論文 低強度コンクリートを有する既存 RC 建物の耐震補強における あと施エアンカーの適用に関する実験的研究

貞末 和史*1·寺村 悟*2·細川 洋治*3·南 宏一*4

要旨:コンクリート圧縮強度 𝒏 が 13.5N/mm²を下回る低強度のコンクリートを有する既存不適格鉄筋コンク リート建物に、あと施工アンカーを用いて耐震補強を行なうことの妥当性を検証するために、普通強度のコ ンクリートに対して実用されている 16 種類のあと施工アンカーを選定し、アンカー単体の引張試験とせん断 試験および間接接合部を想定した要素実験を行い、引張強度およびせん断強度は 𝑘 が 13.5N/mm²を上回るコ ンクリートに対して適用されている既往の評価式を用いて安全側に評価できることを明らかにした。 キーワード:耐震補強、低強度コンクリート、あと施工アンカー、間接接合部、引張強度、せん断強度

1. はじめに

既存不適格 RC 建物の耐震補強として、枠組付き鉄骨 ブレース等を増設する工法があり、既存の RC 躯体と鉄 骨枠組との接合部(間接接合部)には、「あと施工アン カー」が多用されている。あと施工アンカーを用いた耐 震補強は、(財)日本建築防災協会「既存鉄筋コンクリー ト造建築物の耐震改修設計指針同解説¹⁾|(以下,改修設 計指針と称す)に従って、コンクリート圧縮強度のが13.5 N/mm²以上の建物を対象として、改修設計が行われるの が通常であるが、近年の既存建物のコンクリート強度に 関する報告において, oBが 13.5 N/mm²以下の低強度コン クリートの建物が10%程度存在することが発表されてい る^{2),3)}。そこで、本研究では、現在o^Bが 13.5 N/mm²以上 のコンクリートに対して実用されているあと施工アン カーの中から、16 種類のあと施工アンカーを選定して、 低強度コンクリートに対して適用したあと施工アンカ ーの引張強度とせん断強度について検討するために,ア ンカー単体の引張試験とせん断試験、さらに実際の枠組 付き鉄骨ブレース補強等における鉄骨枠組と既存 RC 躯 体との間接接合部を想定した要素実験を行った。

2. あと施エアンカーの分類

あと施工アンカーは、図-1 に示すように接着系アン カーと金属系アンカーに大別される。接着系アンカーは、 定着させるアンカー筋全周を固着剤により定着させる もので、充填方法、施工方法、容器種類、内容物種類(固 着剤の主成分)によって分類される。金属系アンカーは、 定着させるアンカー筋を設置後、アンカーの先端を拡張 させて定着させるもので、アンカー方式、施工方法、ア ンカー型種類によって分類される。

本研究では,日本建築あと施工アンカー協会の製品認 定および建築耐震補強工事で大臣指定書を受ける接着

*1	広島工業大学	工学部建	築工学科	·准教授	博士	(工学)	(正会員)
*2	電気化学工業	(株) セ	メント・	特混事業	業部技	術室長	(正会員)
*3	サンコーテク	ノ (株)	最高技術	福問 _	L博	(正会員)	
*4	福山大学 工	学部建築・	建設学科	·教授	L博	(正会員)	

No	八桁	去博士注	施工专注	宏聖種粨	内容物種類		製品	単位	本実験	間接接合部
10.	刀規	儿填力伝	旭工力伝	合矿里积	種別	主成分	会社	引張試験	せん断試験	要素実験
1							A1	5体	5体	
2						エポキシ	B1	5体	5体	_
3						アクリレート樹脂	C1	5体	5体	_
4							D1	5体	5体	_
5					右继玄	ビニル	E1	5体	5体	
6				ガラフ答式	伯城尔	エステル樹脂	F1	5体	5体	
7			回転・打撃型	カノヘ官式			G1	5体	5体	
8	拉主マカプカ	カプセルちざ				不飽和	H1	5体	5体	
9)女相不	NICIUMIN				ポリエステル樹脂	I1	5体	5体	
10							I2	5体	5体	2体
11					無継玄	セイント五	13	5体	5体	_
12					邢极环	ビバイトが	B2	5体	5体	2体
13	•			フィルム チューブ式	有機系	エポキシ アクリレート樹脂	D2	5体	5体	2体
14				紅チューブナ	無拗灭	カノントで	J1	5体	5体	
15				減ノユーノ氏	邢/ 陇术	ビアノ下示	K1	5体	5体	2体
No	公粨	アンカーちざ	拔丁七注	7	··/+-	刑话衔	製品	単位	本実験	間接接合部
1NO.	刀頖	ノンル一万式	旭工力伝)	~),-	空裡親	会社	引張試験	せん断試験	要素実験
16	金属系	打込み方式	拡張部打込み型	改良	·型本体	打込み式	L1	5体	5体	2体

