論文 火災加熱を受けるコンクリートの変形挙動に関する解析的研究

河村 圭亮^{*1}·福浦 尚之^{*2}·鈴木 三馨^{*1}·服部 佳文^{*3}

要旨:本研究では、3次元有限要素法を用いた熱伝導解析および熱応力解析の一方向連成解析により、火災加 熱を受けるコンクリートの変形挙動解析を行った。まず、実大試験体を用いたコンクリートの載荷加熱実験 を対象とした解析を行い、本解析手法を用いることで、コンクリート内部の温度変化および全体の変形挙動 を概ね妥当に評価可能なことを示した。さらに、トンネル構造物を対象とした解析を行ったところ、構造形 式の違いによる、火災加熱を受けた際に生じる変形挙動の差を評価することができ、本解析手法の有用性お よび発展性を示した。

キーワード:火災,熱伝導解析,熱応力解析,過渡ひずみ,トンネル

1. はじめに

土木分野においても、コンクリート構造物の火災事例 が国内外で数多く報告されており、トンネル構造物の事 例がその大半を占めている¹⁾。しかし、加熱を受けたト ンネル構造物の力学性状を評価することは容易ではない。 そのため、加熱を受けるコンクリートの変形挙動を精度 良く評価可能な解析手法の確立が望まれている²⁾。

火災加熱を受けるトンネル構造物の構造性能を評価 するためには、有限要素法を用いた熱伝導解析および熱 応力解析が有益な手法であると考えられるが、解析的に 検討された研究は少ない³⁾。特に3次元解析を行った研究 や、トンネル全体系を対象とした解析は数少ない^{4,5)}。

そこで、本研究では3次元有限要素法を用いた火災加熱 を受けるコンクリートの変形挙動解析を行った。実大試 験体を用いたコンクリートの載荷加熱実験を対象とした 解析により,解析手法の妥当性について検討した。さら に、トンネル構造物を対象とした解析を行い、本解析手 法の有用性について検討を行った。

2. 解析概要

本研究では、3次元ソリッド要素を用いて熱伝導解析 および熱応力解析の一方向連成解析を行った。本解析で は、既往の知見に基づいてコンクリートおよび鉄筋の温 度上昇に伴う強度低下や熱膨張ひずみおよび過渡ひずみ の発生についてモデル化を行った。解析には汎用非線形 有限要素プログラム ABAQUS を使用し、コンクリート の応力ひずみおよび過渡ひずみのモデルについては、ユ ーザーサブルーチンを用いて取り入れた。

2.1 熱伝導解析

熱伝導解析では、コンクリートの熱伝導率および比熱の温度依存性を考慮した。本解析で用いた熱伝導率と比熱の温度に対する変化を図-1に示す⁶。また、水の潜

熱を 127.4J/kg として, 100~120℃の範囲で蒸発潜熱を奪 うものとした。

2.2 熱応力解析

(1) コンクリートの力学特性

熱応力解析に用いたコンクリートの力学特性を以下に 示す。本解析では全ひずみを式(1)とし、応力に対応して 生じるひずみ(以下、応力ひずみ)、熱膨張ひずみおよび 文献 7)中に示されている圧縮応力作用下において昇温時 に生じる不可逆的な収縮ひずみ(過渡ひずみ)を考慮した。

$${}_{c}\mathcal{E}_{total} = {}_{c}\mathcal{E}_{c} + {}_{c}\mathcal{E}_{th} + {}_{c}\mathcal{E}_{tr}$$
(1)

ここに、
$$_{c} \mathcal{E}_{total}$$
 : コンクリートの全ひずみ
 $_{c} \mathcal{E}_{c}$: コンクリートの応力ひずみ
 $_{c} \mathcal{E}_{th}$: コンクリートの熱膨張ひずみ
 $_{c} \mathcal{E}_{tr}$: コンクリートの過渡ひずみ

a) 応力ひずみ

コンクリートの圧縮応力ひずみ関係には, Eurocode2⁸⁾ で採用されている式(2)に示す Popovics 式を用いた。

$$\sigma(T) = \sigma_{b}(T) \times \frac{c \mathcal{E}_{c}(T)}{\mathcal{E}_{c1}(T)} \times \frac{n}{(n-1) + (c \mathcal{E}_{c}(T) / \mathcal{E}_{c1}(T))^{n}} (2)$$
ここに、 $\sigma(T)$: T°Cにおけるコンクリート応力(N/mm²)
 $\sigma_{b}(T)$: T°Cにおけるエンクリート応力(N/mm²)
 $c \mathcal{E}_{c}(T)$: T°Cにおける最大荷重時のひずみ
 n : 係数 (=3)
2.5
0.0
0 200 400 600 800
0 200 400 600 800

図ー1 熱伝導率および比熱の温度変化

温度 (℃)

温度 (℃)

*1 大成建設㈱ 本社技術センター土木技術研究所土木構工法研究室土木構造チーム 修士(工) (正会員)

