論文 円形断面を有する RC 柱の変形性能に関する実験的研究

渡辺 一功^{*1}·伊吹 真一^{*1}·大庭 光商^{*2}

要旨:円形断面 RC 柱は円形帯鉄筋の優れた拘束効果により高い変形性能を有するものと期待されている。 しかし,円形断面 RC 柱の変形性能に対する研究・検討は未だ数少ない。そこで,本研究では円形断面 RC 柱 の変形性能を把握することを目的として,帯鉄筋比および帯鉄筋間隔をパラメータとした静的正負交番載荷 試験を実施した。その結果,円形断面 RC 柱では,同じ耐力をもつ矩形断面 RC 柱と比較してエネルギー吸収 量が大きく,特に耐力比が 2.3 程度以上において優れた変形性能を有すること,また,帯鉄筋の配置間隔を小 さくすることによって優れた変形性能を発揮することなどを示した。

キーワード:円形断面,変形性能,じん性率

1. はじめに

コンクリート構造物の耐震設計は、構造物の変形性能 を考慮したじん性設計を採用している。じん性設計とは、 コンクリート構造物の塑性変形性能によって構造物に 働く地震動のエネルギーを吸収させるものであり、部材 の塑性化を許容するものである。そのため、コンクリー ト部材の降伏後の変形性能を把握することが必要であ り、これまで数多くの鉄筋コンクリート柱の変形性能に 関する実験・研究が実施されてきた。しかしながら、そ の多くは矩形断面に関して行われたものであり、円形断 面に対する変形性能の実験・研究は未だ少なく、変形性 能の評価は矩形断面と同じ手法を用いて行っている¹⁾の が現状である。

しかし,円形断面を有する鉄筋コンクリート柱は円形 帯鉄筋の優れた拘束効果により高い変形性能を発揮す ることが既往の研究により確認されている。鈴木ら²³³ は,軸力およびせん断補強筋比をパラメータとした交番 載荷試験を行い,軸力比(軸圧縮力とコンクリート圧縮 強度の比)が1.0程度の高軸力下においても変形角1/50 以上のじん性を確保できること,帯鉄筋比が大きいほど 優れた変形性能をもつことを明らかにしている。また, スパイラル状の帯鉄筋の配置間隔を狭くすることで変 形角 1/15 の 30 回の繰返し荷重に対して優れた安定性を 発揮し,高い変形性能を有することを示している。

また,渡辺ら⁴⁾は,施工条件,帯鉄筋比および軸力を パラメータとした交番載荷試験を行い,変形性能算定手 法として土木学会によるじん性率算定手法を用いて実 験結果を評価した場合,釣合い軸力比が大きい領域では 計算値が実験値を過小評価する傾向があることを明ら かにしている。

また, 矢野ら⁵⁾は, せん断補強鉄筋比および軸力をパ ラメータとした交番載荷試験を行い, 変形特性は, せん 断補強鉄筋量 ($P_w \cdot \sigma_{wy}$, ここに; P_w ; 帯鉄筋比, σ_{wy} ; 帯鉄筋降伏強度)の増大とともに向上することを明らか にしている。しかしながら, 未だ円形断面の変形性能に 関して実施された試験は矩形断面に比べて少なく, 断面 形状による変形性能の違いは明らかになっていない部 分も多い。そこで,本研究は円形断面 RC 柱の変形性能 を把握することを目的として,帯鉄筋比および帯鉄筋間 隔に着目して静的正負交番載荷試験を実施し,基礎的な 検討を行うものである。

