論文 膨張型 HPFRCC を用いたせん断スパン比の異なる RC はりのひび割 れ性状と破壊性状

高橋 祐二*1・高田 浩夫*2・浅野 幸男*3・六郷 恵哲*4

要旨:収縮補償をした膨張型 HPFRCC を用いて,せん断補強鉄筋を配置しない RC はりを作製し,せん断ス パン比を 1.5~2.5 と変化させて載荷試験を行った。比較とした普通コンクリートを用いたはりは,せん断圧 縮破壊を示し,膨張型 HPFRCC を用いたはりは,曲げ引張破壊を示した。等曲げ区間のひび割れは,曲げモ ーメントに比例して発生し,一定の幅で推移するのに対して,せん断区間のひび割れは,鉄筋降伏間近で発 生本数が増え,幅が大きくなる傾向を示した。等曲げ区間,せん断区間ともに発生したひび割れ幅の平均値 は 0.02mm 以下であった。

キーワード: HPFRCC, ひずみ硬化, せん断スパン比, 曲げ引張破壊, せん断圧縮破壊

1. はじめに

複数微細ひび割れ型繊維補強セメント複合材料 (HPFRCC) は、一軸引張応力下において擬似ひずみ硬 化特性を示す高靭性材料である¹⁾。安定して引張応力を 分担することができるため,鉄筋コンクリート (RC)棒 部材のせん断耐力の算定において補強繊維による分担 分を見込むことができる。HPFRCC はセメント量が多く 収縮量の大きな材料であるので,鉄筋と組み合わせて用 いる場合には, 膨張材を添加するなどの収縮低減対策が とられる場合が多い。RC はりのせん断破壊形式や破壊 強度は, せん断スパン比 a/d によって大きく影響され²⁾, a/d の小さいはりは、スレンダーなはりとは異なる破壊性 状を示すことが知られている³⁾。このためコンクリート 標準示方書においては、せん断スパン比 a/d が小さい場 合に対してせん断圧縮破壊耐力式を定め、せん断スパン 比 a/d が 2.5 程度で通常の RC 棒部材のせん断耐力式に漸 近するよう定めている⁴⁾。

HPFRCCを用いた RC はりに関する研究では、曲げひ び割れ性状を対象としたものが多く、せん断ひび割れ性 状について、特にひび割れの幅や本数の推移について検 討したものは少ない。本研究においては、収縮による軸 引張力の影響を除くため、膨張材により収縮補償をした 膨張型 HPFRCC⁵⁾を用いて、せん断補強鉄筋を配置しな い RC はりを作製し、せん断スパン比 a/d を 2.5、2.25、 2.0、1.75、1.5 と段階的に変化させて 4 点曲げ載荷試験 を行い、曲げモーメントとせん断力が作用する状態でひ び割れ性状と破壊性状を確認した。比較として、収縮補 償をした普通コンクリートを用いた同じ断面のはりに ついて破壊性状を確認した。

2. 実験概要

2.1 膨張型HPFRCCとコンクリートの配合

実験に用いた膨張型 HPFRCC は、高強度ポリエチレン 繊維を体積比で 1.5%混入した HPFRCC に膨張材を結合 材に質量で 6%添加したものである。単位結合材質量が 一定となるようセメントと置換えて膨張材を配合した。 膨張材の添加率は、収縮補償を目的として、これまでの 著者らの研究⁵⁾に基づき 6%とした。一般の RC 部材の場 合には、本研究の試験条件(せん断スパン比 1.5~2.5) では、せん断破壊が生じることを確認するため、水セメ ント比 50%の普通コンクリートを用いた。このコンクリ ートには収縮補償を目的とし、膨張材メーカーが示す標 準使用量 20kg/m³を添加した。

100 リットルのパン型ミキサで練混ぜを行った。打設

材料		仕様,物性
高強度ポリエチレ	∕ン繊維 (PE)	繊維径 12μm, 繊維長 12mm, 密度 0.98g/cm ³ , 引張強度 2.6GPa, 弾性係数 88GPa
セメント	(C)	JIS R 5210 早強ポルトランドセメント, 密度 3.13g/cm ³
膨張材	(EX)	JIS A6202 エトリンガイト・石灰複 合系 密度 3.05 g/cm ³
細骨材	(S1)	7号珪砂, 密度 2.60g/cm ³
高性能 AE 減水	×剤(SP)	ポリカルボン酸エーテル系
増粘剤	(MC)	水溶性メチルセルロース系
細骨材	(S2)	砂, 密度 2.58 g/cm3
粗骨材	(G)	砂利 密度 2.62 g/cm3
AE 減水剤	(AD)	変性リグニンスルホン酸化合物と ポリカルボン酸エーテルの複合体
空気量調整剤	(AE)	陰イオン界面活性剤

