論文 片側繰返し荷重を受ける RC 柱の変形性能に関する一考察

徳永 光宏^{*1}·田所 敏弥^{*2}·谷村 幸裕^{*3}·北沢 宏和^{*4}

要旨: ラーメン高架橋の RC 柱の変形性能については,正負交番載荷試験に基づいた算定式により評価する が,地震時における RC 柱の応答は正負均等に応答するとは限らない。地震時の RC 柱の挙動を精度よく評価 するためには,載荷履歴の影響を把握する必要がある。そこで,本研究では載荷履歴を試験パラメータとし た実大の RC 柱の載荷試験を実施した。片側繰返し荷重を受ける RC 柱においては,引張が支配的な側の軸方 向鉄筋が引張領域で高応力の繰返しを受けるため,正負交番荷重を受ける場合に比べ座屈が生じる変位が大 きくなること,圧縮が支配的な側の軸方向鉄筋が座屈しても,直ちに荷重低下には至らないことが分かった。 キーワード:片側繰返し荷重,載荷履歴,変形性能,座屈

1. はじめに

鉄筋コンクリート(以下,RC)柱の変形性能について は,これまでも多くの静的試験により検討されてきてい る。また,その際の載荷方法については,正負同一変位 の交番載荷試験が一般的である。しかしながら,実際の 地震時においては地震波の特性によっては,応答が片側 に偏ることが考えられる。一般に,RC柱の耐力低下の 要因である軸方向鉄筋の座屈は履歴の影響を大きく受け る。そのため,地震時におけるRC柱の挙動を精度よく 評価するためには,RC柱の変形性能におよぼす載荷履 歴の影響を把握する必要がある。また,設計鉄道構造物 等設計標準(耐震設計)¹⁾では海洋型地震,断想近傍に よる地震動を想定してモデル化した地震波が示されてい る。今後,地震波の予測精度がより向上することで,よ り経済的な構造物の設計が可能となると考えられる。

載荷履歴に着目した RC 柱の変形性能に関する試験は, これまでもいくつか行われており,既往の研究²⁾による と、小断面(断面寸法 250×250mm)の帯鉄筋比が 0.25% の試験体による載荷試験ではあるが,中間帯鉄筋の有無 が最大変位に大きく影響し,中間帯鉄筋が無い場合にお いては片側載荷とした場合,同一振幅で両側載荷とした 場合に対して変形性能が顕著に増加することが報告され ている。一方で,中間帯鉄筋を有する場合は,片側載荷 と両側載荷における,変形性能に差異が生じないことが 指摘されている。また,中間帯鉄筋がない RC 柱に関す る既往の研究³⁾では,断面寸法400×400mm,帯鉄筋比 0.57%の曲げ破壊先行型の試験体においても,片側載荷 にとすることで両側載荷時と比較して変形性能が顕著に 増大することが報告されている。また,断面寸法 400× 400mmで帯鉄筋比 0.85%の中間帯鉄筋のない試験体に 対する RC 柱の崩壊に関する動的な試験において同様な

傾向が確認されている⁴⁾。

しかしながら,既往の研究における試験体は全て縮小 試験体によるものであり,また中間帯鉄筋の影響に関す る研究では断面寸法および帯鉄筋比が小さく,破壊形態 は曲げ降伏後のせん断破壊とされている。実際の鉄道ラ ーメン高架橋のRC柱は,1m程度の断面寸法を有するた め,一般に中間帯鉄筋を配置しせん断破壊に対して十分 な余裕がある曲げ破壊型の断面諸元である。このような 背景から本研究では,実大のラーメン高架橋のRC柱を 対象に,中間帯鉄筋を配置した同一断面の試験体に対し て,同一振幅で載荷履歴の異なる載荷試験を実施し,載 荷履歴がRC柱の軸方向鉄筋の座屈や荷重低下におよぼ す影響について考察した。

2.試験概要

2.1 試験体諸元

試験体は,ラーメン高架橋の RC 柱を模擬した実大試

*1 (財)鉄道総合技術研究所 構造物技術研究部 コンクリート構造 工修(正会員) *2 (財)鉄道総合技術研究所 構造物技術研究部 コンクリート構造 工博(正会員) *3 (財)鉄道総合技術研究所 構造物技術研究部 コンクリート構造 工博(正会員) *4 東急建設(株) 技術研究所 土木研究グループ 工博(非会員)

図 - 2 載荷装置

験体である。断面形状は 800×800mm の正方形断面で, せん断スパンは 3000mm である。試験体の諸元を表 - 1 に,材料試験結果を表 - 2 に示す。また,試験体の形状 を図 - 1 に示す。

