論文 H型鉄骨内蔵 CES 柱の構造実験と FEM 解析

松井 智哉*1·溝淵 博己*2·倉本 洋*3

要旨:本研究では,CES 合成構造システムにおける H 形鋼を用いた柱部材の構造性能を把握することを目的 とし、軸力比、シアスパン比および鉄骨比の異なる試験体を用いた静的載荷実験を実施した。本論では、破 壊性状、耐力性能および変形性能について述べるとともに CES 柱の耐力評価法についての検討を行う。さら に本実験で用いた CES 柱を対象にして 3 次元非線形 FEM 解析を行い、モデル化の妥当性を検証するととも にコンクリートの応力状態について検討を行う。

キーワード: CES 構造,繊維補強コンクリート,静的載荷実験,3次元非線形 FEM 解析

1. はじめに

筆者らは,鉄骨鉄筋コンクリート構造から鉄筋を省略 した鉄骨コンクリート合成構造(Concrete Encased Steel: 以下, CES 構造)の開発研究^{1)~3)}を継続的に行っている。 これまでの研究により, CES 構造柱は,従来の SRC 構造 柱と同等以上の復元力特性および損傷軽減効果が得ら れることを明らかにした。しかし,ほとんどの研究にお いて内蔵鉄骨に十字形鉄骨を用いており,H 形鋼を用い た実験は極僅かである。また,軸力比,鉄骨量およびせ ん断スパン比に着目した検討は少なく,構造性能評価法 を開発していく上で,さらに実験的な基礎資料の蓄積が 必要である。

そこで本研究では、CES 合成構造システムにおける H 形鋼を用いた柱部材の構造性能を把握することを目的 とし、軸力比およびシアスパン比の異なる試験体を用い た静的載荷実験を実施した。また、本実験で用いた CES 柱を対象にして、3 次元 FEM 解析を行い、実験結果との 比較からモデル化の妥当性を検証する。さらに解析結果 よりカバーコンクリートおよびコアコンクリートの応 力分担メカニズムを明らかにする。

2. 実験概要

2.1 試験体概要

表-1 に試験体一覧を,図-1 に試験体形状をそれぞ れ示す。実験に用いた試験体は 10 体であり,全ての試 験体において柱断面を 300mm×300mm とした。柱内法 高さはそれぞれ A-series では 1,500mm (シアスパン比: M/QD=2.5), B-series では 1,200mm (M/QD=2.0), C-series

図-1 試験体形状(試験体 B2, C2)

表一1 試験体一覧												
Specimen		A2	B1 B2 B3			B3H	B3L	B1V	C2	D2	D3	
補強繊維 種類 混入:		ビニロンファイバー RF400										
		1.0 Vol%										
幅	<i>b</i> (mm)	300										
せい	D(mm)	300										
内法長さ h		1500	1200							600	600	
せん断スパン比		2.5	2.0							1.5 1.0		
形	状	H形鉄骨										
断	面	面		200×150×6×9			150×150 ×6×6	200×150×6×9				
載荷方法			一定変動						一定			
鉄骨比 As			0	.042		0.070	0.029	0.042				
り	N(kN)	800	400	800	1200	1365	1130	-77~1135	80	00	1200	
軸力比		0.200	0.100	0.200		0.300	0.300 -0.019~0.284		0.200		0.300	
	cimen 幅 せい ン比 形 断 方法	cimen 通 種類 混入量 幅 b(mm) せい D(mm) たい D(mm) ン比 a/D 形状 断面 新 新 が が が が が が が が が が が が が	cimen A2 種類 混入量 「混入量 「小(mm) 生い D(mm) 上い a/D シ比 a/D 三 形状 断面 「行方法 As/bD N (kN) 800 N/N ₀ 0.200	cimen A2 B1 種類 混入量 「混入量 「混入量 「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	A2 B1 B2 種類 混入量 幅 b(mm) さい D(mm) さい D(mm) さい a/D 2.5 形状 200×150×6×9 許方法 As/bD 0.042 N (kN) 800 400 N/N ₀ 0.200 0.100	A2 B1 B2 B3 種類 B3 B3<	A2 B1 B2 B3 B3H 種類 ビニロン: 混入量 幅 $b(mm)$ 土い $D(mm)$ 上い $D(mm)$ 上い $D(mm)$ 土い $D(mm)$ L L	A^2 B1 B2 B3 B3L Emine $A2$ B1 B2 B3 B3H B3L II II II II II II III III $IIII$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	A2 B1 B2 B3 B3H B3L B1V III III III $IIII$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Image: A 2 B1 B2 B3 B3H B3L B1V C2 Image: Image	K K	

