論文 セメントの鉱物組成がコンクリート強度発現に及ぼす影響に関する 研究

根本 裕規^{*1}· 桝田 佳寬^{*2}· 杉山 央^{*2}· 李 榮蘭^{*3}

要旨:従来の強度発現モデルは、各パラメータがセメント種類に依存すること、または非常に精緻かつ複雑 なモデルであるなど、適用範囲が狭いのが実状である。本研究では、ゲルスペース比説による強度予測式を 用いて強度試験結果から水和反応における水和生成物量を逆算し、各セメント鉱物と水との反応比を求め、 水和反応式に基づいた強度寄与率を導入することで、広範で比較的簡易な水和反応モデルを構築し、高精度 な強度の予測を実現した。さらに、セメントの水和生成物である CSH ゲルおよび水酸化カルシウムの強度発 現への寄与効果を明らかにし、C₃S および C₂S の強度寄与効果の差異を具体的に数値化した。 **キーワード**:水和反応モデル、ゲルスペース比、強度発現、強度寄与率、C₃S、C₂S、CSH

1. はじめに

コンクリートの強度発現においてセメントの水和反 応は重要な要素の一つである。コンクリートの強度発現 を推定する方法として Maturity 説があるが、コンクリー トの強度がセメントの水和反応の進行に伴って増進す るという基本的な性質に必ずしも関連づけた理論とは いえず,間接的にそれらを表しているにすぎない。一方, これまでに発表されたセメントの水和反応モデルは数 多いが、そのうち強度発現との関係性から行われたもの ^{1)~4)}を検討したところ,水セメント比および鉱物の構成 比, セメントの粒度分布, 水和発熱速度, 養生温度, 温 度依存性,相互依存性等,強度発現に影響を及ぼす要因 は多数挙げられている。なかでも、未反応核モデルを用 いた友澤¹⁾の研究は他の水和反応モデル^{2),3)}の基盤とも なるモデルであるが、各パラメータが実現象に基づいた フィットパラメータであり,新規セメント組成への適用 の場合には、 改めて実験を行い、 パラメータを算出する 必要がある。また、岸の複合水和発熱モデル⁴⁾は工学的 に取り扱いが容易であるが、近年開発され、高強度コン クリートなどの高性能コンクリートに使用されている 低熱ポルトランドセメントは、鉱物組成が製造メーカー ごとに大きく異なるため、セメント種類ではなく鉱物組 成に基づいた強度発現モデルの構築が求められている。

そこで本研究では、セメントの鉱物組成に基づいた広 範で比較的簡易な水和反応モデルを提案することを目 的とし、ゲルスペース比説による強度予測式を用いて強 度試験結果から水和反応における水和生成物量を逆算 することで各鉱物と水との反応比を求め、各鉱物の強度 発現への寄与効果の差異を考慮したポルトランドセメ ントの鉱物組成による強度発現への影響を検討する。

2. 水和反応モデル

2.1 各鉱物組成の水和反応式

ポルトランドセメントの主成分は結晶質の C_3S (エー ライト)および C_2S (ビーライト),またその間隙を満たす C_3A (アルミネート相)および C_4AF (フェライト相)の4種 類であり、これらの水和反応式は次式で表される⁵。

$2C_3S + 6H \rightarrow C_3S_2H_3 + 3CH$		(1)
$2C_2S + 4H \rightarrow C_3S_2H_3 + CH$		(2)
$2C_3A + 27H \rightarrow C_4AH_{19}(C_4AH_{13}) + C_2AH_{19}$	s >	
$C_4AH_{19} + C_2AH_8 \rightarrow 2C_3AH_6$		
$C_3A + 3CaSO_4 \cdot H_2O + 26H \rightarrow C_6AS_3H_{32}$	J	(3)
$C_6AS_3H_{32} + C_3A + 4H \rightarrow 3C_4ASH_{12}$		
$C_4ASH_{12} + C_3A + 12H \rightarrow C_4AS_xOH_{1-x}H_{12}$		

ここで、*C*は*CaO*、*S*は*SiO*₂、*H*は*H*₂*O*、*A*は*Al*₂*O*₃ を略記したものである。*C*₄*AF*は本質的には式(3)と同様 の反応で*Al*の一部が*Fe*で置換した水和生成物となる。 このうち、強度発現の大部分を*C*₃*S*および*C*₂*S*が生成す るケイ酸カルシウムが担い、*C*₃*A*は初期強度の強度発現 には寄与するが、中・長期の強度発現には影響しないと されている。