表-1使用材料

*1 岐阜大学 大学院工学研究科社会基盤工学専攻 (正会員)
*2 岐阜県生コンクリート工業組合 技術センター所長 (正会員)
*3 岐阜大学 社会資本アセットマネジメントセンター 博士(工学) (正会員)
*4 岐阜大学 工学部社会基盤工学科教授 工博 (正会員)

		単位量 (kg/m ³)							
配合 (記号)	水結合材比 W/B (%)	水 W	結合 セメント C	材 B 膨張材 EX	7 号珪砂 S1	高性能 AE 減水剤 SP	増粘剤 MC	繊維 PE	
HPFRCC (HP)	30	379	1188	76	395	37.9	0.9	14.6	

表-2 HPFRCC の配合

表-3 コンクリートの配合

	水結合	細骨	単位量 (kg/m ³)							
配合	材比 材率		-	結合材 B		細骨	粗骨	AE 減	空気	量
(記号)	W/B	s/a	小	セメント	膨張材	材	材	水剤	調整	剤
	(%)	(%)	W	С	EX	S2	G	AD	Al	Ξ
普通コンクリート (NC)	50	43.0	165	310	20	756	1022	0.825	0.0165	1A

	記号	材料	せん断 スパン比 a/d	はり長さ 1 (mm)	はり断面	備考
1	H P 2 . 5 L A	HPFRCC	2.5	1360	複鉄筋	
2	NC2.5LA	NC	2.5	1360	複鉄筋	
3	HP2.25LA	HPFRCC	2.25	1360	複鉄筋	定着長 247mm
4	HP2.25SA	HPFRCC	2.25	1020	複鉄筋	定着長 77mm
5	H P 2 . 0 S A	HPFRCC		1020	複鉄筋	
6	H P 2 . 0 S B	HPFRCC	0 2.25 C 2.0	1020	単鉄筋	
7	N C 2 . 0 S A	NC		1020	複鉄筋	
8	HP1.75SA	HPFRCC	1.75	1020	複鉄筋	
9	HP1.5SA	HPFRCC		1020	複鉄筋	
10	HP1.5SB	HPFRCC	1.5	1020	単鉄筋	
11	N C 1 . 5 S A	NC		1020	複鉄筋	

表-4 実験に供したはりの種類

日を1ロットとして,HPFRCCでは一軸引張強度試験用 にダンベル型供試体5本と圧縮強度試験用に直径5cm円 柱供試体3本を採取し,普通コンクリートでは圧縮強度 試験用に直径10cm円柱供試体3本と割裂引張強度試験 用に直径15cm円柱供試体3本を採取した。

HPFRCC とコンクリートに用いた材料を表-1 に, 配 合を表-2 に示す

2.2 はりの作製

実験に供したはりの種類を表-4 にまとめる。はりの 名称は、材料を表す記号 HP あるいは NC に続いてせん 断スパン比,次にはりの長さ 1360mm を L, 1020mm を S と示し、末尾に複鉄筋断面を A,単鉄筋断面を B とした 記号で表す。

はりの断面は,D19を2本配置して引張鉄筋比を3.4% とし、図-1に示すよう同じ量の鉄筋を圧縮側にも配置 して複鉄筋断面とした。鉄筋端部の定着を確実にするた め、ねじふし鉄筋を用いて厚さ9mmの鋼板をナットで 固定した。膨張型 HPFRCCを用いて長さ1360mmのはり を2体、1020mmのはりを6体作製し、その内、長さ 1020mm のはり2本は、圧縮側鉄筋のはりの破壊挙動に 対する影響を確認するため単鉄筋断面とした。比較とし て、普通コンクリートを用いて、複鉄筋断面の長さ 1360mm のはりを1体、1020mm のはりを2体作製した。

はりの作製にあたっては、はり側面を打設面として、 軸方向に傾斜させた型枠の片側から HPFRCC を流し込 み、軸方向に材料が流れながら連続的に鉄筋下端や型枠 先端に行き渡るよう打設し、型枠振動機を用いて型枠面 の巻き込み空気を除去した。 打設後 24 時間で脱型を行 い、はり供試体を 20℃の養生室に移し養生シートによる 湿布養生を材齢 14 日まで行った。その後、載荷試験ま では実験棟の室内環境に静置した。はりに用いた材料の 力学的特性を確認するための供試体は、はりと同様の環 境で養生をした。

2.3 はりの曲げ載荷試験

曲げ載荷試験方法は 4 点曲げ載荷とし, 等曲げ区間 100mmを一定として,支点間距離を移動させて,せん断 スパン比を 2.5, 2.25, 2.0, 1.75, 1.5 と変化させた。は りの載荷方法の一例を図-2 に示す。荷重をロードセル,