試験体は載荷履歴を正負同一変位の正負漸増型の交番 載荷試験とした既往の試験体⁵⁾を基準試験体として,載 荷履歴の影響を検討するために,断面諸元を同一とした 試験体を2体製作した。なお,コンクリート標準示方書 ⁶⁾(以下,示方書)に基づいて計算した基準試験体の耐 力比 V_{yd}/V_{mu}(ここに,V_{yd}:せん断耐力,V_{mu}:Mu/La, Mu:曲げ耐力,La:せん断スパン,)は2.51であり,試 験体は曲げ破壊先行型の試験体である。

2.2 載荷装置および載荷方法

載荷装置の概要を図 - 2 に示す。試験は一定軸力のも と水平荷力した。なお,軸力は実際のラーメン高架橋の 地震時の押込み側の柱の軸応力を想定して 3.68N/mm² (=2352kN)とした。載荷は正負両側の最大変位の絶対 値の和で整理した両側振幅により制御した。各試験体の 載荷パターンを図 - 3 に示す。

基準試験体である No.1 試験体については、降伏変位(1

y)を基準変位として、その整数倍で正負同一変位によ る交番載荷とした。No.2 試験体については基準試験体と 振幅を一致させたうえで、正負の変位が3:1の割合とな るように交番載荷した(以下,片側載荷)。また、No.3 試験体についても、振幅を基準試験体と一致させたうえ 片側のみの載荷をした(以下,完全片側載荷)。なお、同 一変位での繰返し回数は3回である。

3.試験結果

3.1 荷重 - 変位関係

図 - 4 に荷重 - 変位関係を表 - 3 に試験結果の一覧を 示す。また,各試験体の載荷終了時における損傷状況を

図 - 4 荷重 - 変位関係

図 - 5 に示す。なお,図中の水平荷重は軸力による付加 曲げモーメントの影響を考慮し,測定された水平荷重に 付加モーメントをせん断スパンで除した付加水平力を加 算して補正したものである。また,図-4 中には鉄道構 造物等設計標準(コンクリート構造物)(以下,RC標準) ⁷⁾により計算されるY点,M点,N点を重ねて示す。Y

(a) No.1 試験体

(b) No.2 試験体

(c) No.3 試験体 図 - 5 曲げ損傷状況

点は部材降伏点,M点は最大荷重を維持できる最大変形 点,N点は降伏耐力を維持できる最大変形点を表す。な お,現行のRC標準におけるRC柱の変形性能に関する 限界値は正負交番載荷試験の結果に基づいて提案された ものである。

図 - 4から正負に同一変位で交番載荷した No.1 試験体

図-6 損傷過程(No.3)

(a)2δ_v載荷時

(b)4δ_v載荷時

(c)6δ_v載荷時

(d)8δ_v載荷時

においては,最大荷重および荷重低下時の変位とも計算 値は試験結果をよく評価できている。表-3から載荷を 完全片側載荷,片側載荷としたNo.2,3試験体では,降 伏変位はNo.1試験体とほぼ同等であるが,正側載荷時の M点時変位は,ともに計算値の1.4倍程度であった。ま た,載荷履歴を完全片側載荷,片側載荷とした場合には, No.1試験体に対して,荷重低下時の変位が大きくなるこ とが分かる。

3.2 損傷状況

基準試験体である No.1 試験体は A ,載荷時に柱基部 の曲げひび割れ幅の増加に伴ってかぶりコンクリートが はく落し,正負両側の軸方向鉄筋が座屈を開始した。そ して,5 ,載荷時の繰返しによって荷重が低下し,7 , の載荷において軸方向鉄筋の破断を伴って荷重が大きく 低下した。図-5 から載荷終了時における載荷面のかぶ りコンクリートのはく落範囲は正負両側で概ね 500mm 程度であった。

一方で, No.2, 3 試験体については, No.1 試験体に対 して,損傷過程に違いがみられた。完全片側載荷とした No.3 試験体では,2 yに至る載荷において軸方向鉄筋が 降伏し(図-6(a)),正側載荷時の引張面(以下,負側載 荷面)でのみひび割れを生じた。また,2 yの繰返し載 荷によって正側載荷時に圧縮側となる面(以下,正側載 荷面)でも除荷時にひび割れが生じるようになり,4 y 載荷時にはかぶりコンクリートがはく落した。また,6

y載荷の途中では正側載荷面の軸方向鉄筋に明らかな 座屈を生じた。その後,6 yの繰返しにおいて,負側載 荷面でもかぶりコンクリートのはく落を生じ(図-6(c)), 8 y繰返し時には負側載荷面でも軸方向鉄筋の座屈が顕 著となった(図-6(d))。10 yの2回目の繰返し時に引 張側となる負側載荷面の鉄筋に破断を生じた後に,荷重 が大きく低下した。