2.2 水和反応モデルと強度発現の関係

本研究では、図-1に示す水和反応モデルを用いるこ ととし、以下に示す仮定に基づいて成立している。(1)強 度発現に寄与するのは C_3S および C_2S のみである。(2) C_3S , C_2S 以外の鉱物 C_u (以降, C_u と表記)は強度発現には寄 与しない鉱物として骨材と同様に扱う。(3)水和生成物 はCSH ゲルおよび水酸化カルシウム(CH)の二種類のみ とする。ここで、 C_u は100-($C_3S + C_2S$)で表される。 T.C.Powers により提唱されたゲルスペース比説⁶による 式(4)、(5)に基づいて強度発現モデルを構築する。 $F = aX^n$ (4)

*1 宇都宮大学大学院 工学研究科 地球環境デザイン学専攻 工修 (正会員) *2 宇都宮大学大学院 工学研究科 地球環境デザイン学専攻教授 工博 (正会員) *3 宇都宮大学大学院 工学研究科 地球環境デザイン学専攻助教 工博

図-1 水和反応モデル

ここで, *F*:圧縮強度(N/mm²), *X*:ゲルスペース比, *a*, *n*:定数(ただし *a* = 283 N/mm², *n* = 3)である。

$$X_{t} = \frac{\sum H_{it}}{\sum C_{i0} + W_{0} + air} = \frac{\sum H_{it}}{1 - C_{u0}}$$
(5)

ここで、 H_{it} : 時間 t における鉱物 i ($i=C_3S$, C_2S)の水和 生成物の容積、 X_t :時間 t におけるゲルスペース比、 C_{io} : 鉱物 i の初期量、 W_0 :単位水量、 C_{u0} :強度に寄与しないと みなした鉱物の初期量、air:空気量である。

鉱物 i が水と容積比1:α_iで反応すると,

$$H_{it} = \left(1 + \alpha_i\right) \left(C_{i0} - C_{it}\right) \tag{6}$$

ここで、*C_{it}*:時間*t*における鉱物*i*の未反応容積である。次に,時間*t*における鉱物*i*の硬化体容積比率*x_{it}*は,

$$x_{ii} = \frac{C_{i0} - C_{ii}}{C_{i0}} \left(1 + \alpha_i \right)$$
(7)

式(6), (7)より, *H_{it}* は次式で表され, *x_{it}* は元の鉱物 *i* の容積増加率を表している。

$$H_{it} = x_{it} \cdot C_{i0} \tag{8}$$

式(5), (8)を式(4)に代入すると、次式が得られる。

$$F = a \left(\frac{\sum x_{it} \cdot C_{i0}}{1 - C_{u0}} \right)^n \tag{9}$$

圧縮強度試験結果から,式(9)に基づき水セメント比お よび材齢ごとに,最小二乗法により*x*_{ii}を算出できる。

ゲルスペース比説では、水和生成物を単一のものとし て取り扱っているが、本研究では各鉱物の強度発現への 寄与効果を考慮して新たな強度発現予測を目指してい る。そこで、水和反応式(1)、(2)に基づいた強度寄与率 P、 Qを各鉱物に設定する。水和反応式(1)、(2)によれば水和 生成物中には水酸化カルシウム(CH)も存在しており、水 和生成物を単一のものとして扱うためには、H_{it} を CSH ゲルの容積割合に応じて補正しなければならない。ここ で、H_{it}は次式のようにも表せる。

$$H_{it} = CSH_{it} + CH_{it} \tag{10}$$

	$2C_3S$	+ 6H -	$\rightarrow C_3 S_2 H_3$	+ 3 <i>CH</i>	
分子量:	456	108	342	222	C3S2H3の容積割合
密度:	3.15	1.00	2.35	2.24	1.01
容積:	145	108	146	99	$\beta_{C_3S} = \frac{1.01 + 0.68}{1.01 + 0.68} = 0.598$
容積比:	1.00	0.74	1.01	0.68	
	$2C_2S$	+ 4H -	$\rightarrow C_3 S_2 H_3$	+ CH	
分子量:	344	72	342	74	C3S2H3の容積割合
密度:	3.28	1.00	2.35	2.24	$\beta_{} = \frac{1.39}{0.813}$
容積:	105	72	146	33	1.39 + 0.32 0.015
容積比:	1.00	0.69	1.39	0.32	