表-1 対象としたあと施工アンカー一覧

注)接着系アンカーに関しては、同一種類でも複数の製品会社のあと施工アンカーを用いている。

系アンカー15 種類と金属系アンカー1 種類の表-1 に示 す合計 16 種類を選定し、アンカー筋に求められる基本 的性状である単体実験を行った。また、15 種類の接着系 アンカーの中から容器種類と内容物種類(有機系,無機 系)が異なる4種類と金属系アンカーを加えた合計5種 類について、間接接合部要素実験を行った。

図-2に本実験で使用したあと施工アンカーの概要を 示す。接着系アンカーは異形棒鋼 D16 (SD295A)を用い て有効埋め込み深さ *le* を 10*da* (*da*:アンカー筋の呼び径) とし、金属系アンカーは φ 22 (SUM23)のアンカー筋を 用いて *le* を 5.9 *da* とした。*le* は改修設計指針の構造規定 を満たす長さとなっている。

3. 母体となる低強度コンクリート

あと施工アンカーの適用を検討する既存建物の RC 躯体を想定した低強度コンクリートは,設計基準強度 Fc=9N/mm²として,既往の研究^{4),5)}を参考にして,調合 設計を行った。調合表を表-2に示す。本研究で用いた 低強度コンクリートは,石灰石微粉末を多量に混和して, 水セメント比を大きくすることでコンクリートの強度

表一2 仰	氐強度コンク	リー	トの調合表	(単位:kg/m ³)
-------	--------	----	-------	-------------------------

発現を低く抑えたものである。なお、アンカー単体実験
(引張試験、せん断試験)と間接接合部要素実験は、図
-3 に示す材齢 77~105 日の期間に実験を行った。

4. 単体実験

アンカー筋の単体実験(引張試験,せん断試験)は, 実験を行う16種類のあと施工アンカーの数に合わせて 製作した1.80m×1.55m(厚さ250mm)のコンクリート スラブ(Fc=9N/mm²)16体に,それぞれ引張試験用,せ ん断試験用のあと施工アンカーを各試験6本ずつ固着さ せ,5本のアンカー筋について実験を行った(1本は予 備)。単体実験に用いた試験体の形状を図-4および写真 -1に示す。コンクリートスラブには,試験体を移動さ せる際のひび割れ発生防止のため鉄筋(D13)を配して いるが,単体実験に影響を与えない位置に配筋している。 実験に使用したコンクリートとアンカー筋の材料試

験結果を表-3,表-4に示す。

写真-1 単体実験試験体

_ 表-3 コンクリートの材料強度						
	压縮 σ B(N/mm ²)	引張 $\sigma t(N/mm^2)$				
	8.11	0.94				
a						

注)実験期間(材齢 77~105 日)における平均値

插桁	降伏強度	引張強度	伸び	
1里戎	(N/mm^2)	(N/mm^2)	(%)	
D16(SD295)	接着系	364	533	23.8
22¢ (SUM23)	金属系	444	545	_

4.1 引張試験

(1) 実験方法

あと施工アンカー単体の引張試験の方法を図-5 に示 す。載荷はセンターホール型油圧ジャッキを用い, ロー ドセルで引張力 Ptを検出した。なお、載荷初期段階は荷 重を制御し,降伏点近くから変位制御に切替えてデータ 計測を行い、最終的にはアンカー筋が破断もしくはコン クリート母材が破壊に至るまで単調引抜き試験を行っ た。変位の測定は、写真-1に示すようにアンカー筋引 張方向の引抜き変位&を2箇所で測定し平均を求めた。