*1 豊橋技術科学大学 工学部建設工学系助教授 工博 (正会員)

*2 豊橋技術科学大学大学院 工学研究科建設工学専攻 (正会員)

*3 大阪大学大学院 工学研究科地球総合工学専攻教授 工博 (正会員)

では 900mm (M/QD=1.5) および D-series では 600mm (M/QD=1.0) とした。内蔵鉄骨は原則として H-200×150 ×6×9 を用いており,鉄骨断面については,軸力比 0.3 で鉄骨のモーメント比が 0.4 程度となるように設計して いる。なお,試験体 B3L および B3H は,試験体 B3 に対 して内蔵鉄骨量を変化させたものである。軸力比 (N/N₀) は 0.1, 0.2 および 0.3 とし (試験体名の数値が軸力比と 対応),試験体 B1V は変動軸力下での載荷とした。ここ で,軸耐力 N₀は, SRC 規準⁴)に準じて算定した。

2.2 使用材料

表-2 に鉄骨の材料特性を,表-3 に繊維補強コンク リート(以下,FRC)の材料特性を示す。鉄骨の鋼種は SS400を用いた。繊維補強コンクリートに使用した繊維 は,直径 0.66mm,長さ 30mmのビニロンファイバー (RF4000)であり,体積混入量を1.0%とした。

2.3 載荷方法

載荷装置を図-2に示す。水平力載荷は変形制御とし, 柱上下端の水平変位δと柱長さhで与えられる相対部材 角(R=δ/h)で, R=0.0025, 0.005, 0.01, 0.015, 0.02, 0.03, 0.04 および 0.05rad.の加力サイクルにしたがって行 った。今回の実験では CES 柱の履歴モデルの検証を行う ことも考慮して, 0.01rad.と 0.02rad.の内部履歴となる小 振幅を加力サイクルに加えている。

3. 実験結果

3.1 破壊性状および復元力特性

図-3 に水平荷重-水平変形関係を示す。図中の破線 は累加強度理論により算定した曲げ終局強度であり、P- δ 効果を考慮したものを示している。

試験体 A2, B1 および B2 では柱端部に曲げひび割れ が集中的に発生し、最大耐力に達した後、柱端部のコン クリートの圧壊が進行するとともに緩やかな耐力低下 を生じる安定した曲げ降伏先行型の履歴性状を示した。

試験体 B3 および B3L では, R=0.01rad.のサイクルでせん断ひび割れが確認され,最大耐力以降のサイクルでは, 柱頭から柱脚にかけてせん断ひび割れが伸展するとともに軸ひずみが圧縮側に進行し,急激に耐力が低下していった。両試験体とも作用軸力は鉄骨の軸圧縮耐力よりも大きく,コンクリートが損傷を受けた後,コンクリート負担分の軸力が鉄骨に移行し,座屈とともに急激に圧縮方向に軸ひずみが増加したものと考えられる。

鉄骨量の多い試験体 B3H は, R=0.01rad.のサイクルに おいて, 柱頭から柱脚にかけて斜めにせん断ひび割れが 発生し, R=0.02rad.のサイクル以降コンクリートの損傷 が顕著になり, 軸ひずみも増大していくが, 最終変形角 まで最大耐力の7割程度の耐力を維持している。

変動軸力を受ける試験体 B1V では, R=0.01rad.のサイ

表--2 鉄骨材料特性

種類	降伏強度	引張強度	ヤング係数	降伏歪	
	[MPa]	[MPa]	[GPa]	[µ]	
PL-6	279	416	186.8	1495	
PL-9	278	415	197.4	1409	
PL-16	286	387	220.4	1297	

表-3 FRC 材料特性

	σ _B	Ec	材齢		σ _B	Ec	材齢
A2	43.9	25811	73	BL	43.6	26674	63
B1	43.2	28103	53	BV	44.3	25709	69
B2	43.9	25830	66	C2	42.7	25999	77
B3	44.7	24987	56	D2	42.2	26426	99
BH	45.0	27513	59	D3	42.4	26541	102

 σ_B : 圧縮強度[MPa], E_c : 弾性係数[MPa], 材齢: [日]

クルで柱頭部にせん断ひび割れが発生した。最大耐力以 降,ひび割れの伸展・拡大が確認されたが急激な耐力低 下は見られなかった。

試験体 C2 は、R=0.015rad.のサイクルで最大耐力に達 し、柱頭および柱脚のせん断ひび割れが進展するととも に柱頭においてコンクリートの圧壊が生じている。その 後、せん断ひび割れが大きく拡幅していき、R=0.05rad. のサイクル途中で軸力と耐力が大きく低下し載荷を終 了した。