図-2 β_iの算出方法

ここで, *CSH_{it}*:時間 *t* における鉱物 *i* の *CSH* ゲル容積, *CH_{it}*:時間 *t* における鉱物 *i* の *CH* 容積である。

鉱物 iの水和生成物における *CSH* ゲルの容積割合を β_i とすると H_{it} は,

$$H_{it} = \beta_i H_{it} + C H_{it} \tag{11}$$

CHを CSH ゲル強度に補正した容積を *CSH H*_{it} とし, *CSH* ゲルと *CH* の強度比を 1:y とおくと,

$$_{CSH}H_{ii} = \beta_i H_{ii} + \gamma CSH_{ii}$$
(12)
となり、これを整理すると

$$_{SH}H_{it} = (\beta_i + \beta_i \gamma)H_{it}$$
(13)

したがって, *CH*を*CSH*ゲル強度に補正した容積_{*CSH*} H_{it} に換算するための強度寄与率 *P*, *Q* は次のようになる。

$$P = \beta_{C_3S} + \beta_{C_3S}\gamma \tag{14}$$

$$Q = \beta_{C_2 S} + \beta_{C_2 S} \gamma \tag{15}$$

よって、式(9)は次式で表される。

$$F = a \left(\frac{P \cdot x_{C_3 S(t)} \cdot C_{C_3 S(0)} + Q \cdot x_{C_2 S(t)} \cdot C_{C_2 S(0)}}{1 - C_{u0}} \right)^n$$
(16)

式(16)から,水セメント比および材齢ごとに最小二乗 法により強度比 y を算出する。そして,式(9)と式(15)よ り算出した x_{it} と y を用いることで,任意の調合条件での 強度発現予測が可能となる。

表-1 セメントの物性と鉱物組成

	左南	密度	比表面積		鉱物組	成(%)*	
セメント性知	平度	(g/cm³)	(cm^2/g)	C₃S	C ₂ S	C ₃ A	C₄AF
111.4	6	3.20	3970	36	43	4	9
HLI	7	3.20	3820	37	42	4	9
111.0	6	3.21	4240	34	47	3	9
HLZ	7	3.21	4160	35	46	3	9
111.0	6	3.22	4400	26	51	4	11
HL3	7	3.20	3810	34	48	4	7
1.1	6	3.25	3580	32	47	3	12
LI	7	3.24	3620	32	47	4	11
1.0	6	3.22	3070	28	50	4	10
LZ	7	3.22	3150	29	49	5	10
1.0	6	3.22	3160	27	51	4	12
L3	7	3.22	3210	29	51	4	10
L4	6	3.21	3560	32	51	2	9
L5	6	3.23	3390	27	52	3	11
1.0	6	3.20	3330	22	58	5	9
Lo	7	3.23	3270	26	55	3	11
17	6	3.23	3310	23	55	2	12
L/	7	3.24	3300	23	57	3	11
1.0	6	3.22	3290	25	56	3	9
Lo	7	3.22	3120	22	58	3	10
L9	6	3.24	3180	20	60	3	11
1.10	6	3.22	3480	17	70	2	6
L10	7	3.22	3440	17	70	2	6
普通	-	3.15	3210	56	20	7	9

表-2 骨材の性質

記号	材料	分類	品質
S	細骨材	川砂	鬼怒川産、表乾密度:2.63g/cm ³ 、吸水率:2.05%、粗粒率:2.41
G	粗骨材	砕石	岩瀬産、表乾密度:2.65g/cm ³ 、吸水率:0.54%、粗粒率:6.53

