論文 塩害劣化を受けた RC-DFRCC 合成部材の曲げ載荷実験

角掛 久雄*1・小笠原 哲也*2・大内 一*3・鬼頭 宏明*4

要旨:外殻に高靱性繊維補強セメント複合材料(DFRCC), コア部を鉄筋コンクリート(RC)とした合成構造は, 構造物の長寿命化を図る上で一つの解答を与える可能性がある。そこで RC-DFRCC の合成部材模型梁を用 いて初期損傷程度の差を与えた上で,塩害劣化させた後,曲げ載荷試験を行うとともに劣化性状を調査した。 本論文は比較用の RC 単体を加えた3シリーズの模型梁を用いた一連の実験結果について報告する。 キーワード: RC-DFRCC 合成梁,塩害劣化,残存剛性,残存耐力

1. はじめに

短繊維を比較的多量に混入した高靭性繊維補強セメ ント複合材料(以下 DFRCC と称す)の利用研究が,近 年増加してきている^{1),2)}。引張靭性が期待でき,微細幅 のマルチプルクラックが特長であり,劣化因子の進入や かぶり剥落などの抑制が期待できる。

一方,単価が高いという欠点を持つ。社会資本投資が 削減されていく状況の中で,今後の構造物には長寿命化 が求められる。このような背景のもと,DFRCC を外殻 材,コア部を鉄筋コンクリート(以下 RC と称す)とし た合成構造は一つの解決策を与える可能性がある。そこ で,RC-DFRCC の合成部材模型梁を用いて初期損傷程 度に差を与えた後,暴露して塩害劣化させ,塩化物イオ ンの浸透深さ等の劣化性状とともに,載荷実験により曲 げ破壊特性を調査した。

2. 実験パラメータ

2.1 供試体と形状寸法

供試体は, RC をコア部として DFRCC を外殻材とした RC-DFRCC 複合体に加え,比較用の RC 単体,DFRCC 単体を加えた3シリーズからなる。各供試体の断面・形 状を図-1に示す。図の様に半円形フックで定着した鉄 筋の降伏を確認するためにひずみゲージを設置し,かつ, 純曲げ部の下縁に変位計と検長 10cm のπゲージを取り 付け,変位や下縁の曲率や平均ひずみの計測を行った。

劣化はひび割れ数や幅など部材の損傷程度と相関を 持つ。そこで初期損傷レベルと暴露期間を試験パラメー タとする試験体一覧を**表-1**に示す。

表-1中, R は RC 単体, FR は RC-DFRCC 複合体, F は DFRCC 単体を示し, M は暴露期間,最後に損傷レ ベルの度合いを示す。表記は R-M8-1 のように材質, 暴露期間,損傷レベルの順に表す。

*4 大阪市立大学大学院 工学研究科都市系専攻准教授 博(工) (正会員)

供試体名称	材質	暴露期間	損傷レベル	供試体名称	材質	暴露期間	損傷レベル	供試体名称	材質	暴露期間	損傷レベル
R-M2-0			0	FR-M2-0			0	F-M2-0			0
R-M2-1			1	FR-M2-1			1	F-M2-1			1
R-M2-2		2ヶ月	2	FR-M2-2		2ヶ月	2	F-M2-2		2ヶ月	2
R-M2-3			3	FR-M2-3			3	F-M2-3			3
R-M2-4			4	FR-M2-4			4	F-M2-4			4
R-M4-0			0	FR-M4-0			0	F-M4-0			0
R-M4-1	DC		1	FR-M4-1	RC-		1	F-M4-1	DEDGG		1
R-M4-2	KC 当休	4ヶ月	2	FR-M4-2	DFRCC	4ヶ月	2	F-M4-2	DFRCC	4ヶ月	2
R-M4-3	単(平)		3	FR-M4-3	複合体		3	F-M4-3	甲仲		3
R-M4-4	(記号R)		4	FR-M4-4			4	F-M4-4	(記号F)		4
R-M8-0	(10.010)		0	FR-M8-0	(記号FR)		0	F-M8-0	(10.31)		0
R-M8-1		8ヶ月	1	FR-M8-1		8ヶ月	1	F-M8-1		8ヶ月	1
R-M8-4			4	FR-M8-4			4	F-M8-4			4
R-M12-1			1	FR-M12-1			1	F-M12-1			1
R-M12-2		12ヶ日	2	FR-M12-2		12ヶ日	2	F-M12-2		12ヶ日	2
R-M12-3		147月	3	FR-M12-3		147月	3	F-M12-3	1	12ケ月	3
R-M12-4			4	FR-M12-4			4	F-M12-4			4