試験体 D2 および D3 は, R=0.005rad.のサイクルで初期 せん断ひび割れが柱頭から柱脚にかけて発生した。 R=0.01rad.のサイクルでせん断ひび割れが大きく拡幅し, 最大耐力に達した。また,柱端部,柱中央のひび割れ面 に沿ってコンクリートの圧壊の兆候が観察された。その 後のサイクルにおいてせん断ひび割れの伸展・拡幅およ びカバーコンクリートとの分離によって耐力が低下し ていき,試験体 C2 と同様に試験体 D2 では R=0.05rad., 試験体 D3 では R=0.03rad.のサイクル途中で鉄骨の座屈 が顕著となり軸力を保持できなくなった。

4. 終局耐力計算

4.1 終局耐力の評価式

CES 柱の終局曲げ耐力は、一般化累加強度耐力により 算定した。CES 柱の終局せん断耐力は、SRC 規準に示さ

れる SRC 部材の終局せん断耐力の算定式から鉄筋の項 を省いた式を用いてコンクリート部分と鉄骨部分の終 局せん断耐力の累加によって与えられるものとした。こ こで、コンクリート部分の終局せん断耐力式として、コ ンクリートアーチの有効幅係数μを用いて簡便に表し た簡略化せん断耐力式を用いた。なお、コンクリート アーチの有効幅係数は SRC 規準に従えば 1.0 であるが、 本検討においてはせん断耐力に達していると考えられ る試験体 D3 の実験におけるコンクリート部分の負担せ ん断力から有効幅係数μを逆算した結果、0.8 と低減さ せ評価を行っている。

4.2 実験結果との比較

図-4に各試験体 CES 柱のせん断余裕度と最大耐力実 験値に対する曲げ耐力計算値の比(以下,耐力比)の関 係を示す。各試験体とも実験値との耐力比は,精度よく 評価できている。また実験において曲げ降伏型の破壊性 状を示した試験体 A2, B1, B2 および B1V においてはせ ん断余裕度と破壊性状の関係は一致しており,CES 柱の 終局曲げ耐力は一般化累加強度耐力により適切に評価 できることが確認できる。実験においてせん断破壊型の 破壊性状を示した試験体 B3,B3H,C2,D2 および D3 においてもせん断余裕度と破壊性状の関係は一致して

いることから, CES 柱の終局せん断耐力は簡略化せん断 耐力式において適切に評価することが可能であるとい える。しかしながら,試験体 B3L(図中の▲印)に着目 してみるとせん断余裕度は 1.0 以上であるにも拘らず, 実験ではせん断破壊型の破壊性状を示している。また実 験との耐力比においても対応が悪い。これは,鉄骨ウェ ブがせん断降伏耐力の計算値に達していなかったため と考えられ(ここで実験結果の例示は省略する),鉄骨 比が極端に低い CES 柱においては,今後更なる検討が必 要である。

5.3 次元非線形 FEM 解析

5.1 解析手法の概要

解析には3次元非線形 FEM 解析ソフト "FINAL" ⁵⁾を

使用した。図-5 に要素分割図を示す。解析モデルは対称性を考慮して試験体の半分をモデル化したものである。柱下端部で軸力を与え,柱上端部はローラー支持(上下方向拘束)として正負水平繰り返しの強制変位を与えることで,正負逆対称曲げせん断加力を再現している。

コンクリートは六面体要素でモデル化し、応力-ひず み関係においては、圧縮側の応力上昇域は修正 Ahmad モデル⁶, 軟化域は図-6 (a) に示すように直線でモデ ル化し,鉄骨に囲まれたコアコンクリートの勾配をカバ ーコンクリートと比べて緩やかなものにしている。破壊 条件は、Willam-Warnkeの5パラメータモデル^のを用いた。 引張側のひび割れ後の軟化域は、ひび割れ発生後引張応 力をほとんど負担しないものとして,出雲らのモデル⁷⁾ において係数 c=1.0 としてモデル化した。また、繰返し による剛性低下は考慮しない(図-6(c))。ひび割れ後 のせん断伝達モデルは図-6(d) に示す Al-mahaidi モデ 剛性がわずかに大きくなるように ($\beta = 0.8$) 調整して多 折線モデルでモデル化した。コンクリートと鋼板の間の 応力-すべり関係においては、文献 9)を参照し、粘着力 と面外圧縮力に伴う摩擦力の増大を付着応力として考 慮することとした(図-7参照)。なお、初期剛性は摩擦 力によって変化しない。粘着強度は低拘束圧を仮定して 0.05N/mm²と小さく設定した。また、このときの摩擦係 数は 0.65 とした¹⁰⁾。

