論文 90 余年経過した配水池におけるコンクリート表面劣化の評価

牛尾 亮太*1·松田 康孝*2·森川 英典*3

要旨:供用開始から90余年経過した配水池のコンクリート表面で脆弱化が顕著に確認された。この脆弱化の 原因を特定することを目的に,液相部と気相部のコンクリートコアを採取して成分分析を実施した。その結 果,気相部では「中性化」が,液相部では「中性化」と「カルシウム溶出」による脆弱化が劣化要因である と推察された。また,脆弱化による強度低下深さは中性化深さの2.5倍程度に相当することがわかった。 キーワード:配水池,脆弱化,カルシウム溶出,中性化

1. はじめに

神戸市水道局は、昭和 30 年代以降の高度経済成長期 から現在まで、地域的条件により浄水場から送水を受け、 当該配水区域の需要量に応じた配水を行うための浄水 貯留池(以下, 配水池)を多く建設してきており, その中 で今後 10~20 年の間に約 60%の配水池が法定耐用年数 (60年)を迎える。これら既存施設の大規模な更新工事は, 今後も低下する水需要を踏まえると財政的に困難であ り、適切な維持管理を行い、効率的な投資を行うことが 重要である。そのためには、 配水池の健全性の評価や残 存寿命の予測が必要となる。配水池は、水道法に基づき 残留塩素確保のために塩素剤が添加された水を貯水す る。そのため、配水池は一般的な土木構造物にない特殊 な環境下にある。このような配水池のコンクリート経年 劣化の調査、分析に関する報告¹⁾は少なく、気相部、液 相部ごとに分けて劣化評価をしたものはない。また、残 留塩素とコンクリート経年劣化との関係を検証したも のは無く、劣化メカニズムが明確でない状況である。そ こで、配水池の健全性の評価や残存寿命の予測を目的に 90余年経過した配水池の劣化調査を実施した。

劣化調査の結果,**写真-1**のようにコンクリート表面 劣化(脆弱化)が顕著であったことから,本研究では**図-1** に示すフローでコンクリート表面の脆弱化のメカニズ ムの推定とコンクリート強度低下深さの検討を行った。

2. 脆弱化メカニズムの仮定

コンクリート表面の脆弱化は、コンクリートの主成分 一つであるカルシウム(以下, Ca)が溶出することによっ て生じる現象である。そこで、Caの溶出に着目して複数 のメカニズムを仮定した。

ここでメカニズムの仮定においては、前述したように 塩素剤として液化塩素(Cl₂),次亜塩素酸ナトリウム (NaClO)が添加されていること、配水池内は湿度が高く

*3 神戸大学大学院工学研究科市民工学専攻教授 博(工) (正会員)

1 1013310	/ カーヘムの仮足り -	
仮定ケース	要旨	[
ケースA	カルシウム溶出	
ケースB	中性化(炭酸化)	
ケースC	塩素イオン浸透+中性化	[
ケースD	塩酸侵食	
ケースF	塩素(分子)酸化	

気相部では結露が発生していることを考慮した。表-1 に推定した Ca 溶出による脆弱化メカニズムケースを 5 つ示す。

(1) ケース A

ー般的な土木構造物と同様に水道水・結露水とコンク リート中の Ca 濃度差を駆動力としてコンクリート中の Ca が溶出するメカニズムを仮定²⁾した。特徴は, Ca 濃 度の低下が先行して発生することである。以下にメカニ ズムの流れを示す。

①細孔液への水酸化カルシウム(以下, Ca(OH)2)溶出

②低濃度部位への Ca 移動

③移動後部位への Ca(OH)₂ 溶出

④①~③の繰り返し→Ca(OH)₂消費

⑤ケイ酸カルシウム水和物(以下, C-S-H)中の酸化カル シウム(以下, CaO)の溶解, Ca(OH)₂生成

(2) ケース B

一般的な土木構造物と同様に炭酸ガスによりコンク

^{*1} 神戸市水道局技術部計画課 (正会員)

^{*2} 神戸市水道局技術部計画課設計係長 (正会員)

リートが中性化され Ca 溶出が生じ,進行すると C-S-H が分解される中性化(炭酸化)を仮定³⁾した。特徴は,コン クリート表面で CaCO₃ 濃度が高いこと,Ca 濃度の低下 深さと中性化深さはほぼ同じである。以下にメカニズム を示す。