シリース゛	試験体 No.	断面寸法	有効高	せん断 スパン比	 軸方向鉄筋 軸方向 鉄筋比 (谷)×(本) P(%) 		带鉄筋配置	帯鉄筋比	軸圧縮 応力度
		(mm)	a (mm)	a/d	(侄)×(平)	$P_a(\%)$		P _w (%)	$\sigma_0(N/mm^2)$
К	K-1	φ450	364	3.4	D19×16	2.88	D10-ctc100	0.32	
	K-2						D10-ctc45 0.70		
	K-3						D13-ctc100	0.56	-
	K-4						Φ9.0-ctc10	2.83	
	K-5						Φ6.0-ctc10	1.26	0.98
А	A-1		360	3.2		2.97	D13-ctc80 0.79		
	A-6	400×400					D13-ctc50	1.27	
	A-9					2.87	D16-ctc60	1.66	
В	B-1						D10-ctc100	0.36	

表-1 試験体諸元

*1 東日本旅客鉄道(株) 建設工事部構造技術センター 課員 工修 (正会員)

*2 東日本旅客鉄道(株) 建設工事部構造技術センター 課長 (正会員)

2. 試験概要

2.1 試験体諸元

表-1 に試験体諸元を,図-1 に試験体形状および配 筋例を示す。試験体は、実物のラーメン高架橋柱の 1/2 スケールを想定したものであり、今回実験を行った K シ リーズは、帯鉄筋比 ($P_w = A_w / (b_w \cdot s_s)$, ここに、 A_w ; 区 間 ssにおける部材軸と直交するせん断補強鉄筋の総断面 積, s_s;部材軸と直行するせん断補強筋の配置間隔, b_w; 円形断面と面積の等しい辺長)をパラメータとして、断 面形状, せん断スパン比 (a/d:ここに, a; せん断スパ ン, d; 有効高さ)および軸方向鉄筋比は同一とした。 なお, A シリーズおよび B シリーズは過去に行われた矩 形断面 RC 柱の試験体⁶で K シリーズとせん断スパン比 が近いものである。表-2 に材料強度の試験結果を,表 -3 に部材耐力の計算値と実験結果を示す。ここで、耐 力比とは部材のせん断耐力(V_v)と曲げ耐力(M_u)に達 する際のせん断力 $(V_{mu}=M_u/a)$ の比 (V_v/V_{mu}) である。 耐力比を算出する際の M_uは、材料試験から求まる実強 度を用いて鉄道構造物等設計標準・同解説(コンクリー ト構造物)⁷⁾に定められている方法により算出した。せ ん断耐力は、補強筋のない棒部材のせん断耐力(V。)と トラス理論から求まる帯鉄筋の負担するせん断耐力 (V_s) との和とし、 V_c は a/dの効果を考慮した二羽ら⁸⁾ のせん断耐力式により算出した。ここで、円形断面を有 する RC 部材のせん断耐力は、土木構造物における現行 の設計基準^つにおいて、円形断面を等断面積の正方形断 面に置換し,矩形断面部材のせん断耐力算定式を適用す ることにより算定しているが、既往の研究により、この 手法によって算出されるせん断耐力は、円形断面を有す る RC 部材のせん断耐力を過小評価していることが明ら かにされている⁹。そこで, V。については, 大石ら⁹ の知見に基づき, 引張鋼材断面積に各段に配置された鉄 筋の有効高さで重み付けした引張鉄筋比を考慮して算 出した。また,試験体はいずれもせん断耐力が曲げ耐力 を上回り,曲げ破壊型となるように設計し,安全係数は

図-1 試験体形状および配筋例(K-2)

試験体 No	コンクリート 圧縮強度	軸方向鉄筋 降伏強度	帯鉄筋 降伏強度	
	f_c (N/mm ²)	f_y (N/mm ²)	f_{wy} (N/mm ²)	
K-1	31.2	380	370	
K-2	24.9	384	364	
K-3	26.3	384	412	
K-4	32.9	384	293	
K-5	30.2	384	309	

表-2 材料強度の試験結果

全て1.0とした。

帯鉄筋の定着方法は、K-1~3はフレア溶接とし、柱 下端から 1D 区間(ここに、D;試験体直径)に帯鉄筋を スパイラル状に配置した K-4および K-5は、下端を 50mm ほどフーチング内に埋め込んでいる。なお、実験 値は処女載荷側の値により整理した。