表-3 コンクリートの調合と圧縮強度

記号	セメ ント	単	位量(kg/cr	n ³)	混和剤	(C×%)	空気 量		圧綱	宿強度(N	/mm²)	
	種類	W	С	S	G	SP	AE	(%)	3日	7日	28日	91日	365日
	HL1	155	775	661	808	5.00	0.008	4.8	76.5	86.1	103.3	113.7	123.4
	HL2	155	775	661	808	5.00	0.015	4.1	72.4	85.0	106.7	114.9	125.9
	HL3	155	775	661	808	5.00	0.015	4.7	66.7	74.6	97.6	117.6	121.2
	L1	155	775	668	808	5.00	0.009	4.6	63.3	79.0	92.6	104.7	106.4
	L1*	155	775	668	808	5.00	0.013	5.0	58.3	76.2	97.1	114.0	116.5
	L2	155	775	664	808	5.00	0.018	4.3	58.3	76.1	93.8	105.8	110.0
C20	L2*	155	775	664	808	5.00	0.040	4.2	60.2	73.3	86.9	106.5	113.2
	L3	155	775	664	808	5.00	0.011	4.9	45.9	62.8	92.3	108.1	106.0
	L6	155	775	666	808	5.00	0.015	4.3	49.9	70.1	100.6	115.8	119.2
	L7*	155	775	668	808	5.00	0.025	4.4	47.8	68.6	98.8	113.4	116.3
	L8	155	775	664	808	5.00	0.017	4.9	52.8	69.0	92.6	104.4	107.3
	L10	155	775	664	808	5.00	0.012	4.9	35.8	49.3	86.2	117.1	117.6
	HL1	155	620	787	808	3.00	0.010	4.8	51.0	59.5	79.3	91.0	102.6
	HL2	155	620	787	808	2.30	0.003	4.5	56.8	72.0	99.1	121.5	114.9
	HL3	155	620	787	808	1.90	0.003	5.0	49.2	56.6	84.1	105.0	109.9
C25	L1	155	620	793	808	2.80	0.002	4.3	52.0	66.4	90.7	108.0	105.8
	L2	155	620	790	808	2.80	0.003	4.5	46.6	62.7	94.4	112.3	109.2
	L3	155	620	790	808	2.50	0.003	4.8	32.0	44.2	76.4	104.3	92.5
	L6	155	620	793	808	1.50	0.002	4.7	32.6	46.8	92.2	114.5	104.1
	L7	155	620	792	808	3.40	0.004	5.0	34.3	49.6	88.5	105.7	87.6
	L8	155	620	790	808	1.70	0.002	4.5	35.3	48.3	76.5	108.7	98.8
	L10	155	620	790	808	1.90	0.002	4.0	22.8	30.7	68.2	109.0	107.0
	Ν	155	620	781	808	4.70	0.008	4.3	63.9	72.6	85.2	99.1	88.5
	HL1	170	486	841	827	1.90	0.008	4.2	-	39.0	60.6	82.6	96.0
	HL2	170	486	842	827	1.40	0.009	4.8	-	38.9	65.6	86.3	92.0
	HL3	170	486	844	827	1.60	0.009	4.1	-	31.9	69.3	87.4	91.7
	L1	170	486	847	827	1.50	0.008	4.5	-	37.3	61.9	82.0	88.7
	L2	170	486	844	827	1.30	0.009	4.7	-	31.0	56.3	78.1	81.0
	L3	170	486	844	827	1.50	0.008	4.3	-	25.9	53.8	78.9	89.5
C35	L4	170	486	842	827	1.50	0.004	4.2	-	28.4	59.8	85.9	91.8
	L5	170	486	845	827	1.80	0.004	4.1	-	26.4	58.5	86.0	98.4
	L7	170	486	845	827	1.50	0.004	4.9	-	22.9	51.3	71.3	78.1
	L8	1/0	486	844	827	1.65	0.005	4.8	-	26.4	59.7	/9.4	87.6
	L9	1/0	486	846	827	1.40	0.004	4.6	-	23.8	54.1	82.5	93.3
		170	486	844	827	1.65	0.003	4.3	-	16.1	40.8	77.2	97.4
	N	1/0	486	835	827	1.60	0.006	4.3	-	53.5	69.3	/3./	80.2
	HLI	180	450	876	792	1.00	0.006	5.0	21.8	29.8	47.3	69.0	03.9
		100	450	070	792	1.30	0.005	4.0	15.0	20.4	40.0	647	74.4
C40		100	450	070	792	1.20	0.005	4.0	10.0	177	40.2	60.1	00.4
	L0	100	450	070	792	1.20	0.006	2.7	0.0	11.7	43.1	65.0	00.9
		100	450	070	792	1.00	0.000	3.7	0.5	11.4 40.5	54.5	70.7	60.0
<u> </u>		100	400	071	152	2.50	0.002	1.6	10.2	40.J	42.7	50.4	64.2
1		100	400	932	770	2.00	0.003	4.0	17.2	20.0	45.7	09.4 62.4	64.0
	12	180	400	932	776	1.70	0.003	4.9	12.0	10.0	40.4	56.0	04.0 57.2
C45	1.8	180	400	934	776	1.70	0.003	4.8	10.0	15.5	37.4	57.4	58.3
1	1 10	180	400	934	776	2 10	0.003	4.8	6.9	9.6	30.0	57.1	58.9
1	N	180	400	928	776	2.10	0.003	4.0	354	44.4	57.9	61.4	65.2
*高	生能	AE 🕅	或水产	割は	ポリ	カルボ	ン酸系	を使	用	17.7	07.0	¥1.4	00.2