鉄骨ウェブは四辺形平面応力要素でモデル化し,鉄骨 フランジでは拘束効果を考慮するため面外曲げおよび せん断変形を考慮できる積層シェル要素を用いた。応力 ーひずみ関係は修正 Menegotto-pinto モデルで表し,鉄骨 降伏後の圧縮側の応力ーひずみ関係は図-8 に示すモデ ル¹⁰⁾を適用した。各折点の算定式を以下に示す。本算定 式は,鋼管コンクリートを対象として提案されたもので あるが,コンクリートに内蔵された H型鉄骨の座屈性状 のモデル化に関する研究資料がなかったため,座屈を考 慮する簡易的な方法として採用することとした。

$$\frac{\varepsilon_{SB}}{\varepsilon_S} = 3.62 \left[\frac{\sigma}{E} \cdot \left(\frac{B}{T} \cdot \frac{1}{1.32} \right)^2 \right]^{-1} + 1$$
(1)

$$\sigma_{SB} = \left[-0.0093 \left(\frac{B}{T} \right) + 1.25 \right] \cdot \sigma_S \tag{2}$$

$$\varepsilon_{ST} = 250 \left(\frac{B}{T} \cdot \frac{1}{1.32}\right)^{-1} \cdot \varepsilon_S \tag{3}$$

$$\sigma_{ST} = \left[-\frac{1}{116} \left(\frac{B}{T} \cdot \frac{1}{1.32} \right) + 0.925 \right] \cdot \sigma_S \tag{4}$$

ここで, σ_S:鉄骨の降伏応力度, E:鉄骨ヤング係数, B:フランジ幅, T:フランジ厚, ε_S:鉄骨降伏歪

5.2 実験結果と解析結果の比較

図-9 に実験および解析による水平荷重-水平変形関

図-8 鉄骨の圧縮側応カーひずみ関係

係を比較したものを示す。ここでせん断力は柱頂部の水 平荷重,変形角は柱上部位置での水平変形角とし,両者 の比較は R=0.03rad.の第2載荷終了時までとしている。

図-10 に座屈を考慮する以前の解析モデルでの水平 荷重-水平変形関係を比較したものの一例(B2)を示す。 履歴ループの包絡線においては良好な対応を示してい

図-9 水平荷重-水平変形関係の比較

るものの,最大耐力後の耐力低下は見られない。また除 荷剛性も大きくなる傾向が見られ,履歴ループが外側に 大きくはらんでおり実験とは異なった挙動を示してい る。座屈をモデル化した図-9のB2を見ると上記の点が 改善されていることが確認できる。

座屈を考慮した解析結果について見ていく。実験にお いて曲げ降伏先行型の安定した履歴ループを示した試 験体 A2, B1 および B2 では最大耐力,除荷剛性ともに 良好な対応を示しており,高い精度で履歴ループを再現 できている。

一方,試験体 B3 では,最大耐力点までは履歴ループ を精度良く再現できているものの,R=0.02rad.のサイク ルにおける急激な耐力低下は追従できていない。しかし ながら,R=0.015rad.のサイクルから徐々に耐力低下しい く傾向は一致している。

試験体 C2 および D2 では試験体 B3 と同様に最大耐力 点までは履歴ループを精度良く再現できており, R= 0.02rad.まででわずかに耐力低下する現象も捉えている。

しかしながら, R=0.03rad.のサイクルで再びせん断力が 上昇する傾向が見られ,急激な耐力低下を捉えることが できていない。これは内法寸法が短くなったことによっ て,前節によって算出した座屈を開始するひずみに達し ていないためだと考えられる。なお今回の座屈を考慮し たモデルは鋼管コンクリートの算定式を CES 構造に適 用したものであり,極端な耐力低下を起こした CES 柱の 挙動を FEM 解析でシミュレートするにあたっては,更 なる検討が必要である。

5.3 最小主応力度分布

図-11 に R=0.01rad.のサイクルにおけるシアスパン比 が異なる 4 体の試験体のコンクリートの最小主応力度分 布(圧縮応力度分布)を示す。対象としたコンクリート 要素は、図-12 における要素列 S2(鉄骨が含まれる要 素列)と S5 (カバーコンクリートの要素列)である。