表-1 試験体一覧

表-2 初期損傷付与時のひび割れ発生状況の一例

R (RC単体)				FR(DFRCC-RC複合体)				F (DFRCC単体)						
供試体名	損傷 レベル	検長区間 内のひび 割れ本数	πケージに よる平均ひ び割れ幅	目視による最大ひび割れ幅	供試体名	損傷 レベル	検長区間 内のひび 割れ本数	π ケージに よる平均ひ び割れ幅	目視による最大ひび割れ幅	供試体名	損傷 レベル	検長区間 内のひび 割れ本数	π ケージに よる平均ひ び割れ幅	目視による最大ひび割れ幅
R-M2-1	1	1本	0.47mm	0.25mm	FR-M2-1	1	2本	0.17mm	0.05mm	F-M2-1	1	2本	0.01mm	0.05mm
R-M2-2	2	2本	0.44mm	0.60mm	FR-M2-2	2	3本	0.17mm	0.15mm	F-M2-2	2	5本	0.14mm	0.10mm
R-M2-3	3	2本	1.31mm	2.00mm	FR-M2-3	3	9本	0.29mm	0.45mm	F-M2-3	3	8本	0.22mm	0.15mm
R-M2-4	4	2本	3.43mm	4.00mm	FR-M2-4	4	7本	1.19mm	3.00mm	F-M2-4	4	10本	0.58mm	4.00mm
R-M4-1	1	1本	0.47mm	0.35mm	FR-M4-1	1	2本	0.02mm	0.05mm	F-M4-1	1	2本	0.15mm	0.05mm
R-M4-2	2	1本	0.96mm	0.80mm	FR-M4-2	2	4本	0.16mm	0.15mm	F-M4-2	2	4本	0.22mm	0.10mm
R-M4-3	3	2本	1.37mm	1.85mm	FR-M4-3	3	5本	0.28mm	0.50mm	F-M4-3	3	8本	0.18mm	0.15mm
R-M4-4	4	1本	4.57mm	5.50mm	FR-M4-4	4	10本	0.62mm	4.00mm	F-M4-4	4	12本	0.44mm	4.00mm

2.2 初期損傷付与と暴露期間

初期損傷付与は、図-1下に示す4点曲げ載荷実験に より導入する。図-2に付与する初期損傷レベルを示す。 鉄筋の降伏変位 δ_y を基準に、stage1は0.5 δ_y まで、 stage2は δ_y まで、stage3は2 δ_y 、stage4は4 δ_y まで載荷 して初期ひび割れを導入した。初期損傷を与えたときの 目視により確認したひび割れ本数と最大幅および π ゲ ージにより計測した下縁の増分伸び(ひずみ)をひび割 れ本数で除した平均ひび割れ幅の状況を表-2に示す。 なお、表に示すひび割れは図-1に示す2つの標点距離 10cmの π ゲージ設置範囲(中央部20cmの範囲)に発生 したものについて示す。総じて損傷レベルの大きい方が、 ひび割れ幅は大きい。またRではひび割れ本数は少なく、 ひび割れ幅が大きいのに対し、Fではひび割れ本数が多 く、ひび割れ幅は小さい。FRは、RCとFの中間で、ど ちらかと言えばFに近い。

暴露期間は 2, 4, 8, 12 ヶ月とし, 各時点で同様の 4 点曲げ載荷実験により破壊に至らせた。

2.3 使用材料および供試体作製方法

使用した普通コンクリートとDFRCCの配合,および 鉄筋を含めた材料試験結果を表-3~表-8 に示す。 DFRCCの補強用繊維としてポリビニルアルコール(PVA) 繊維2%を使用し,練混ぜにはオムニミキサを使用した。