表 - 3 試験結果一覧 ()内:計算値					
試験体	P_y	P _{max}	δ_y	$\delta_{\rm m}$	δ_n
	(KIN)	(KIN)	(mm)	(mm)	(mm)
No.1	768	947	26.0	147.9	187.4
	(690)	(833)	(16.8)	(121.1)	(164.4)
No.2	794	913	29.6	177.7	272.1
	(690)	(824)	(17.7)	(123.5)	(164.6)
No.3	741	924	24.1	178.0	244.0
	(689)	(823)	(18.0)	(124.0)	(165.0)

Py: 路伏荷重, Pmax: 最大荷重

 δ_y :降伏变位, δ_m : M 点時变位, δ_n : N 点時变位

また,片側載荷とした No.2 試験体については,損傷過 程としては No.3 試験体に近く,正側載荷面の損傷が先行 する結果となった。3 ,載荷途中に正側載荷面でコンク リートがはく落,軸方向鉄筋の座屈に関しては,4.5 , の載荷途中に正側載荷面の軸方向鉄筋でのみ座屈が確認 された。その後 6 ,から-2 ,にかけての載荷時には, 負側載荷面でもかぶりコンクリートのはく落が生じ,軸 方向鉄筋に座屈を生じた。その後は,正負両側で座屈の 進展とともに荷重が低下した。なお,軸方向鉄筋の破断 は生じなかった。

また,図-5から載荷終了時における載荷面のかぶり コンクリートのはく落範囲については,基準試験体と異 なり,No.2 試験体が正側で950mm,負側で650mm,No.3 試験体についても正側で900mm,負側で650mmと正側 載荷面での損傷範囲が大きくなる結果となった。しかし ながら,鉄筋の露出している範囲についてはどれも 500mm 程度で差はない。

3.3 軸方向鉄筋のひずみ

図 - 7 に各試験体の水平変位 - 軸方向鉄筋のひずみ関 係を示す。上段に正側載荷面に配置した軸方向鉄筋を, 下段に負側載荷面に配置した軸方向鉄筋についてそれぞ れ示す。軸方向鉄筋のひずみは,各試験体の四隅に配置

(a) No.1 試験体

(b) No.2 試験体

(c) No.3 試験体

された鉄筋について試験体高さ方向で複数点計測してい るが,ここでは各試験体で最も軸方向鉄筋のひずみレベ ルが大きい柱基部から 400mm の位置に着目した。また, 図中には軸方向鉄筋のひずみが急増した点を併せて で 示した。

図 - 7 から正負同一変位を与えた No.1 試験体では,正 負どちらの載荷面でも軸方向鉄筋は圧縮,引張を交互に 均等に経験しており,外観の損傷状況から柱基部のかぶ リコンクリートがはく落した4,の載荷までに正負の 鉄筋で座屈を生じた。これに対して,片側載荷とした No.2 試験体では,正側載荷面に配置された軸方向鉄筋で は,No.1 試験体同様に引張,圧縮を交互に経験している が,負側では引張ひずみの領域で交番繰返しを受け,圧 縮ひずみを経験していない。また,負側載荷面の軸方向 鉄筋は圧縮ひずみが少なく,軸方向鉄筋の伸びも小さく なっている。また,載荷を完全片側載荷とした No.3 試験 体ではこの傾向はさらに顕著であり,正側では圧縮,負 側では引張ひずみが生じることがわかる。

さらに、軸方向鉄筋に座屈が生じた変位に着目すると, 各試験体ともひずみが急増した変位と概ね一致する。損 傷状態からも No.2 試験体では正側載荷面に配置された 軸方向鉄筋が No.1 試験体とほぼ同変位となる 4.5 y 載 荷の途中で座屈を生じたのに対して,負側の鉄筋は+6

y -2 y 載荷時と遅れて座屈する結果となった。また, No.3 試験体についても,正側載荷面では No.1 試験体と ほぼ同時期に座屈を開始したのに対して,負側載荷面で は6 yの載荷時となっている。このとき,軸方向鉄筋基 部のひずみが大きく降伏ひずみを超えていることが分か る。