2.2 載荷方法および測定方法

載荷は、軸力を一定とした静的正負交番載荷試験とし、 最外縁鉄筋から 45°の位置にある軸方向鉄筋のどちら か一方が材料試験から求まる降伏ひずみに達した時点 を降伏とし、その時点の変位を降伏変位(δ_y)とした。

		計算値			実懸				
⇒除休№	曲げ耐力	せん断耐力	耐力比	曲げ耐力	降伏変位	終局変位	じん性率	破壊形態	
武駛1本 №.	Muc	Vy	V_y / V_{mu}	M_u	δ_y	δ_{u}	$\delta_u\!/\delta_y$		
	(kN·m)	(kN)		(kN·m)	(mm)	(mm)			
K-1	289	333	1.4	322	9.3	74.8	8.0	曲げ圧縮破壊	
K-2	282	519	2.3	331	8.7	112.1	12.9	曲げ圧縮破壊	
K-3	285	487	2.1	316	9.4	98.4	10.5	曲げ圧縮破壊	
K-4	294	1349	5.7	338	9.2	188 以上	20.4 以上	鉄筋破断(軸筋)	
K-5	290	717	3.1	325	8.6	159.4	18.5	鉄筋破断(軸筋)	
A-1		-	2.3		8.1	73.4	9.0	曲げ圧縮破壊	
A-6	_	_	3.2	_	6.9	90.2	13.0	曲げ圧縮破壊	
A-9	_	_	4.0	_	6.8	90.7	13.3	曲げ圧縮破壊	
B-1		_	1.4		7.4	63.2	8.5	曲げ降伏後せん断	

表-3 部材耐力の計算値と実験結果

その後は δ_y の整数倍の変位ごとに変位制御で交番載荷 した。ただし、 $10\delta_y$ まで荷重の低下が認められない K-4 および K-5 については、それ以降は $12\delta_y$ 、 $14\delta_y$ …と偶 数倍で変位を増加させた。なお、載荷は水平荷重が降伏 荷重の 50%程度以下、または鉄筋が破断するまでとした。

3. 試験結果

3.1 損傷過程

写真-1~4にK-1, K-2, K-4, K-5 の損傷過程 を示す。試験体K-1~3の損傷過程はほぼ同様であり, いずれも引張鉄筋降伏後の柱下部における曲げ圧縮破 壊であった。初期ひび割れ発生後,引張側の軸方向鉄筋 が降伏し,その後載荷面の曲げひび割れの増加に伴い側 面(載荷直角方向の面)に斜めひび割れが進展した。さ らに交番載荷が進むにつれ,載荷面の柱下部のコンクリ ートが粉砕され,鉛直方向のひび割れが発生,軸方向鉄 筋のはらみ出しにより被りコンクリートが剥落,軸方向 鉄筋内部のコンクリートが外に押し出されることによ り,柱下部の断面が減少し,耐力低下を伴って終局に至 った。

次に、スパイラル状に帯鉄筋を配置した K-4 および K-5 では、載荷が進むにつれてフーチング表面の損傷が 大きくなった。その後、18δy載荷中に柱下部の帯鉄筋の はらみ出しが観察され、22δy載荷中に軸方向鉄筋の低サ イクル疲労による破断が生じ、耐力が低下した。また、 K-5 では、16δy載荷中に軸方向鉄筋の座屈に耐えられな くなり、帯鉄筋の局部的なはらみ出しが観察され、18δy 載荷中に軸方向鉄筋の低サイクル疲労による破断が生 じ、耐力が低下した。