RC-DFRCC 複合体では、母材となる RC 部分を先に

表-3 普通コンクリートの配合

粗骨材の	スラ	水セメ	空気	細骨		単位	量 (kg	g/m^3)	
最大寸法 (mm)	ンプ (cm)	ント比 (%)	上 (%)	^加 材率 (%)	水 W	早強セ メント C	細骨 材 S	粗骨 材 G	混和 剤 Ad
20	8	53	4.5	45	184	347	787	980	3.47

表-4 DFRCC の使用材料

材料種類	名称	記号
セメント	早強ポルトランドセメント	С
混和材	フライアッシュⅡ種	FA
細骨材	珪砂7号	S
繊維	ポリビニルアルコール繊維	PVA

表-5 PVA 繊維の材料特性

繊維	直径	長さ	密度	引張強度	破断伸度	弹性係数
名称	(µm)	(mm)	(g/cm ³)	(N/mm ²)	(%)	(kN/mm ²)
PVA	40	12	1.3	1600	6	40

水社へない	繊維		単位量 (kg/m ³)						
W/(C+FA) (%)	混入 率 (%)	S/C (%)	水 W	早強セ メント C	フライア ッシュ FA	細骨材 S	繊維 PVA		
45	2	50	396	704	176	352	26		

表-6 DFRCC の配合

表-7	鉄筋の材料特性
-----	---------

鉄筋	材質	降伏強度	ヤング係数	降伏ひず	引張強度
名称		(N/mm ²)	(kN/mm ²)	み(µ)	(N/mm²)
D10	SD345	373	172	2200	515

普通コン	圧縮強度 (N/mm ²)	ヤング係数 (kN/mm ²)	ポアソン比
2 ヶ月(M2)	32.41	23.7	0.210
4 ヶ月(M4)	31.77	25.1	0.212
8ヶ月(M8)	32.35	25.5	0.210
12 ヶ月(M12)	32.56	25.4	0.211
DFRCC	圧縮強度 (N/mm ²)	ヤング係数 (kN/mm ²)	ポアソン比
2 ヶ月(M2)	44.01	16.6	0.208
4 ケ月(M4)	47.27	17.2	0.216
8 ケ月(M8)	46.08	16.9	0.220
12 ヶ月(M12)	48.16	18.3	0.218

表-8 普通コンクリート・DFRCC の材料特性

作製した後、載荷時に引張側となり曲げ補強する面を上 として、つまり口のような形で上側から周囲に外殻の DFRCCを打設した。RCとDFRCCの境界面については 表面処理を特に行わず、両端から10cmの位置の下面に2 本づつボルトを設置し、ずれ止めとした。載荷試験にお いてずれは確認出来ていない。RCとDFRCC単体におい ても、RC-DFRCC複合体に合わせて主鉄筋が上側にな るように打設した。供試体の養生は気中養生とした。

3. 暴露試験方法および劣化性状試験結果

本節では,暴露試験方法および次節で述べる暴露後に 再載荷した供試体を解体・切断して実施した劣化性状試 験結果を先に述べる。

3.1 塩水濃度と散布方法

供試体表面に塩水を散布するとともに暴露を行った。 海水の塩化物イオン濃度は約3%であり、一般にこの濃 度を用いて暴露試験されている場合が多い。しかし本研 究では劣化促進のねらいもあり、また既往研究³⁾も参考 に塩化物イオン濃度は5%とした。

NaCl 水溶液の散布量は 1 回あたり 350g/m² とした³⁾。 供試体 1 体当たりの表面積は 0.5m² であるので, 1 体当 たりの散布量は 175g となる。よって, 全 51 体の供試体 に対する散布量は 1 回当たり 9ℓ 程度である。日当たり のよい学内中庭に曲げひび割れ面が上面になるよう敷 き並べ散布した。

暴露には乾湿の繰返しが必要である。日光の照射によ る蒸発サイクルを考慮して、夕方に散布を行うことを基

写真-1 供試体の切断

本とした。具体的には夏期は毎日,冬期は週2回,それ 以外は週4回を基本として散布している。ただし,気温 や湿度などは季節を通して一定ではないため,季節や日 照に応じて塩水の散布頻度を調節した。