また,荷重-変位関係ついては, No.2, 3 試験体とも

に正側載荷面の軸方向鉄筋のみが座屈した状態では耐力 低下を生じず,負側の軸方向鉄筋が座屈を生じることに よって顕著な荷重低下に至ることがわかった。

正側載荷における荷重低下時の変位が大きくなった原 因として,載荷を完全片側および片側とすることで,主 に引張となる負側載荷面の軸方向鉄筋が主に引張ひずみ 領域で交番繰返しを受けたことが考えられる。正負同一 変位による正負交番載荷の場合では繰返し応力可下の鉄 筋は圧縮・引張ひずみを等しく繰り返すが,完全片側お よび片側とすることで,主に引張ひずみ領域で交番繰返 しを受けるため、鉄筋の圧縮ひずみの蓄積が小さくなり, その結果,負側の軸方向鉄筋の座屈発生変位が大きくな ったと考えられる。これにより正負同一変位による正負 交番載荷の場合に比べて,正側の軸方向鉄筋に座屈を生 じる変位は変わらないものの,荷重低下時の変位は大き くなると考えられる。

3.4 帯鉄筋のひずみ

図 - 8,9 に各試験体の水平変位 - 帯鉄筋のひずみ関係 を示す。帯鉄筋のひずみは載荷側面側にひずみゲージを 貼り付けて計測しており,試験体高さ方向で複数点計測 しているが,ここでは各試験体で最も帯鉄筋のひずみレ ベルが大きい柱基部から 400mm の位置に着目した。ま た,図中には軸方向鉄筋の座屈が確認された変位を併せ て示す。なお,各試験体は帯鉄筋として外周帯鉄筋と中 間帯鉄筋を有する。

外周帯鉄筋と中間帯鉄筋のそれぞれを比較すると,す べての試験体において外周帯鉄筋と比べて中間帯鉄筋の ひずみが大きく,また,今回の測定位置において外周帯 鉄筋は降伏に至っていない。これは,軸方向鉄筋の座屈 等に対しては,帯鉄筋の形状の影響等により外周帯鉄筋

よりも中間帯鉄筋の拘束が大きいことが推測される。このため,中間帯鉄筋の有無が RC 柱の座屈,および変形性能に大きく影響することが考えられる。

なお,中間帯鉄筋が降伏ひずみに達する変位について は,各試験体とも外観より観察された軸方向鉄筋の座屈 開始変位と概ね一致している。このため,既往の研究に 示されているように中間帯鉄筋がない場合の RC 柱の挙 動は,今回の試験の結果得られた結論と異なる可能性が ある。

4. まとめ

本研究によって行った試験および検討の範囲内で,以 下の知見が得られた。

- (1) 載荷履歴が完全片側または片側となる RC 柱においては,引張が支配的になる側の軸方向鉄筋が引張 領域で交番繰返し応力を受けるため,正負同一変位の交番載荷時に比べ軸方向鉄筋の座屈時の変位が大 きくなることがわかった。
- (2) 載荷履歴を完全片側および片側とした場合には, 圧縮が支配的な側の軸方向鉄筋が座屈しても引張が 支配的な側の軸方向鉄筋は座屈しないため,直ちに 荷重低下には至らないことが分かった。
- (3) 中間帯鉄筋を有する RC 柱においては,中間帯鉄筋 と外周帯鉄筋の形状が異なることにより中間帯鉄筋 と外周帯鉄筋に生じるひずみが異なる。

参考文献

- 1) 財団法人鉄道総合技術研究所:鉄道構造物等設計標準・同解説 耐震設計,1999
- 2) 梅垣恒,市之瀬敏勝,松澤敦行:載荷履歴と中子筋の有無がRC部材の復元力特性に及ぼす影響,コンクリート工学年次論文集,vol.25,No.2,pp1093-1098,2003.7
- 武村浩志,川島一彦:載荷履歴特性が鉄筋コンクリート橋脚の変形性能に及ぼす影響,構造工学論文集, vol43A, pp.849-858, 1997.3
- 4) 田所敏弥,田中浩一,谷村幸裕,黒川浩嗣,服部尚
 道,室野剛隆:鉄筋コンクリート柱の崩壊に関する
 限界の評価法,土木学会論文集 E Vol.64 No.2,
 298-313,2008.4
- 5) 渡邉忠朋,谷村幸裕,瀧口将志,佐藤勉:鉄筋コン クリート部材の損傷状況を考慮した変形性能算定手 法,土木学会論文集 No.683 / V-52, pp31-45,2001.8.
- 6) 土木学会:2007年制定コンクリート標準示方書(設 計編),2008
- 7) 財団法人鉄道総合技術研究所:鉄道構造物等設計標準・同解説 コンクリート構造物,2004