- i. 液相部の場合
- ①二酸化炭素(以下, CO₂)と水(以下, H₂O)の反応による炭酸(以下, H₂CO₃)の生成, pH 低下

 $CO_2+H_2O\rightarrow H_2CO_3$

 $H_2CO_3 \rightarrow 2H^+ + CO_3^2$ (or $H^+ + HCO_3^-$)

②重炭酸カルシウム(以下, Ca(HCO₃)₂)生成と溶出

 $Ca(OH)_2+H_2CO_3\rightarrow CaCO_3+2H_2O$

CaCO₃+CO₂+H₂O→Ca(HCO₃)₂(可溶性)

③C-S-H(3CaO・2SiO₂・3H₂O)の分解

 $3CaO \cdot 2SiO_2 \cdot 3H_2O + 3CO_2 \rightarrow 3CaCO_3 + SiO_2 + 3H_2O$

ii. 気相部の場合

①炭酸ガスと Ca(OH)₂の反応

 $Ca(OH)_2+CO_2\rightarrow CaCO_3+H_2O$

(3) ケース C

塩化物イオンがコンクリート中に侵食し、かつ中性化 の進行により Ca が溶出する複合劣化を仮定³⁾した。なお、 気相部における塩化物イオンは結露水から供給される と仮定した。特徴は、塩化カルシウム(以下、CaCl₂)の生 成、Ca 濃度の低下深さと中性化深さはほぼ同じである。 以下にメカニズムを示す。

 $(1)Cl_2+H_2O\rightarrow HClO+H^++Cl^-$

②炭酸ガス浸透によるフリーデル氏塩から CaCl₂溶出

 $3CaO \cdot Al_2O_3 \cdot CaCl_2 \cdot 10H_2O + 3CO_2$

 \rightarrow 3CaCO₃+2Al₂O₃+CaCl₂+7H₂O

③奥部(非中性化領域)での塩化物イオンの固定

 $3CaO \cdot Al_2O_3 + 2Cl^- + Ca(OH)_2$

 \rightarrow 3CaO· Al₂O₃· CaCl₂+2OH⁻

④奥部への中性化進行①~③繰り返し

→奥部に向けた中性化と塩化物イオンの増加 ⑤塩害による鉄筋腐食,ひび割れの発生

(4) ケース D

残留塩素の中間生成物として微量生成するHCIにより, セメント水和物が分解され, Ca 溶出,中性化が生じ,進 行すると C-S-H が分解される塩酸侵食を仮定^{3,4)}した。気 相部における塩化物イオンは結露水から供給されると 仮定した。特徴は, CaCl₂の生成, Ca 濃度の低下深さと 中性化深さはほぼ同じである。以下にメカニズムを示す。

①塩素剤注入による次亜塩素酸(以下, HClO),塩酸(以

HClO \rightleftharpoons ClO⁻+H⁺

②セメント水和物である水酸化カルシウム, C-S-H,

エトリンガイト(3CaO·Al₂O₃·3CaSO₄·32H₂O)の分解 Ca(OH)₂+2HCl→CaCl₂(可溶性)+2H₂O 3CaO·2SiO₂·3H₂O+HCl→CaCl₂(可溶性)+SiO₂+H₂O 3CaO·Al₂O₃·3CaSO₄·32H₂O+HCl

→CaCl₂(可溶性)+Al₂O₃·nH₂O+CaSO₄+2H₂O

(5) ケース E

既往の化学物質による劣化メカニズムを参考 ⁵に,水 道水中の塩素分子がコンクリート中に侵食して酸化が 生じ Ca が溶出するメカニズムを仮定した。中性化が進 行すればケース B と同様に C-S-H が分解される。なお, 気相部における塩化物は結露水から供給されると仮定 した。特徴は,エトリンガイトが生成されること,また, Ca 濃度の低下深さと中性化深さはほぼ同じである。以下 にメカニズムを示す。

 ①次亜塩素酸カルシウム(以下, Ca(ClO)₂)生成の副産物 としての CaCl₂生成

2Ca(OH)2+2Cl2→Ca(ClO)2+CaCl2(可溶性)+H2O

②溶出しなかった CaCl₂がアルミネート相(以下, C₃A) と反応しフリーデル氏塩を生成

③フリーデル氏塩の生成に際し、モノサルフェートか ら C_3A と硫酸カルシウム(以下、 $CaSO_4$)が遊離し、 遊離した $CaSO_4 \ge C_3A$ の反応によりエトリンガイト を生成→体積膨張→コンクリートの剥落