図-5 引張試験

写真-1 引張試験

(2) 破壊性状と荷重変形関係

引張試験は、各種類それぞれ5本のアンカー筋の実験 において、最大荷重が最大と最小の試験体を除く3体の 試験体を抽出して検討を行った。

接着系アンカーに関しては,全ての試験体における破 壊形態は、図-6 および写真-2 に示すようなコーン破 壊+付着破壊の複合破壊の様相が見られ,固着材の主成 分の違いによる差異はないことが確認された。また、金 属系アンカーに関しては、コーン破壊+アンカー筋の抜 け出しの様相が見られた。

 $P_t - \delta$ 関係の一例を図-7に示す。金属系アンカーは接 着系アンカーと比較して剛性と最大強度が小さく, δ, が 大きくなってから最大強度に達することが確認された。

図-7 引張力-変位関係

4.2 せん断試験

(1) 実験方法

あと施工アンカー単体のせん断試験の方法を図-8に

図-8 せん断試験

写真-3 せん断試験

示す。載荷はコンクリートスラブの表面にテフロンシー トを敷いて、その上に載荷板を置き、アンカー筋と載荷 板の隙間には石膏を流し込み固定した。加力方法はセン ターホール型油圧ジャッキにより、荷重を制御して漸増 載荷を行なった。変位の測定は、**写真-3**に示すように アンカー筋材軸に対して直角方向の変位&を2箇所で測 定し平均を求めた。

(2) 破壊性状と荷重変形関係

せん断試験は、各種類それぞれ5本のアンカー筋の実 験において、最大荷重が最大と最小の試験体を除く3体 の試験体を抽出して検討を行った。なお、本試験体では、 Psを漸増させていくと、最終的には写真-4に示すよう にアンカーボルトがコンクリートを割り裂く破壊(割裂 破壊)を生じ、他の実験に影響を及ぼすことが懸念され たため、せん断試験は、 ωが25mm もしくは Psが70kN に達した時点で載荷を終了し、その間での最大荷重をせ ん断強度の最大値とした。

コンクリートが割裂破壊を生じる以前においては、全 ての試験体の試験終了時における破壊形態は**写真-5** に 示すようなコンクリートの支圧破壊の様相が見られた。

P_s−δ_i 関係の一例を図-9 に示す。引張試験において は、接着系アンカーと金属系アンカーで剛性が大きく異 なっていたが、せん断試験に関しては、接着系アンカー と金属系アンカーで引張試験ほどの剛性の違いが見ら

れなかった。これは、引張試験とせん断試験では抵抗機 構が異なることが影響している。引張力を受ける金属系 アンカーは、アンカー筋が全長にわたり伸び、さらに、 コンクリートから抜け出す影響を強く受け、接着系アン カーよりも剛性が小さくなったものと推察される。

最大強度に関しては、金属系アンカーよりも接着系ア ンカーの方が最大強度は大きくなり、接着系アンカーは 実験終了時まで&の漸増に伴い強度が上昇し続けたのに 対して、金属系アンカーの強度は & が 20mm 程度でほぼ 頭打ちとなることが確認された。

5. 間接接合部要素実験

3,4章では、低強度コンクリートに設置された16種 類のあと施工アンカー単体の引張試験およびせん断試 験を行った。本章では、16種類のあと施工アンカーの中 から、5種類のあと施工アンカー(接着系アンカー4種 類、金属系アンカー1種類)を選択し、実際の既存RC 建物の枠組付き鉄骨ブレース補強等の耐震補強におけ る間接接合部を想定した試験体を製作し、間接接合部に 直接せん断力Qを加える載荷実験を行って検討した。