表-4 モルタルの調合と圧縮強度

혔문	セメント	実験	調	合(質量)	七)	空気量		圧縮強度	(N/mm ²)	
記号	種類	年度	W	С	S	(%)	3日	7日	28日	91日
	HL1	7				5.1	49.6	61.7	80.1	93.6
	HL2	7				5.0	48.3	60.2	83.7	98.0
	HL3	7				4.7	46.6	56.4	83.4	101.0
記号 M30 -	L1	7				4.8	43.5	54.8	77.6	92.3
	L2	7				5.1	41.6	54.4	83.8	91 日 93.6 98.0 101.0 98.0 92.2 96.9 88.4 92.2 96.9 86.4 92.2 96.9 86.4 92.2 96.9 86.4 92.2 96.9 52.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 54.1 55.8 47.5 54.3 55.8 57.4 41.1 51.0
	L3	7	0.3	1	1.4	5.3	28.4	40.1	68.4	88.4
	L6	7				5.0	27.6	43.0	78.6	98.4
	L7	7				4.4	27.0	39.6	77.7	92.2
	L8	7				4.8	30.4	43.8	78.6	96.9
	L10	7				5.9	17.3	23.7	56.7	86.4
	111.1	6				5.0	11.5	18.2	38.6	57.2
	HLI	7				5.0	11.8	17.1	35.8	54.1
		6				5.0	12.2	16.4	37.5	60.7
	HLZ	7				5.0	12.4	17.2	39.0	60.7
		6				5.0	8.9	12.6	42.5	59.9
	HL3	7				5.0	8.4	16.2	33.7	52.1
		6				5.0	7.6	12.7	31.5	54.1
	LI	7				5.0	7.6	13.4	31.2	53.4
	1.0	6			5.0 7.1 10.0 5.0 7.6 11.2 5.0 5.8 9.9	10.0	25.8	54.1		
	LZ	7				5.0	7.6	11.2	27.7	54.9
	1.0	6				5.0	5.8	9.9	28.8	52.1
MOF	L3	7	0.05		0	5.0	6.9	10.8	28.4	51.5
CON	L4	6	0.65		2	5.0	9.0	13.2	36.3	62.1
	L5	6				5.0	6.3	9.0	32.3	56.3
	1.0	6				5.0	4.4	6.6	20.8	45.1
	Lb	7				5.0	5.8	8.4	34.5	59.6
		6				5.0	6.6	9.7	30.7	50.8
	L/	7				5.0	5.3	7.8	29.0	47.5
	1.0	6				5.0	6.7	10.1	32.5	54.3
	Lδ	7				5.0	5.9	10.0	33.2	55.8
	L9	6				5.0	4.8	6.5	21.2	57.4
	1.10	6				5.0	3.6	6.8	18.1	44.5
	LIU	7				5.0	3.7	6.0	17.1	41.1
	N					5.0	15.5	26.8	44.9	51.0

*高性能 AE 減水剤はポリカルボン酸系を使用

2.3 水和生成物における CSH ゲルの容積割合 β_iの算出 水和生成物における CSH ゲルの容積割合 β_iは水和反応式(1), (2)より,分子量と密度によって図-2のように 算出した。セメントの鉱物組成や水和生成物の密度は, 既往の文献^{7)~10}から,代表的な数値を設定し,その結果, β_iは C₃S が 0.598, C₂S が 0.813 と求められた。