3.試験概要

前述の各脆弱化メカニズムの仮定において着目すべ き成分,性状を抽出して分析試験を実施した。また,配 水池内の結露水中の塩化物イオン濃度,pHを測定した。

3.1 配水池概要

劣化調査を実施した竣工約100年経過した配水池Aの 諸元を表-2に示す。本配水池は,躯体保護のため防水 モルタルが壁面・底版に施されており,頂版については, コンクリート打ちっ放しである。

3.2 成分分析試験体概要

試験体は、コンクリートコア4試験体、表層モルタル 4 試験体とした。各試験体概要を表-3 に示す。また、 試験体採取位置およびコンクリートコアの概要を図-2 に示す。なお、表-3中のC-3,4 試験体の中性化深さは、 防水モルタル表面からの深さである。

3.3 成分分析試験概要

成分分析には, EPMA 面分析(以下, EPMA), 示差熱天 秤分析(以下, TG-DTA), 含有塩分量分析, 電子顕微鏡観 察(以下, SEM), 蛍光 X 線分析(以下, XRF), 粉末 X 線

表-2 調査配水池諸元

	配水池名	竣工	箇所	内面塗装	圧縮強度	静弾性係数				
				仕様	(N/mm ²)	(kN/mm²)				
	配水池A	1917年	頂版	塗装なし	24.9	31.1				
			底版·壁面	防水モルタル	22.4	32.9				

				×								
試験体名		A	試料概要		防水モルタル厚	中性化深さ	試験項目					
							EPMA	TG-DTA	含有塩分量分析	SEM	XRF	XRD
	ンクリート	C-1	気相部頂版	骨材露出箇所	—	11mm	0	0	—	0	—	—
コンクリー		C-2	液相部底版	骨材露出箇所	0mm	6mm	0	0	—	0	—	—
コア	[C-3	気相部壁部	健全部	10~15mm	4mm	—	—	0	—	—	—
		C-4	液相部底版	健全部	35mm	7mm	—	—	0	—	—	—
		M-1	液相部壁表面	脆弱部 砂利化	—	—	—	0	0	—	0	0
	[M-2	液相部壁表面	脆弱下部	—	—	—	0	0	—	0	0
モルタル	, [M-3	気相部壁部表面	健全部 コンクリートコアの表層	—	—	_	_	—	—	—	0
		M-4	液相部底版表面	健全部 コンクリートコアの表層	_	_	-	_	—	—	—	0

表-3 試験体一覧表

回析(以下, XRD)を行った。表-3 に試験項目とその試験に用いた試験体を記載する。

(1) EPMA

Ca 濃度分布傾向の計測を目的に EPMA 試験を実施した。試料は,試験体を表面から深さ方向に2分割した後, 鏡面研磨後にカーボンを蒸着させた。

(2) TG-DTA

深さ方向の CaCO₃ 含有量,脱 CO₂ 重量減少率の計測 を目的に,TG-DTA 試験を行った。試料の採取位置は, **表-3**に示す中性化深さ位置を基に決定した。

採取した試料を乳鉢で砕いて粗骨材を除去し,さらに 網目開き 90µm のふるいにかけ,骨材もできる限り除去 した。それでも,除去しきれず混入する骨材量を把握す るため不溶残分(insol)を求め,CaCO3 含有量算出時に補 正した。なお,不溶残分は文献⁶⁰を参考に実施した。 (3)含有塩分量分析

深さ方向の塩分含有量の計測を目的に、含有塩分量分 析を行った。試験は、試料表面より0~10mm、15~25mm、 40~60mmの3箇所で実施した。全塩化物イオン量試験は、 JIS A 1154-2003「硬化コンクリート中に含まれる塩化物 イオンの試験方法」に示されている「塩化物イオン電極 を用いた電位差滴定法」により、可溶性塩化物イオン量 試験は、JIS A 1154-2003「硬化コンクリート中に含まれ る塩化物イオンの試験方法」に示されている「硬化コン クリート中に含まれる温水抽出塩化物イオンの分析法」 により実施した。