*2 大成建設㈱ 本社技術センター土木技術研究所土木構工法研究室土木構造チーム 博士(工) (正会員)

*3 大成建設㈱ 本社土木本部土木設計部陸上第二設計室

式中の係数はEurocode2⁸に従い n=3 とした。各温度にお ける圧縮強度および最大荷重時のひずみについては、そ れぞれ図-2 および図-3 中に示す高温下における圧縮 強度試験結果⁹を、常温時に対する比で表した関係を元 にした近似式により定めた。得られた応力ひずみ関係を 実験結果と併せて図-4 に示す。なお、除荷経路につい

ては図-4中の20℃のケースに示すように、初期剛性で 応力0まで線形除荷する簡易なモデルとした。

引張強度の低減率についても、圧縮強度と同じ図-2 中の近似式により定めた。引張域の応力ひずみ関係につ いては、引張強度以降の軟化域には式(3)より算出した引 張破壊エネルギーを考慮した 1/4 モデルを用いた¹⁰。

$$G_F(T) = 10(d_{\max})^{1/3} \{\sigma_h(T)\}^{1/3}$$
(3)

ここに, G_F(T) : T[°]Cにおける引張破壊エネルギー(N/m) d_{max} : 粗骨材の最大寸法(mm) *σ_b(T*): T[°]Cにおける圧縮強度(N/mm²)

なお,引張側の除荷経路については原点指向型の線形除 荷モデルとして簡易に考慮している。

圧縮・引張ともにコンクリート温度が低下する場合に は,強度の復帰は期待できない¹¹⁾ため,過去の最大受熱 温度での応力ひずみ関係を用いる。

b) 熱膨張ひずみおよび過渡ひずみ

本解析では、コンクリートの熱膨張ひずみおよび過渡 ひずみについては、それぞれ図-5 に示す常温圧縮強度 53N/mm²のコンクリートの高温圧縮試験結果⁷⁾に従うも のとした。熱膨張ひずみ、過渡ひずみともに実験データ がない 800℃以上については 800℃の時点の勾配を使用 し、各ひずみが線形的に増加していくものとして定めた。

(2) 鉄筋の力学特性

熱応力解析に用いた鉄筋の力学特性を以下に示す。本 解析では全ひずみを式(4)とし、応力ひずみおよび熱膨張 ひずみを考慮した。

$${}_{s}\mathcal{E}_{total} = {}_{s}\mathcal{E}_{c} + {}_{s}\mathcal{E}_{th} \tag{4}$$

ここに, $_{s}\mathcal{E}_{total}$:鉄筋の全ひずみ

s**E**c : 鉄筋の応力ひずみ

sEth : 鉄筋の熱膨張ひずみ

a) 応力ひずみ

鉄筋の応力ひずみ関係は図-6 に示すバイリニア型とし、降伏強度は文献12)のデータ、ヤング係数の温度依

存性については文献1)の式をそれぞれ引用した。

b) 熱膨張ひずみ

鉄筋の熱膨張ひずみについては、熱膨張係数を Eurocode2⁸⁾に従い、13 μ /℃で一定とした。

RSF 実大試験体を用いた載荷加熱実験のシミュレー ション解析

3.1 解析対象の実験概要

本章では、鋼繊維補強鉄筋コンクリート(RSF)を用い た実大試験体の載荷加熱実験を対象としたシミュレーシ ョンを行い、解析手法の妥当性について検討を行った。

実験は RSF を用いたシールドセグメントの火災に対 する構造安定性を把握するために行われたものである。 試験体の寸法は図-7 の実験概要に示すように幅 2,000mm,長さ4,480mm,厚さ350mmである。主鉄筋と して加熱面側は芯かぶり90mm,裏面側は芯かぶり85mm でD16が12本ずつ埋設されている。試験日前日(材齢 27日)におけるコンクリートの圧縮強度は62.7N/mm², ヤング係数は33.5kN/mm²,含水率は4.75wt%であった。

実験では加熱前に、長期荷重(土圧,水圧)を想定し て軸力 7,200kN,曲げモーメント 570kN・m を導入した。 さらに、試験体中央部に鉛直荷重 100kN を作用させた状 態で保持した後、定ストローク制御運転により裏面側へ の変形が生じないように鉛直変位を拘束した。支点は、 片側ピン支持,他方をローラー支持とし、熱が伝わらな

いように、支点と加熱炉の間には断熱材を設けた。

加熱は、火災時に想定される時間温度曲線として採用 した図-8 に示す RABT 曲線¹⁾に従って行った。加熱範 囲は試験体幅方向全体(2,000mm),軸方向は中央部 3,000mm である。加熱開始から 3.25 時間の時点で、中央 部鉛直方向の拘束を解放し、軸力および曲げモーメント で導入した荷重を除荷した。