3. 解析に用いたデータ

*x_{it}および y を*算出するために用いた実験データは,(社) セメント協会¹¹⁾により実施されたコンクリート(C)およ びモルタル(M)のデータである。セメントの物性と鉱物 組成を表-1 に、骨材の性質を表-2 に、コンクリート およびモルタルの調合と圧縮強度をそれぞれ表-3,4に 示す。なお、コンクリートの解析に使用したセメントの 物性と鉱物組成は,表-1における平成6年度と7年度 の数値の平均値である。セメントは、高ビーライト系セ メントの高粉末度形と呼ばれるHL1~HL3および一般低 発熱形と呼ばれる L1~L10 の 13 種類である。水セメン ト比はモルタルが 0.3, 0.65 の 2 水準, コンクリートが 0.2, 0.25, 0.35, 0.4, 0.45 の5水準である。また, 硬化 体容積比率 xi の算出には標準養生の試験体を対象とし、 圧縮強度試験材齢はモルタルが 3, 7, 28, 91 日, コン クリートが 3, 7, 28, 91, 365 日(水セメント比 0.35 の 場合のみ7,28,91,365日)である。試験体名は、例え ば M65, C45 のように, 英字は硬化体の分類 (モルタル またはコンクリート)を表し、数字は水セメント比(%)を 表す。

図-4 硬化体容積比率 x_{it} と水セメント比の関係

說문	全亡地加		硬化	硬化体容積比率 x _{it}			
16.7	UNT	3日	7日	28日	91日	365日	
M20	C ₃ S	2.14	2.13	1.88	1.80	-	
MOU	C ₂ S	0.67	0.86	1.35	1.57	-	
MCE	C ₃ S	1.86	2.19	2.45	2.48	-	
INIO D	C ₂ S	0.80	0.90	1.58	2.16	-	
000	C ₃ S	1.93	1.85	1.66	1.56	1.66	
620	C ₂ S	0.78	0.98	1.29	1.46	1.43	
0.05	C ₃ S	1.65	1.69	1.68	1.68	1.65	
625	C ₂ S	0.95	1.10	1.45	1.65	1.62	
0.015	C ₃ S	-	1.89	1.93	1.88	1.88	
035	C ₂ S	-	0.97	1.45	1.79	1.89	
040	C ₃ S	1.75	1.95	1.95	1.95	1.90	
640	C ₂ S	0.80	0.89	1.36	1.74	1.78	
045	C ₃ S	1.99	2.11	2.16	2.07	2.13	
645	C ₂ S	0.74	0.90	1.43	1.84	1.84	

表-5 硬化体容積比率 x_{it}の解析結果

4. 解析結果および考察

4.1 硬化体容積比率 x_{it}の算出

3. で示したデータを用いて,式(9)によって算出した硬 化体容積比率 *x_{it}*を**表**-5 に示す。また,セメントの水和 反応を一次反応と仮定すると,反応速度は次式で表され る。

$$-\frac{dC_{ii}}{dt} = k_i C_{ii} \tag{17}$$

ここで、 k_i :反応速度係数である。 t=0において、 $C_{ii} = C_{i0}$ であるので、 $C_{ii} = C_{i0} \exp(-k_i t)$ (18)

近似式											
$t = 3 \square$	<i>t</i> = 7日										
$x_{C_{3}S} = 0.24 (W/C) + 1.73$	$x_{C_{3}S} = 1.38(W/C) + 1.44$										
$x_{C_2S} = -0.54 (W/C) + 0.80$	$x_{C_2S} = -0.42 (W/C) + 1.17$										
$t = 28 \boxminus$	<i>t</i> = 91,365⊟										
$x_{C_3S} = 1.58(W/C) + 1.38$	$x_{C_3S} = 1.58(W/C) + 1.38$										
$x_{C_2 S} = 0.92 (W/C) + 1.25$	$x_{C_2S} = 1.22 (W/C) + 1.19$										