(4) SEM

エトリンガイトの確認を目的に試験を行った。試料は, 後述する EPMA 試験結果より変状が見られない表面よ り 20mm の位置で採取した。試料破断面が観察面となる ように試料台に固定し,導電性を持たせるためにマグネ トロンスパッタ装置にて白金-パラジウムを蒸着した。 (5) XRF

Ca, 鉄(以下, Fe), マンガン(以下, Mn)などの確認お よび定量を目的に試験を実施した。試料をそれぞれディ スクミルにて微粉砕を行った。なお, M-1 は水分を多く 含みそのまま分析するのは困難であったため, 105℃で 一昼夜乾燥させた。乾燥による減量値は21.4%であった。 (6) XRD

図-2 試験体採取位置とコンクリートコア概要

図-3 CaOの EPMA 分析結果(気相部)

CaCl₂, Ca(OH)₂の有無の確認を目的に試験を実施した。 試験体の一部を乳鉢で砕いた後,網目開き 90 µ m のふる いにかけ,骨材の破片もできる限り除去した。さらに, メノウ乳鉢ですり潰して試料とした。

(7) 結露水塩化物イオン濃度試験

結露水を他の配水池 10 施設の気相部で採取して,塩 化物イオン濃度を測定した。

4. 試験結果

4.1 EPMA

気相部・液相部の試験体表面側と内部側で、CaO,三酸化硫黄(以下,SO₃),二酸化ケイ素(以下,SiO₂),酸化アルミニウム(以下,Al₂O₃),酸化鉄(以下,Fe₂O₃)について比較した。

気相部・液相部ともに CaO, SiO₂, SO₃ は表面側から 15mm 程度までの範囲で低濃度領域が確認されたが, Al₂O₃, Fe₂O₃ は表面側と内側で特徴的な差は確認されな かった。図-3 に試験結果の一例として気相部で骨材が 露出した C-1 試験体の CaO について示す。

この結果より、Ca 溶出等による水和セメント成分の減 少または炭酸化が生じていることが推察される。

4.2 TG-DTA

図-4に試験結果を示す。

CaCO₃含有量について気相部・液相部によらず表面から深い位置ほどCaCO₃含有量は少ない結果であった。

脱 CO₂重量減少率についても同様に気相部・液相部に よらず表面から深い位置ほど少ない結果であった。

気相部と液相部で比較すると、CaCO₃含有量と脱 CO₂ 重量減少率ともに深い位置では差は小さいが、浅い位置 では気相部の方が多くなっていることから、表層におい ては Ca 溶出の影響と推察される。また、炭酸化の進行 は液層部より気相部の方が進行していると推察される。 4.3 含有塩分量分析

図-5 に塩化物イオン濃度測定結果を示す。なお、図 中の横軸は防水モルタル表面からの深さである。また、 参考値として竣工 10 年経過した配水池のコンクリート と神戸市内の水道水の塩化物イオン濃度を併記する。

液相部の表面で塩化物イオン濃度が高い傾向を示し たが,参考値と比較すると明確な差は見られず,また絶 対値として少ない状態である。

4.4 SEM

形状観察と X 線分析装置を用いて物質の特定を行った。図-6に観察写真の一例を示す。

気相部の C-1 では、針状や柱状のエトリンガイトがペ ースト部の空隙や亀裂、骨材とペースト境界面などに生 成していた。また、エトリンガイトで充填された気泡も 確認された。しかし、それらは局所的で全体的にエトリ ンガイトの生成が顕著に多く見られるということでは なく、一般的に観察されるコンクリートの水和組織と大 きな差異は認められなかった。液相部の C-2 では、エト リンガイトと思われる結晶は、観察範囲内では確認され なかった。モノサルフェートと推察されるアルミニウム、 硫黄、Caを主成分とする円形組織が数箇所で確認された。 4.5 XRF

図-7に XRF 試験結果の一例を示す。また,前述の含 有塩分量に明確な差が確認されなかったことから,塩素 による影響は少ないと考えられることから,参考として 竣工約 75 年経過した浄水場上流施設で河川水等を貯水 する水道施設(沈澄池)の分析結果も合わせて示す。

M-2 と参考データとの間に明確な差は確認されなかった。一方, M-1 と M-2 を比較すると, CaO が 90%減少していることから, 脆弱部ではセメント分が微量であることが確認された。