3.2 塩化物イオン浸透深さ

(1) 試験方法

試験後の供試体を写真-1 に示す。中央に位置する主 鉄筋を避け、点線のようにスパン方向を4ブロックに切 断し、写真下側のブロックを用いて試験を行った。切断 面をよく乾燥させてからフルオロセインナトリウム 0.1%溶液を噴霧した。乾燥させた後、表面に硝酸銀10% 水溶液を噴霧し、蛍光を発する部分の深さを測定した。 1 つのブロックに対して、等間隔に5 点計測し、平均し たものを塩化物イオン浸透深さとした。ただし、ひび割 れにより明らかに深さが大きく出ている箇所はずらし て計測した。なお、硝酸銀溶液噴霧法では配合などにも 左右されるものの境界位置での可溶性塩化物イオン濃 度は単位セメント量の約0.15~0.2%と言われている⁴。 (2) 試験結果

試験結果を図-4 に示す。初期損傷レベルによる影響 を検証するため,図の(1)に M12 シリーズを代表して示 す。図より stage1 の初期損傷レベルでは DFRCC の使用 に関わらず,類似した結果となったが,それ以上の損傷 レベルになると DFRCC を使用した方が,浸透深さは小 さくなる傾向が見られる。ただし,初期損傷レベルによ る明確な傾向は得られなかった。そこで,暴露期間毎に よる影響を検証するため,各暴露期間の試験体毎の浸透 深さ平均を図の(2)に示す。DFRCC を用いた場合は普通 コンクリート (R シリーズ)より浸透深さは小さく抑制 効果が確認でき,暴露期間が長くなると浸透深さが大き くなることが確認できた。

3.3 鉄筋重量減少率

(1) 試験方法

塩化物イオン浸透深さ試験終了後に供試体をチッパ ーで砕き,鉄筋を取り出して腐食による重量減少率を測 定した。取り出した直後の鉄筋重量を測定し,その後, 60℃の環境下でクエン酸2ナトリウム10%水溶液に数日 浸漬した後,流水中で木べらなどを使い錆・黒皮を除去 し腐食重量を測定する。なお,梁端部に位置する鉄筋フ ック部分は錆びていないものと仮定した。

写真-2 鉄筋腐食状況の一例

鉄筋の重量減少率は以下のように算定した。
 重量減少率=腐食重量/健全鉄筋重量×100 (%)
 ・腐食重量…黒皮除去後重量-錆取り後の重量 (g)
 ・健全鉄筋重量…健全鉄筋の全重量-黒皮の重量
 一切断時に失う重量 (g)

写真-2に鉄筋腐食状況の一例を示す。

(2) 試験結果

鉄筋の重量減少率の測定結果を図-5に示す。

総じて、暴露期間が長くなるに従い、また初期損傷レベルが大きくなるに従い、重量減少率は大きくなる傾向にある。シリーズ間で比較すると、Rシリーズの鉄筋重 量減少率は stage に関係なく大きくなっており、FRシリ ーズでも stage2 以上では大きくなる結果となった。Fシ リーズはどの stage でもほとんど減少は見られなかった。 FRシリーズについては、コア部が普通コンクリートであ るため、コア部のひび割れの分散が少なくFシリーズ程 の効果はないものと考えられるが、降伏するまでは DFRCC による鉄筋腐食抑制効果が読み取れる。

図-5 鉄筋重量減少率測定結果

4. 曲げ載荷実験

4.1 実験方法

所定の暴露期間に達した段階で,初期損傷導入時と同様の4点曲げ載荷実験を行ったが,最大部材角0.25前後を目標に載荷した。着目点は,3種類の構造に対し,初期損傷レベルと暴露期間が,残存耐力,残存剛性,変位靭性に及ぼす影響である。

4.2 荷重一変位関係

得られた荷重-変位関係を図-6 に示す。ただし,暴 露期間 12 ヶ月のみ示すこととし,図の破線は初期損傷 時の曲線を示し,実線は暴露後の再載荷時の曲線を示す。

なお、再載荷時の原点は初期載荷時の残留変位を原点として示している。

R, FR, F シリーズはそれぞれ暴露期間,初期損傷レベルに関わらず耐力に顕著な差はみられない。FR シリーズにみられるように,DFRCCで巻き立てることにより, 最大荷重は RC に比べて向上するが,変位の増大にともないその引張力負担は減少(ひび割れ幅が大きくなり繊維の架橋効果が低減するため)し,RC に漸近する。