また、帯鉄筋間隔を100 mmとした K-1 では、被りコンクリートの剥落後、軸方向鉄筋内部のコンクリートが

粉砕され外に押し出されていることがわかる。帯鉄筋間 隔を45 mmとした K-2 でも同様に軸方向鉄筋内部のコン クリートが粉砕されているが,その程度は K-1 より小 さかった。一方,帯鉄筋を10 mmの間隔で密に配置した K -4 および K-5 では,帯鉄筋が密であるため内部コンク リートと被りコンクリートの付着部分が少なく,被りコ ンクリートが剥落しやすいが,剥落後に軸方向鉄筋内部 のコンクリートが粉砕し外に押し出される程度は K-1 ~3 より小さかった。また,試験終了後の K-1 と K-4 および K-5 の状況を比較すると,K-1 では軸方向鉄筋 内部のコンクリートが粉砕しているのに対し,K-4 およ び K-5 ではスパイラル鉄筋を切断し取り除いた後の内 部のコンクリートの損傷は小さかった。

3.2 荷重-変位曲線

図-3に荷重-変位曲線(以下, $P-\delta$ 曲線という)を示す。いずれも、終局時に至るまで安定した紡錘型のループを示していることがわかる。なお、終局時とは $P-\delta$ 曲線の抱絡線が降伏荷重を下回る時点である。 $K-1\sim3$ では、被りコンクリートが剥落し、軸方向鉄筋内部のコンクリートが粉砕され帯鉄筋の隙間から外に押し出され始めた時点において荷重が低下し始めた。一方、K-4およびK-5は前述したとおり、低サイクル疲労で鉄筋が破断したことにより耐力低下し交番載荷を終了したが、鉄筋破断時まで最大荷重付近の耐力を維持していた。これは、軸方向鉄筋内部のコンクリートをスパイラル状の帯鉄筋で囲むことによって、コンクリートの損傷が小さく、曲げ圧縮力を負担できる状況にあったためと考えられる。

また, K-1とB-1を比較すると,円形断面の場合は 矩形断面に比べて終局時の変形量が大きくなっている ことがわかる。そこで,変位0から変位0に至るまでの

(a) 降伏時 (1δ_v)

(c) 12δ_y **写真-1** 損傷過程(K-1)

(d) 載荷終了後

(a) 降伏時 (1δ_y)

(b) 9δ_y

(c) $15\delta_y$ 写真-2 損傷過程(K-2)

(d) 載荷終了後

(a) 降伏時 (1δ_y)

(d) 載荷終了後

(a) 降伏時 (1δ_y)

(b) $9\delta_y$

(d) 載荷終了後

図-3 荷重-変位曲線 (P-δ曲線)

1 サイクルの履歴曲線で囲まれる面積を履歴吸収エネル ギー¹²⁾とし、初めて降伏荷重を下回る直前のサイクルま で加え合わせたものを累積吸収エネルギーとして算出 した。K-1 および B-1 ではともに 96yで初めて降伏荷 重を下回るため、降伏荷重を下回らない最大変位である 86yまでの履歴吸収エネルギーを累積して算出した。その 結果、B-1 では 102kJ であるのに対し、K-1 では 129kJ であり、25%程度大きかった。

図-4に載荷サイクルごとの最大変位(δ)と降伏変位 (δ_v)の比(δ/δ_v)と最大荷重(P)と降伏荷重(P_v)の 比 (P/P_y)の関係を示す。最大荷重到達後の耐力低下の 勾配は,帯鉄筋量の多い K-4 および K-5 は緩やかであ り, K-1~3 はほぼ同様で急激に低下した。

3.3 じん性率と帯鉄筋の配置間隔

表-3 に実験結果を示す。ここで,静的正負交番載荷 試験のじん性率とは, $P-\delta$ 曲線の抱絡線が降伏荷重を下 回る時点を終局時とし,終局時の変位(δ_u)と降伏時の 変位(δ_v)の比(δ_u/δ_v)として求めた。