また, 強熱減量(ig.loss)についても CaO と同様に 75% 減少していることが確認された。これは, TG-DTA 試験 結果と符合しており, セメント分が少ないことを示す。

4.6 XRD

表-4に XRD 試験で確認された鉱物を示す。

CSH CSH 5.000 ×3.000× 10.000 5.000 5.000 5.000

Afm:モノサルフェート Ett:エトリシカイト CSH:カルシウムシリケート水和物 図ー6 SEM 観察結果

値 行 物 イ オ ソ 濃 度 (kg/m3)

脆弱部の M-1 と健全部の M-3,4 で比較すると, 脆弱部で は CaCO₃ が同定されなかった。このことは, 前述の XRF, TG-DTA の試験結果と符合する。

気相部と液相部の健全部 M-3,4 で比較すると,液相部 においては、Ca(OH)₂,エトリンガイト、モノサルフェ ートが確認されたが、CaCl₂は確認されなかった。

4.7 結露水塩化物イオン濃度測定

図-8に結露水中の塩化物イオン濃度を示す。

測定結果にばらつきはあるもの,結露水の塩化物イオ ン濃度は,神戸市内の水道蛇口から採取した水道水の塩 化物イオン濃度の平均値とほぼ変わらない結果であり, 濃縮等は確認されなかった。

5. 脆弱化メカニズムの推定

図-9に成分分析試験結果のまとめを記す。この結果 を基に各脆弱化メカニズムの推定を行った。

5.1 ケース A カルシウム溶出

気相部の場合,中性化深さ11mmに対して Ca 濃度低 下深さが15mmであり,文献ⁿで報告されているように, 中性化深さよりもかなり深い位置での Ca 濃度の低下傾 向が明確であるとは言い難い。

一方,液相部の場合,中性化深さ 6mm に対して Ca 濃 度低下深さが 15mm であり,中性化深さよりもかなり深 い位置での Ca 濃度の低下傾向が認められた。また,気 相部に比べ CaCO₃ 含有率などが小さいことからこのメ カニズムの可能性が考えられる。

5.2 ケース B 中性化(炭酸化)

気相部の場合,液相部と比べ中性化の進行と CaCO₃ 濃度が高いことが確認された。また,中性化深さとCaCO₃ 濃度低下深さがほぼ同位置と捉えることができるこ とから,このメカニズムの可能性がある。

一方,液相部の場合,コンクリート表面で中性化 の進行と CaCO₃ 濃度が高いことを確認できたが,脱 CO₂ 重量減少率が低く,中性化深さに比べて深い位 置で Ca 濃度が低下している。カルシウム溶出ととも に、ある程度炭酸化が進行していると推察されるこ とから,このメカニズムの可能性がある。

5.3 ケースC 塩化物イオン+中性化の複合劣化

気相部の場合,反応過程で生じる CaCl₂ が確認さ れず,劣化要因となる塩化物イオン濃度の絶対値も 低い結果であった。以上より,このメカニズムは支 配的とは考え難い。

一方,液相部の場合も反応過程で生じる CaCl₂が 確認されず,劣化要因となる塩化物イオン濃度の絶 対値も低く表面側が大きく高くなる傾向は確認され なかった。そして,コンクリート中の塩化物イオン 濃度が水道水のそれより高い傾向にあることから,

コンクリート中への塩分浸透は考え難い。また、中性 化深さに比べて深い位置で Ca 濃度の低下傾向が見ら れるため、このメカニズムは支配的とは考え難い。

5.4 ケースD 塩酸侵食

気相部の場合,反応過程で生じる CaCl₂ が確認されな かった。また,結露水のpH が 5~7 であり塩化物イオン 濃度が水道水と同程度であったことから,結露水中での 濃度上昇は確認されない。以上より,このメカニズムが 支配的とは考え難い。

一方,液相部の場合も反応過程で生じる CaCl₂が確認 されず,中性化位置付近での全塩化物と可溶性塩化物の 差が小さいことを確認できなかったことから,このメカ ニズムが支配的とは考え難い。

5.5 ケース E 塩素分子による侵食

気相部の場合,反応過程で生じる CaCl₂,エトリンガ イトの生成が確認されず,ケースDに示したように,結 露水の成分は水道水とほぼ同じで塩化物イオン濃度上 昇は確認されなかったことから,このメカニズムが支配 的とは考え難い。