5.1 実験方法

試験体形状を図-10に示す。各試験体とも同一試験体 を2体ずつ合計10体の試験体を製作した。

低強度のコンクリートを有する既存 RC 躯体に相当す る部分は 316mm×350mm の断面を有しており,一部分 は 640mm ×295mmの断面を有するスタブコンクリート に埋め込まれた形状となっている。また,間接接合部に は、あと施工アンカーと頭付きスタッドを 120mm 間隔 で交互に配置し、6 φのスパイラル筋を配筋した。試験 体に使用したアンカー筋とコンクリートは、単体試験と 同様の材料を用いており、表-3、表-4 に示される材料 強度を有している。間接接合部要素実験に用いたその他 の材料の材料試験結果を表-5、表-6 に示す。

載荷は、図-11に示す載荷載荷を用いて、既存部と間 接接合部の相対ずれ変位δを変位制御して、正負繰返し の漸増載荷を行った。

表-5 コンクリートの材料強度

既	存部	間接接合部(無収縮モルタル)						
圧縮	引張	圧縮	引張					
$\sigma_B(N/mm^2)$	$\sigma t (N/mm^2)$	$\sigma B(N/mm^2)$	$\sigma t (N/mm^2)$					
8.11	0.94	36.1	3.77					

注)既存部コンクリートは単体実験と同じ

表-6 鋼材の材料強度

(古田)	统司印	降伏強度	引張強度	伸び
使用	固川	(N/mm^2)	(N/mm^2)	(%)
6φ	割裂防止筋	589	647	8.35
13φ	スタッド	305	462	22.0
D19 (SD345)	既存部	369	550	17.9
D13(SD295A)	既存部	289	450	18.4

図-10間接接合部要素実験試験体形状(単位:mm)

5.2 破壊性状と荷重変形関係

破壊状況の一例を**写真-6**, **写真-7**に示す。最終破壊 状況は,接着系アンカーと金属系アンカーでは破壊の様 相が異なり,接着系アンカーの場合,全体的に多くの斜 めひび割れを生じているのに対して,金属系アンカーの 場合,アンカー筋の定着端付近に多くのひび割れを生じ ている。また,金属系アンカーは,図-12に示すように δの漸増に伴い,既存部と間接接合部の境界面の目開き 幅δ_bが大きくなっていることから,アンカー筋が抜け出 しを生じているものと推察される。しかしながら,最大 強度時における外観の破壊状況は,軽微なひび割れの発 生に留まっていることから,アンカー筋の周辺において, 既存部のコンクリートが支圧破壊を生じたことによっ て最大強度に達したものと推察される。

Q−δ関係の一例を図−13に示す。接着系アンカーと金 属系アンカーを比較すると、最大強度は金属系アンカー より接着系アンカーの方が大きく、接着系アンカーは金 属系アンカーよりも小さな変位で最大耐力に達してい る。また、金属系アンカーより接着系アンカーの方が最 大強度以降の耐力低下が大きいことが確認された。

アンカー筋単体のせん断試験では、 *δ* の漸増に伴い *δ*=25mm までせん断強度が上昇しているが、実際の耐震 補強における間接接合部を想定した要素実験では、 *δ*=25mm よりも微小な変位で最大強度に達し、その後、 強度低下を生じている。これは、既存部コンクリート上 端におけるアンカー筋の拘束状態の違いが影響したも のと思われる。

(a) 接着系アンカー(No. 10) (b) 金属系アンカー(No. 16) 写真-6 最大強度時の破壊状況

(a) 接着系アンカー(No. 10) (b) 金属系アンカー(No. 16)写真-7 最終破壊状況

	単位	本実験	間接接合部要素実験	実験 引進計算値 せん断計算値				
No.	引張最大値	せん断最大値	せん断最大値	刀成可异恒 $T_{*}(VN)$		T_{max}/T_{a}	Q end / Q a	Q max/ Q a
	T_{max} (kN)	Q_{end} (kN)	Q_{max} (kN)	I a (KIN)	$\mathcal{Q}^{a}(\mathbf{KIV})$			
1	85.9	70.5				1.7	2.5	-
2	74.4	70.8	_			1.5	2.5	_
3	94.9	70.8				1.9	2.5	-
4	87.1	68.9	-			1.7	2.4	—
5	92.5	68.4	-			1.9	2.4	-
6	82.3	70.9	-			1.6	2.5	—
7	82.2	70.6	-			1.6	2.5	-
8	91.2	70.8	-	50.0	28.4	1.8	2.5	—
9	86.0	70.9	-			1.7	2.5	-
10	87.1	70.8	66.9			1.7	2.5	2.4
11	81.7	70.5	-			1.6	2.5	-
12	85.3	71.1	60.0			1.7	2.5	2.1
13	85.5	68.9	55.5			1.7	2.4	2.0
14	87.5	71.6				1.8	2.5	_
15	80.7	71.3	52.9			1.6	2.5	1.9
16	42.8	61.5	41.1	40.6	21.3	1.1	2.9	1.9