図-1 はりの断面と定着板の寸法

図-2 曲げ載荷試験方法の例 (a/d:2.5)

図-3 HPFRCC(左)と普通コンクリート(右)の 応力ひずみ関係

N/mm²

7.70

3.40

表-5 材料の力学特性								
	圧縮強度	引張降伏	引張					
材料		強度	強度					

N/mm²

6.30

N/mm²

91.4

48.9

HPFRCC

NC

支点と載荷点の変位を高感度変位計で測定し,圧縮縁に は検長区間 30mm のひずみゲージを,また引張縁とはり 左右のせん断区間には検長区間 120mm のひずみゲージ をそれぞれ貼付し,はりの挙動を確認した。載荷試験に おいては,60kN までは 20kN ごとに,60kN を超えて降 伏までは40kN あるいは80kN ごとに等間隔で段階的に載 荷を止め,マイクロスコープにより,等曲げ区間とせん 断区間のひび割れ計測を行った。せん断区間のひび割れ は,載荷点直下の下面と支点直上の上面を結ぶ斜めの直 線上で計測した。

3. 実験結果と考察

3.1 はりに用いた材料の力学特性

はりに用いた材料の力学特性については、はりの載荷 試験の直後に材齢 12 週で試験した。HPFRCC のダンベ ル型供試体による一軸引張試験と直径 5cm 円柱供試体に よる圧縮試験から求めた応力とひずみの関係と、普通コ ンクリートの圧縮試験と割裂引張試験から求めた応力 とひずみの関係とを図-3 に示し、力学特性を表-5 に 示す。応力ひずみ曲線は、圧縮側を正として第一象限に、 引張側を負として第三象限にプロットした。実験に用い た HPFRCC は、ひずみが 0.1%以前からひずみ硬化を示 し、この特性はひずみが 1~2%に至るまで維持されてい ることから、鉄筋降伏前から引張応力を負担し降伏後も この作用が持続すると考えられる。

3.2 はりの載荷試験結果

(1) 膨張型HPFRCCを用いたはり

せん断スパン比を 2.5, 2.25, 2.0, 1.75, 1.5 としたは りの荷重とたわみの関係,荷重とせん断区間対角線のひ ずみの関係,荷重と引張縁ひずみの関係,ならびに荷重 と圧縮縁ひずみの関係を図-4, 5, 6, 7, 8, 9 に示す。

いずれのせん断スパン比の場合も膨張型 HPFRCC を 用いたはりにおいては、鉄筋降伏後も鉄筋のひずみ硬化 により荷重が増加し、最大荷重に達する前に圧縮縁のひ ずみが急減する挙動から、載荷点間の HPFRCC の圧縮破 壊ではりが破壊したことが確認できる。荷重と全等曲げ 区間を検長区間とするひずみゲージから得られる引張

ヤング

係数

kN/mm²

27.2

31.5

-1251-

縁ひずみの関係は、荷重-たわみ曲線と相似の曲線が得 られ、等曲げ区間において鉄筋降伏後もひび割れが局所 化せず終局に至っていることを示す。左右のせん断区間 のひずみの軌跡は、同様の挙動を示しており、はりが左 右均等に変形したことを表している。以上のことから、 これらのはりは、いずれのせん断スパン比の場合も曲げ 引張破壊したことがわかる。

(2) 鉄筋定着長の影響

鉄筋の定着長が短いはりの破壊性状を確認するため, 長さ1360mmと1020mmのはりを用いてせん断スパン比 を2.25とした載荷試験結果を図-5に示す。長さ1020mm のはりの鉄筋定着長は77mmであり,さらに定着板の固 定を外して載荷試験に供した。

いずれのはりも曲げ引張破壊したことを図-5 は示し ており、本研究の範囲では、定着長が 77mm であっても 破壊性状への影響は確認されなかった。 はりの破壊挙動に対する圧縮側鉄筋の影響を確認す るため、単鉄筋断面と複鉄筋断面でせん断スパン比2.0, 1.5 のはりの載荷試験を行い、その結果を図-6,9 に示 す。いずれの断面のはりにおいても、鉄筋降伏までのは りの荷重とたわみの関係、ならびに荷重と引張縁ひずみ の関係は同じ挙動を示すが、単鉄筋断面のはりは、せん 断区間のひずみが小さく、圧縮縁ひずみが大きくなった。

(4) 普通コンクリートを用いたはりとの比較

膨張型 HPFRCC と普通コンクリートを用いたせん断 スパン比 2.5, 2.0, 1.5 のはりの載荷試験結果を図-4, 7, 10 に示す。普通コンクリートを用いたはりは,膨張型 HPFRCC によるはりの 50~70%の最大荷重となり,載荷 点付近で斜めひび割れ上部のコンクリートが圧壊して 破壊しており,せん断圧縮破壊したと考える。コンクリ ート標準示方書⁴⁾によるこの部材のせん断圧縮破壊耐力 は,せん断スパン比が 2.5, 2.0, 1.5 と変化した場合, 70kN, 101kN, 155kN と算定され,実験値 89.7kN, 130kN, 203kN