一方,液相部の場合も反応過程で生じる CaCl₂,エト リンガイトの生成が確認されなかったことから,このメ カニズムが支配的とは考え難い。

6. 液相部におけるコンクリート強度低下深さの推定

特に脆弱化が著しい液相部において施設の残存寿命 や健全度の評価の際には、コンクリート強度低下深さを 把握する必要がある。

既往の研究^{8,9)}より,液相部のコンクリートの強度低下 は、C-S-Hの変質深さより深部まで及んでおり、Ca(OH)₂ の変質深さに一致する。また、ビッカース硬度比は、固 相の Ca 濃度比が 80%以下になると急激に低下する。以 上から、Ca(OH)₂の変質深さでの Ca は健全部の約 80% は残存しているとして、この深さをコンクリート強度低 下深さとして検討した。

ここで,実務上,ビッカースによる強度測定は扱いづ らく,また化学的分析をその都度実施することはコスト 面から難しい。そこで,試験方法が簡便である中性化深 さに着目し,中性化深さと Ca(OH)2の変質深さの間に相 関関係があると仮定して検討した。なお,Ca(OH)2の変 質深さは EPMA による CaO 濃度低下深さとした。

検討においては、本配水池と同様に建設当初に防水モ ルタルを施した配水池Lの調査結果も併記する。配水池 Lの諸元と調査結果を表-5に示す。

検討の結果,データ数は少ないがどちらの配水池においても中性化深さの約2.5倍が CaO 濃度低下深さと一致する。したがって,中性化深さからコンクリート強度低下深さを推定できる可能性が見受けられる。

表-5 Ca0 濃度と中性化の関係

配水池名	箇所	塗装仕様	竣工	 ①中性化 深さ 	 ②CaO濃度 低下深さ 	2/1		
配水池A	液相部	防水モルタル	1917年	6mm	15mm付近	2.5		
配水池L	液相部	防水モルタル	1964年	5mm	13mm付近	2.6		

7. まとめ

複数の脆弱化メカニズムを検討した結果,気相部では, 中性化(炭酸化)が,液相部では,Ca溶出と中性化(炭酸化) が主要因と推定された。これらの脆弱化メカニズムは, 一般的な土木構造物と変わらず,水道施設特有の塩素が 脆弱化に寄与している可能性は低いことが確認された。

また,データ数は十分ではないが,コンクリート強度 低下深さは中性化深さの 2.5 倍程度の位置に相当し,中 性化深さからコンクリート強度低下深さを推定できる 可能性が見受けられた。

今後は、本研究で得られた劣化メカニズムを踏まえて、 気相部、液相部で分けて劣化予測を行って耐用年数等を 評価していく。

参考文献

- 例えば、竹中淳憲、佐藤誠:配水池のコンクリート 表面劣化の原因に関する一考察、(社)日本水道協会 第59回全国水道研究発表会講演集,pp392,2008.5
- 古澤靖彦:カルシウムの溶出によるコンクリート劣 化とモデル化に関する研究動向、コンクリート工学、 Vol35, No.12, pp29-32, 1997.12
- 野中資博,三品文雄,宇野祐一,藤澤健一:序受け 水道施設のコンクリート防食実務,森北出版, 2005.10
- 4) 小林一輔,白木亮司,河合研至:炭酸化によって引き起こされるコンクリート中の塩化物,硫黄化合物およびアルカリ化合物の移動と濃縮,コンクリート工学論文集,第1巻,第2号,1990
- 5) 例えば,小林一輔:最新コンクリート工学第 5 版, 森北出版, 2004.2
- 6) (社)セメント協会:硬化コンクリートの配合推定に
 関する共同試験報告、コンクリート専門委員会報告
 F-18、1967
- 7) 例えば、横関康祐、中曽根順一、柿崎和男、渡辺賢 三:100 年以上経過した地下コンクリート構造物の 耐久性について、コンクリート工学年次論文報告集, Vol.20, No.1, 1998
- (構関康祐ほか:カルシウムイオンの溶出に伴うコンクリートの変質に関する実態調査と解析的評価,土 木学会論文集, No.697/V-54, pp51-64, 2002.2
- 9) 岸谷孝一,西澤紀昭ほか編:コンクリート構造物の 耐久性シリーズ中性化,技法堂出版,1986