図-5 水セメント比と硬化体容積比率の材齢別近似式

式(7)より,式(18)は次式で表される。

$$x_{it} = (1 + \alpha_i) \{ 1 - \exp(-k_i t) \}$$

$$\tag{19}$$

式(19)で硬化体容積比率 x_{it} の経時変化を近似した解析 結果を図-3 に示す。 C_3S の反応は材齢 7 日にはほぼ終 了しており、それ以降の反応は停滞している。一方、 C_2S は反応速度が遅く、材齢 91 日まで緩やかに反応が進む 傾向がある。また、 x_{it} の終局値は C_3S のほうが C_2S より も大きくなるという結果が得られた。次に、硬化体容積 比率 x_{it} の水セメント比との関係を図-4 に、近似式を図 -5 に示す。 C_3S は材齢に関係なく水セメント比に比例 しているが、 C_2S は材齢初期では水セメント比に反比例

図-6 本モデルによる予測値と実測値の比較

図-7 強度比 y と強度寄与率 P, Qの水セメント比との関係

するものの長期では比例している。なお、今回の解析に よると C_3S , C_2S ともに材齢 91 日で反応は終了すると いう結果が得られた。

4.2 提案した水和反応モデルによる強度予測

本モデルによる 3. に示したデータの強度予測結果を 図-6に示す。なお、比較として式(9)による強度寄与率 を導入しない場合の予測結果も合わせて示す。強度寄与 率を導入しないモデルでも十分な予測結果が得られて いるが、強度寄与率を導入した式(16)によるモデルでは、 予測精度がさらに向上することが分かる。また、強度寄 与率を導入したモデルは材齢に関わらず精度良く予測 できており,本モデルによる強度予測が可能であると言 える。また, 強度比 y と強度寄与率 P, Qの水セメント 比との関係である図-7によると、強度比 γ は材齢 3 日 を除き、材齢および水セメント比に関わらず概ね 0.4 で 一定であり、CH も強度発現に寄与しているという解析 結果が得られた。材齢3日の強度比yのみ大きく算出さ れたのは、初期強度に寄与する C₃A の強度寄与効果を無 視したものによると考えられる。さらに、この強度比 γ から強度寄与率 P, Qは, それぞれ 0.76~1.08, 1.03~ 1.47 と算出された。 C_2S の寄与率Qが C_3S の寄与率Pよりも大きいのは、 β_i が C_3S よりも大きいためであり、今回の解析結果によると水セメント比に関わらず C_2S は C_3S の1.36倍程度の強度寄与効果があることがわかる。

4.3 本モデルの適用範囲の検討

本研究では、さらに表-6、7 に示す文献 12)のデータ で実測値と予測値の比較を行った。なお、表中の記号は、 硬化体の種類については P:セメントペースト、C:コンク リート、セメント種類は N:普通ポルトランドセメント、 H:早強ポルトランドセメント、LH:低熱ポルトランドセ メントである。図-8 に、強度予測結果を示す。強度寄 与率を設定しないモデルでは、予測値が実測値よりも大 きく算出される傾向がある。これは、水和生成物の全て を CSH ゲルであるとみなしたことによるものであると 考えられる。一方、式(16)による強度寄与率を設定した モデルによる予測結果は、実測値と良く一致しており、 本モデルの有用性が認められる。さらに、硬化体の分類 やセメント種類に影響を受けないため、広い適用範囲を 満たすことが可能である。

ただし、現状では本モデルは養生条件20℃一定の水中

表-6 文献 12)のセメントの物性と鉱物組成

	*2 - 2	密度		鉱物組成(%)						
ā	記方	(g/cm ³)	C ₃ S	C ₂ S	C ₃ A	C₄AF				
	Ν	3.16	52.9	21.5	9.1	8.5				
	Н	3.13	64.3	10.6	8.2	8.2				
	LH	3.2	34.5	46.9	2.8	8.8				