4.3 残存剛性比

劣化後の残存剛性を調べた結果を残存剛性比として 図-7 に示す。ここで、剛性とは載荷時の立ち上がり剛 性であり、載荷開始点と降伏荷重の 1/3 地点を結ぶ勾配 で定義する。残存剛性比とは、初期損傷を与えるときの 初期載荷時の剛性に対する暴露後の再載荷時の残存剛 性の比率と定義する。したがって、初期損傷レベルと暴 露期間による構造特性への影響をみるための1つの指標 と考えることができる。

総じて,最大 12 ヶ月の暴露期間では期間の影響は少なく,当然のことながら初期損傷レベルの影響が強い結果となった。しかしながらシリーズ間で差がみられ,R シリーズは他に比べて非常に小さくなり DFRCC を用いた場合は剛性の低下が小さくなる。特に損傷が小さい場合は FR シリーズでも DFRCC 単体である F シリーズに近似した傾向を示した。

4.4 変位靭性

得られた終局部材角(試験終了時スパン中央変位を半

スパンで除した値)を図-8 に示す。ここに,終局部材 角と破壊との関係は,鉄筋の破断,コンクリートの曲げ 圧縮破壊,もしくはこれらの破壊がみられず試験終了変 位(中央変位 90mm 程度)に達したものに分類される。 図中,太い破線で囲まれているものは鉄筋の破断により 載荷終了したもの。太い実線で囲まれているものはコン クリートの圧縮破壊により荷重が低下しRC 計算耐力を 下回った時点の変位で定義されるもの。その他は試験終 了変位まで達したものである。

FR, Fシリーズに関しては初期損傷レベルに依存して 終局部材角が低下する傾向があり,初期損傷が大きいほ ど鉄筋破断型となる。R シリーズに関しては,初期損傷 レベルや暴露期間の増加とともに曲げ圧縮破壊が助長 される傾向にある。また,RシリーズはFR,Fシリーズ に比べると終局部材角が小さく,変位靭性が小さい結果 となっている。FR,Fシリーズの場合は曲げ圧縮破壊し たものはないことを考えると,DFRCCの曲げ圧縮靭性 への寄与が大きいと考えられる。

5. まとめ

RC-DFRCC 合成部材模型梁を塩害劣化させた後,曲 げ載荷実験を行った。比較用に作成した RC 単体および, DFRCC 単体シリーズと合わせ,得られた結果を以下に 示す。

 DFRCCをRCの外殻に用いることで、塩化物イオン 浸透および鉄筋の腐食抑制効果が期待できる。

(2) 初期損傷レベルや暴露期間(最大1年間)の残存耐 カへの影響はない。

(3) RC-DFRCC 合成部材の劣化後の剛性低下は RC 供試体に比べて小さい。

(4) 初期損傷レベルに依存して変位靭性が低下し,初期 損傷が大きいほど鉄筋破断型となる。

本研究のとりまとめ、および実験の遂行にあたっては、 岡村明彦君(現京都大学大学院)、高橋智樹君(現(株) パナホーム兵庫)、金春日君(現大阪市立大学大学院) に、多大なるご協力をいただいた。紙面を借りて、ここ に謝意を表する。

参考文献

- 脇田和也,幸左賢二,合田寛基,小川敦久:高靭性 セメント材料の部分的使用による耐震補強効果実 験,コンクリート工学年次論文集, Vol. 27, No. 3, pp.1442 - 1447, 2007.7
- 2) 谷口勝基,斉藤尚,角掛久雄,大内一:高靭性モル タルのせん断補強への適用に関する研究,コンクリ ート工学年次論文集, Vol. 30, No. 3, pp.1471 - 1476, 2008.7
- 山本貴士,佐藤吉孝,服部篤史,宮川豊章:鉄筋腐 食 RC はりのせん断耐荷挙動に関する検討,コンク リート工学年次論文報告集, Vol. 27, No. 1, pp.913 - 918, 2005.7
- 4) 青木優介,嶋野慶次,三好佑果,鈴木正志:硝酸銀 溶液噴霧法による硬化コンクリート中への塩化物 イオン浸透予測,コンクリート工学年次論文報告集, Vol. 30, No. 1, pp.759 - 764, 2008.7