表-7 実験結果一覧

注) 単体実験は3本の実験の平均値,間接接合部要素実験は2体の実験の平均値

6. 引張強度とせん断強度の評価

6.1 引張強度

改修設計指針では,引張力を受けるあと施工アンカーの強度 T_aは,接着系アンカーに対して式(1),金属系アンカーに対して式(2)で評価している。

$T_a =$	$\min(T_{al},$	Ta2,	Таз)	((1)	ł

 $T_a = \min\left(T_{a1}, \ T_{a2}\right) \tag{2}$

ここに, Tal はアンカー筋引張降伏強度, Ta2 はコンクリートのコーン破壊強度, Ta3 はアンカー筋付着強度である。

6.2 せん断強度

改修設計指針では、せん断力を受けるあと施工アンカ ーの強度 Qaは、接着系アンカーと金属系アンカーのそれ ぞれに対して下式で評価している。

$Q_a = \min\left(Q_{al}\right),$	Q_{a2}) (1	3)	ł
----------------------------------	----------	------	----	---

ここに、*Qal*はアンカー筋の耐力で決まる強度、*Qa2*はコ ンクリートの支圧で決まる強度であり、なお、*Qa2*の評 価は接着系アンカーと金属系アンカーで異なっている。

6.3 実験値と計算値の比較

本実験で得られた引張強度とせん断強度の最大値お よび改修設計指針式による計算値の一覧を表-7 に示す。 なお,間接接合部要素実験の最大値 Qmax はアンカー筋1 本当たりの最大値として示した。

アンカー種類に関わらず,引張強度はコンクリートの コーン破壊,せん断強度はコンクリートの支圧破壊でそ れぞれの強度が決まる計算結果となり,実験の破壊モー ドと一致することが確認され,いずれの評価式とも実験 結果を安全側に評価していることが確認された。

7. まとめ

低強度コンクリートに適用したあと施工アンカーの 引張強度とせん断強度を調べるための実験を行い,接着 系アンカー,金属系アンカー共に改修設計指針に示され る強度評価式を用いて安全側に評価できることを示し た。しかしながら,本実験は,低強度コンクリートを有 する実構造物から抜き出したコンクリートではないた め,実用に対しては注意を要するものと思われる。

謝辞

本実験を実施するにあたり,(社)日本コンクリート工 学協会中国支部「低強度コンクリートに関する特別研究 委員会」(委員長:南宏一福山大学教授),(社)日本建築 あと施工アンカー協会および接着系あと施工アンカー 各社より多大なる協力を得ました。ここに記し,謝意を 表します。

参考文献

- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震改修設計指針同解説,2001.1
- 山本泰稔:既存鉄筋コンクリート構造建物の耐震補 強-低強度コンクリートが抱える諸問題について-, 構造コンサルティング協会,協会ニュース Stree, No.38, pp19-32, 2007.7
- 3) 日本コンクリート工学協会中国支部:低強度コンク リートに関する特別委員会報告書, pp133-158, 2009.2
- 4) 山本泰稔, 片桐太一, 秋山友昭, J.F.トンプソン:低 強度コンクリート中における接着系アンカー筋の 荷重伝達能力, コンクリート工学年次論文集, Vol.22, No.1, pp553-558, 2000.6
- 5) 根口百世,南宏一ほか:低強度コンクリートを用い た丸鋼を主筋とする RC 柱のせん断破壊性状,コン クリート工学年次論文集, Vol.29, No.3, pp157-162, 2007.6