表-7 文献 12)の調合と圧縮強度

÷2 0	セメント	調合(質	量比)また	は単位量	(kg/cm ³)	空気量		圧縮	強度(N/	mm ²)	
記方	種類	w	С	S	G	(%)	3日	7日	28日	91日	365日
	N	0.33	1.00	-	-	0.0	56.8	72.5	90.0	105.8	112.7
P33	н	0.33	1.00	-	-	0.0	62.3	77.2	83.3	89.8	99.6
	LH	0.33	1.00	-	-	0.0	42.9	60.0	87.7	107.8	114.7
	N	0.40	1.00	-	-	0.0	40.5	53.8	69.6	79.7	85.3
P40	н	0.40	1.00	-	-	0.0	51.1	57.1	62.5	73.2	75.5
	LH	0.40	1.00	-	-	0.0	27.7	40.0	69.4	90.2	94.1
	N	0.50	1.00	-	-	0.0	20.7	27.3	47.7	56.8	61.7
P50	н	0.50	1.00	-	-	0.0	33.5	38.1	44.8	50.9	52.9
	LH	0.50	1.00	-	-	0.0	12.1	19.9	43.1	64.7	69.6
	N	160	480	824	954	1.0	53.8	68.3	80.0	97.0	101.6
C33	н	160	480	820	954	1.0	64.7	71.6	77.1	84.2	91.8
	LH	160	480	828	954	1.0	33.4	45.2	79.0	101.9	104.7
	N	160	400	872	972	1.0	38.2	53.7	68.1	77.9	83.4
C40	н	160	400	871	970	1.0	49.9	56.5	66.6	70.1	73.7
	LH	160	400	878	970	1.0	24.5	32.6	64.9	87.1	90.6
	N	160	320	877	1035	1.0	23.7	36.1	48.8	59.2	63.4
C50	Н	160	320	875	1034	1.0	34.6	40.5	47.4	50.6	51.0
	LH	160	320	881	1034	1.0	13.6	17.7	43.0	64.9	66.8

養生に限るため、比表面積の影響も含めて、今後の課題 としたい。

5. 結論

本研究で提案した水和反応モデルによって評価およ び検討を行った結果,セメントの鉱物組成がコンクリー トの強度発現に及ぼす影響に関して以下の知見を得た。

- ゲルスペース比説による強度予測式を発展させ、鉱 物組成に基づいた広範で比較的簡易な水和反応モ デルを構築し、高精度な強度予測を実現した。
- 2) 強度発現には水酸化カルシウム(CH)も寄与し,強度 寄与率は各鉱物の水和生成物における CSH ゲルの 容積割合で表現できる。
- 3) C₃S および C₂S の水和生成物における CSH ゲルの容 積割合はそれぞれ 0.598, 0.813 である。
- 4) CH は CSH ゲルの 0.4 倍程度の強度寄与率を示す。
- 5) C₂S は C₃S の 1.36 倍程度の強度寄与効果がある。

参考文献

- 友澤史紀:セメントの水和反応モデル、セメント技 術年報、XXVIII、pp53-57, 1974
- 2) 杉山央:コンクリートの長期強度発現に及ぼす初期 高温履歴の影響およびその定量化に関する研究-セメントの水和反応・組織形成モデルを用いたコン クリートの強度発現メカニズムの解析-,学位請求 論文,2000
- 3) 丸山一平,野口貴文,松下哲郎:ポルトランドセメントの水和反応モデルに関する研究,日本建築学会構造系論文集,No.593,pp1-8,2005
- 4) 岸利治,前川宏一:ポルトランドセメントの複合水
 和熱モデル,土木学会論文集,No.526/V-29,

図-8 文献 13)のデータの予測値と実測値の比較

pp97-109, 1995

- 5) (社)コンクリート工学協会:コンクリート便覧,技 報堂, pp32-36, 1976
- Powers, T. C. and Brownyard, T. L.: Studies of the physical properties of hardened Portland cement paste (Nine parts), J. Amer. Concr. Inst., 43, 1947
- Taylor, H.F.W : The Chemistry of Cement, Academic Press,1990
- 大門正機(編訳):セメントの科学-ポルトランドセ メントの製造と硬化-,内田老鶴圃,東京,1989
- Tennis, P.D. and Jennings, H.M. : A Model for Two Types of Calcium Hydrate Silicate in the Microstructure of Portland Cement Pastes, Cement and Concrete Research, Vol.50, pp855-863, 2000
- Lea, F.M. : The Chemistry of Cement and Concrete 3rd edition, Edward Arnold, Glasgow, 1970
- 11)(社)セメント協会:高ビーライト系セメントを用いた高性能コンクリートの性能評価に関する研究,建築用高性能コンクリート専門委員会報告,1997
- 12) 杉山央,桝田佳寛,岩井信彰,中川侑治:大断面プ レキャストコンクリート部材の強度特性,日本建築 学会技術報告集,第14号,pp19-24,2001