図-5 に耐力比とじん性率の関係を示す。なお、図中 には過去に実施された矩形断面における静的交番載荷

耐試験の結果(AシリーズおよびBシリーズ)を合わせ て示した。耐力比がほぼ同等であるK-2およびK-3 のじん性率は,K-2が2割程度大きい結果であった。こ れは,K-2の帯鉄筋の配置間隔をK-3の100mmと比べ て45mmと小さくしたことが影響しているものと考えら れ,帯鉄筋の配置間隔を小さくすると軸方向鉄筋の座屈 長が短くなり,軸方向鉄筋のはらみ出しを抑える効果が 高いと考えられる。さらに,密に配置された帯鉄筋は被 りコンクリートの剥落後の軸方向鉄筋内部のコンクリ ートの流出を防ぐ役割も担うため,変形性能の向上に寄 与しているものと推察される。

また,過去に実施された矩形断面における静的交番載 荷試験の結果と比較すると,特に耐力比が 2.3 程度以上 において,耐力比が同程度であっても円形断面は矩形断 面に比べてじん性率が大きくなっていることがわかる。

4. まとめ

本研究により得られた円形断面 RC 柱の変形性能に関 する知見を以下にまとめる。

- (1) 円形断面 RC 柱の変形性能は、帯鉄筋の配置間隔の 影響を受け、耐力比が同等でも帯鉄筋間隔を小さく すると変形性能は向上する。
- (2) 帯鉄筋を 10mm 間隔で配置した場合, 軸方向鉄筋内 部のコンクリートの損傷は小さく, 優れた変形性能 を有する。
- (3) 同等の耐力を有する円形断面 RC 柱と矩形断面 RC 柱を比較した場合,エネルギー吸収量は円形断面 RC 柱の方が大きく,特に耐力比が 2.3 程度以上におい て,円形断面 RC 柱の方が優れた変形性能を有する。

参考文献

- 財団法人鉄道総合技術研究所:鉄道構造物等設計 標準・同解説(耐震設計)橋梁および高架橋耐震 照査の手引き,2001.2
- 2) 鈴木計夫,中塚佶,中田浩之,白沢吉衛:SD50材の円形スパイラル筋を用いた RC 円形柱のせん断耐力・変形性能,コンクリート工学年次論文報告集,Vol.10,No.3,pp.601-606,1988
- 蔡健,鈴木計夫,蘇道遠:多量な円形補強筋で横 拘束された鉄筋コンクリート円柱の力学的性質, コンクリート工学年次論文報告集,Vol.16,No.2, pp.695-700,1994
- 渡辺忠朋,瀧口将志,佐藤勉:場所打ちRC杭の変 形性能評価,コンクリート工学年次論文報告集, Vol.20, No.3, pp.1051-1056, 1998
- 5) 矢野伸司,山田和夫,山本俊彦:円形断面を有す る鉄筋コンクリート部材の曲げ・せん断挙動,コ ンクリート工学年次論文集, Vol.24, No.2, pp.865-870, 2002
- 小林将志,津吉毅,石橋忠良:交番荷重を受ける RC柱の損傷状況について,JR東日本構造技術セン ターSED No.11, pp.14-29, 1998.11
- 7) 財団法人鉄道総合技術研究所:鉄道構造物等設計 標準・同解説(コンクリート構造物),丸善株式会 社,2004.4
- ニ羽淳一郎,山田一宇,横沢和夫,岡村甫:せん 断補強鉄筋を用いない RC 梁のせん断強度式の再 評価,土木学会論文集,第372号/V-5, pp.167-176, 1986.8
- 大石峻也,渡辺健,米花萌,二羽淳一郎:せん断 補強鉄筋を有する円形断面 RC はりのせん断耐力 評価,コンクリート工学年次論文報告集,Vol.31, No.2, pp.13-18, 2009
- 滝本和志,川島一彦:基部で曲げ破壊する RC 橋脚のエネルギー吸収容量の定式化,土木学会論文集, 第 532 号/V-30, pp.5-13, 1996.2