各試験体ともに、柱のモーメントによる圧縮力に対し て、斜めに圧縮ストラットが形成されていることが確認 できる。また、試験体 A2 では、S2 と S5 の主応力度の レベルが同程度であるのに対して、シアスパン比の短い 試験体になるほど、鉄骨に囲まれた領域 S2 におけるス トラットを形成する圧縮応力が高くなり、S2 と S5 の応 力状態に顕著な違いが見られる。

5.4 平均せん断応力度の推移

図-13 にコンクリートの平均せん断応力度の推移を 示す。平均せん断応力度は図-12 に示すように鉄骨に囲 まれた領域のコアコンクリート,カバーコンクリート 1 およびカバーコンクリート2の領域について示している。 せん断応力度を抽出した要素は試験体の柱中央部とし た。

各試験体においてカバーコンクリート1ではほぼ応力 を負担しておらず、変形角が進行しても大きな変化は見 られない。また、コアコンクリートにおいては、シアス パン比の短い試験体ほどせん断応力は大きく、最小主応 力の応力状態との対応が見て取れる。

曲げ降伏型の試験体 A2 および B2 では載荷初期にお いて、カバーコンクリート2のせん断応力がコアコンク リートよりも大きい。一方、せん断破壊型の試験体 C2 および D2 ではほぼ最大耐力に達する R=0.01rad.のサイ クルにおいてコアコンクリートのせん断応力がカバー コンクリート2の値を上回っており、鉄骨に囲まれた狭 い領域においては鉄骨フランジの拘束効果などにより 高いせん断応力が生じていることが確認できる。

6. まとめ

- (1) シアスパン比が 2.5 および 2.0 の試験体は曲げ耐力計 算値とほぼ同等の最大耐力を示し、CES 柱の曲げ耐 力は一般化累加強度理論により精度良く評価できる。 またシアスパン比が 1.5 および 1.0 の試験体の CES 柱のせん断耐力は、簡略化せん断耐力式におけるコ ンクリートアーチの有効幅係数を低減させることで 概ね評価可能である。
- (2) 3 次元非線形 FEM 解析によって CES 柱の荷重-変形 関係を概ねシミュレートすることができることが確 認できたが、せん断破壊型、特にシアスパン比の短 い試験体に対しては、さらなる検討が必要である。
- (3) FEM 解析の結果に基づいて、各試験体ともに柱頭・

柱脚のモーメントによる圧縮力に対して,斜めに圧 縮ストラットが形成されていることが確認できた。 また,鉄骨に囲まれた狭い領域においては鉄骨フラ ンジの拘束効果などにより高いせん断応力が生じて いることが確認できた。

参考文献

- 田口孝,永田諭,松井智哉,倉本洋:H型鉄骨を 内蔵した CES 柱の構造特性,コンクリート工学年 次論文集, Vol.28, No.2, pp.1273-1278, 2006.7
- 永田 諭,松井智哉,倉本 洋:鉄骨コンクリート造 柱梁接合部の構造性能に関する基礎研究,コンクリ ート工学年次論文集,Vol.28,No.2, pp.1267-1272, 2006.7
- 3) 倉本 洋,松井智哉,今村岳大,田口 孝:CES 合 成構造平面架構の構造性能,日本建築学会構造系論 文集,No.629, pp.1103-1110, 2008.7
- 4) 日本建築学会:鉄骨鉄筋コンクリート構造計算規
 準・同解説,2001
- 5) 伊藤忠テクノソリューションズ(株): FAINAL/V99
- 長沼一洋:三軸圧縮下のコンクリートの応力~ひず み関係、日本建築学会構造系論文集、 No.474, pp.163-170, 1995.8.
- 出雲淳一,島弘,岡村 甫:面内力を受ける鉄筋コンクリート板要素の解析モデル,コンクリート工学, Vol.25, No.9, pp.134-147, 1987
- 長沼一洋:平面応力場における鉄筋コンクリート板の非線形解析モデル、日本建築学会構造系論文集, No.421, pp.39-48, 1991.3.
- 9) 後藤康明,穴吹拓也,城攻:SRC造内柱梁接合部におけるせん断応力分担に関する非線形有限要素解析(その1:解析モデルの構築)日本建築学会大会学術講演梗概集,C-1,pp.1089-1090,2005
- 金洸演,米澤健次,野口博:鋼とコンクリートからなる合成構造の付着特性に関する実験的研究,日本建築学会大会学術講演梗概集,C-2,pp.1631-1632,2004.9.
- 鈴木敏郎,元結正次郎ほか:純圧縮を受けるコンク リート充填角形短柱の座屈および座屈後挙動,日本 建築学会構造系論文集,No.486,pp.143-151,1996