigma_{wy}$ が大きいほど限界変形が大きくなる傾向が見られる。

変動軸力試験体は、一定軸力試験体と同様に $p_w \cdot \sigma_{wy}$ =17.5N/mm² 程度までは、 $p_w \cdot \sigma_{wy}$ が大きいほど限界変形が大きくなる傾向が見られるが、 $p_w \cdot \sigma_{wy}$ =17.5N/mm² 程度以上では、限界変形は 30×10⁻³rad.程度でほぼ横ばいとなっている。

この図より,横補強筋量が増加すると,限界変形角が 増大するが,同補強筋量では高軸力の外柱試験体の方が 内柱試験体より,限界変形角は小さい。また外柱試験体 では,補強筋量で限界変形角に頭打ちが見られたなど明 確な傾向が分かった。

5. まとめ

200N/mm²の繊維補強コンクリート, SD980 主筋, 降 伏強度 1275N/mm²及び SD785 横補強筋を用いた大型柱 試験体の曲げせん断実験により,下記のことがわかった。 (1)鋼繊維をコンクリートに 0.3% Vol.以上混入すれば, か

ぶりコンクリートの爆裂的な飛散を防止できる。

(2)0.3cNu 一定軸力下では、 $p_w=0.9\%$ ($\sigma_{wy}=1275N/mm^2$) の横補強があれば、曲げ強度は計算値より大きく、限 界変形角 Ru (最大強度の 95%低下時変形角) も R=20 ×10⁻³rad.以上得られたが、変動軸力(最大 0.7cNu)の $p_w=0.9\%$ ($\sigma_{wy}=1275N/mm^2$)では、曲げ計算強度に達 せず、Ru も R=10×10⁻³rad.と小さい結果となった。以 上から,軸力比,横補強筋量が構造性能に及ぼす影響 が大きいことが分かった。

- (3) 最大耐力は H-20A-U09-V を除いたすべての試験体で ACI のストレスブロック法で算出した曲げ強度計算 値を上回った。また,試験体の最大耐力は AIJ 終局指 針の付着耐力を大きく上回った。
- (4) 変動軸力の外柱試験体の限界変形角 Ru は、横補強筋 比 p_w×降伏強度 σ_{wy}とほぼ比例の関係があった。ただ し、 p_w・σ_{wy} =17.5N/mm²程度以上では、 Ru の頭打ち が見られた。

参考文献

- 日本建築学会:高強度コンクリート技術の現状 (2009),第3編6章 適用建物, pp.379-401, 2009.
- 木村秀樹ほか:超高強度鋼繊維コンクリートを用いた RC 柱の高軸力下における力学性状、コンクリート工学年次論文集, Vol.27 No.2, pp.685-690, 2005.
- 3) 木村秀樹,石川裕次:鋼繊維混入高強度コンクリートRC柱の曲げせん断実験,コンクリート工年次論 文集, Vol.23 No.3, pp.211-216, 2001.
- 4) 河野進ほか:高強度材料を用いた鉄筋コンクリート 柱の曲げ耐力における寸法効果(その1~その4),日 本建築学会大会学術講演梗概集(中国),構造W, pp.525-532, 2008.9
- American Concrete Institute : Building Code and Commentary ACI 318-95/318R-03, 2003.
- 6) 日本建築学会:鉄筋コンクリート造建物の終局強度
 型耐震設計指針・同解説 (1990)
- 7) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説 (1999)
- 8) 六車熙,渡邉史夫,西山峰広:高強度コンクリートの靱性改善,プレストレストコンクリート技術者協会第2回シンポジウム論文集,pp.10-14, 1991.11
- 9) (財国土開発技術センター:建設省技術開発プロジェ クト 鉄筋コンクリート造建築物の超軽量・超高層 化技術の開発 平成4年度構造性能分科会報告書