(3) 圧縮鉄筋のはりの破壊挙動への影響

図-11 曲げモーメントと等曲げ区間に発生したひび割れ密度の関係(左)とせん断力とせん断区間に発生 したひび割れ密度の関係(右)

は算定値の 1.3 倍であった。圧壊が生じる際の圧縮ひず みは,普通コンクリートでは 0.35%程度であるのに対し て, HPFRCC では 0.6%前後であった。

(5) 等曲げ区間とせん断区間のひび割れ性状

曲げモーメントと等曲げ区間のひび割れ密度の関係

と、せん断力とせん断区間のひび割れ密度の関係とを図 -11に示す。ひび割れ密度は、ひび割れ本数を観察区間 の長さで除した値とした。等曲げ区間では、曲げモーメ ントに比例してひび割れ密度が大きくなる傾向を示し、 せん断区間では、曲線的に鉄筋降伏間近でひび割れ密度

図-13 せん断力とせん断 区間に発生したひ び割れ幅の関係

図-14 HP1.75SA のせん断区間に発生した 19 本の ひび割れ幅の推移

が大きくなる傾向を示す。

割れ幅の関係

マイクロスコープに取り込んだひび割れ写真の一例 を写真-1 に、等曲げ区間とせん断区間に発生するひび 割れ幅の傾向を図-12 と図-13 に示す。引張鉄筋が配 置された等曲げ区間に発生するひび割れの幅は、曲げモ ーメントに関係なくほとんど 0.02mm 以下の一定の幅に 分布しているが、せん断補強筋のないせん断区間に発生 するひび割れの幅は、せん断力が大きくなるに従い、ひ び割れ幅の最大値が大きくなる傾向がある。

はりのせん断区間に発生したひび割れ幅の推移の例 を図-14に示す。鉄筋降伏の約70%の荷重に相当するせ ん断力70kNまでは,発生しているひび割れの幅は 0.02mm以下で推移しているが,鉄筋降伏間近になると 既に発生しているひび割れ幅の拡大,あるいは新しく大 きな幅のひび割れが発生する傾向が確認できる。ひび割 れ幅の平均値は,等曲げ区間とせん断区間において差は なく0.02mm以下で推移することを図-12,13は示す。

4. まとめ

収縮補償をした膨張型 HPFRCC を用いて, せん断補 強鉄筋を配置しない RC はりを作製し, せん断スパン比 を変化させて載荷試験を行い, ひび割れ性状と破壊性状 について検討を行った。本研究で得られた知見を以下に まとめる。

- (1) 鉄筋比 3.4%の RC はりは、せん断スパン比 1.5~2.5 の範囲において、普通コンクリートを用いた場合せん断圧縮破壊を示し、膨張型 FPFRCC を用いた場合曲げ引張破壊を示した。すなわち、本研究の範囲(長方形断面、引張鉄筋比 3.4%、せん断スパン比 1.5~ 2.5)では、膨張型 HPFRCC を用いた RC はりにせん断破壊は生じなかった。
- (2) 鉄筋 D19 の定着長を 77mm と短くしても膨張型 HPFRCC を用いた RC はりの破壊性状への影響は認 められなかった。

写真-1 ひび割れ写真の一例

- (3)等曲げ区間の引張縁のひび割れ密度は、曲げモーメントに比例して直線的に大きくなり、せん断区間のはりの側面のひび割れ密度は、曲線的に鉄筋降間近で大きくなる傾向を示した。
- (4) せん断区間のひび割れは鉄筋降伏間近になると、ひび割れ幅が拡大したり、大きなひび割れが新しく発生したりする傾向が確認できたが、平均ひび割れ幅は、等曲げ区間とせん断区間に差はなく 0.02mm 以下で推移した。

参考文献

- 土木学会:複数微細ひび割れ型繊維補強セメント複 合材料設計・施工指針(案),コンクリートライブラ リー127,2007.3
- 2) 岡田 清:鉄筋コンクリート工学,朝倉書院,1981
- 3) 土木学会:2007 年版コンクリート標準示方書改訂資料,コンクリートライブラリー129,2008.3
- 4) 土木学会: コンクリート標準示方書[設計編], 2008.3
- 5) 高田浩夫,高橋祐二,浅野幸男,六郷恵哲:膨張型 HPFRCC でケミカルプレストレスを導入した RC 梁 のひび割れ特性,コンクリート工学年次論文集, Vol. 31, No.1, pp.337-342, 2009.7