3.2 熱伝導解析

熱伝導解析に用いた解析モデルは図-9 に示すように, 試験体形状の幅方向および軸方向の対称性を考慮した 1/4 モデルとして,コンクリートおよび耐火断熱材をモ デル化した。裏面側および外側側面の雰囲気温度は20℃ 一定とし,対称境界面については断熱とした。

図-10 に試験体内部温度の経時変化を実験結果と併 せて示す。加熱面における温度上昇を若干過小評価して はいるものの、いずれの測定地点においても解析結果は 実験結果と良く一致している。

3.3 熱応力解析

熱応力解析に用いた解析モデルも図-11 に示すよう に熱伝導解析と同様の1/4 モデルとして、コンクリート、 鉄筋および載荷板をモデル化した。なお、曲げモーメン ト導入時に載荷板とコンクリートが界面で離れないよう にするため、載荷板直下のコンクリート要素については 弾性とした。また、本解析では鋼繊維の効果については 考慮していない。

(1) 初期外力の導入

実験同様に初期外力として軸力,曲げモーメント,鉛 直力の順に荷重を導入した。外力導入時の裏面(図-11

中の赤丸位置)における軸方向のコンクリートひずみの 変化を実験結果と併せて図-12に示す。実験同様のひず みが生じていることから,簡易な載荷板要素を用いてモ デル化を行ったが,所定の外力が導入できていることが 確認された。

(2) 加熱に伴う変形挙動

図-13 に加熱開始から 12 時間後の最大主ひずみ分布 を変形挙動と併せて示す。また,図-14 に実験における 加熱終了後の試験体裏面の様子を示す。なお,試験体表 面の白線は目視で観察されたひび割れを示している。

解析では加熱に伴って試験体中央部が裏面側に反り上 がり,裏面に試験体幅方向の分散した複数のひび割れが 生じる挙動が再現できている。このような挙動について は,後述する応力分布およびひずみの経時変化と併せて 考察する。

試験体裏面(図-11中の青丸位置)における鉛直変位 および裏面中央部における鉛直方向反力の経時変化を図 -15および図-16に示す。加熱開始直後は加熱側コンク リートが温度上昇に伴って膨張することに起因して、中 央部の反力は低下する。その後、裏面側に反り上がる挙 動に転じるが、この時の反力を解析では過大評価してい る。実験では加熱開始から2~3時間の段階で鉛直変位が 戻り、反力が大きく増加していることから、中央部の鉛

図-14 試験体裏面のひび割れ状況(加熱終了後)

直方向変位が正しく制御できていなかった可能性が考え られ,解析結果と異なる挙動を呈した要因の1つとして 挙げられる。

除荷時の挙動については、中央部の鉛直方向の拘束を 解放した時点で鉛直変位が大きく増加し、外力を除荷し た時点で鉛直変位が戻る挙動を再現できているが、加熱 面側に大きくたわむ結果となった。これは、本解析では 引張側の除荷時にひび割れが閉じる時のすべり挙動等を 考慮していないことや、使用した過渡ひずみのデータが 本実験に用いたコンクリートよりも小さかった可能性が あることが一因として考えられる。なお、除荷後の加熱 開始から3.25~12時間における裏面に反り上がる変位増 分については実験結果とほぼ一致しており、拘束がない 条件下の挙動については概ね評価できている。

(3) 各ひずみ成分の経時変化と断面内の応力分布

解析での,加熱区間内で,試験体軸方向の中央から 750mm,幅方向は試験体中央(図-11中の緑丸位置)の 断面内における軸方向の応力分布を図-17に示す。また, 同位置の加熱面における,軸方向の各ひずみ成分(全ひ ずみ,応力ひずみ,熱膨張ひずみ,過渡ひずみ)の経時 変化を図-18に示す。

加熱開始直後は温度上昇に伴って,加熱面付近で熱膨 張ひずみが生じ,試験体の拘束状態による影響で圧縮応 力が増加する。その後,温度上昇に伴う強度低下によっ て圧縮応力は減少する(A)。この圧縮応力下で温度上昇 する加熱開始から約0.5時間の間に,加熱面付近で過渡 ひずみが生じて残留することになる(B)。

コンクリート温度の上昇に伴い,加熱面付近で剛性や 強度が低下するため,応力を負担する領域が裏面側に移

動している(C)。このことより,試験体は裏面側へ反り 上がる変形挙動を示す。

加熱開始から1時間以上経過すると、温度低下により 熱膨張ひずみが小さくなり、過渡ひずみの方が卓越する ようになることで、強度低下のため値は小さいが引張応 力が生じる(D)。一方、図-10に示すように内部の温度 が上昇する領域では熱膨張ひずみの発生に伴って圧縮応 力が増加する(E)。そのため時間の経過に伴い、加熱面 付近では引張、内部では圧縮応力状態となり、断面内で の釣り合いを保つため裏面側には引張応力が生じる(F)。 この引張応力によって裏面側にひび割れが生じる。

3.4 シミュレーション解析のまとめ

本解析では、加熱に伴うコンクリートの温度変化およ び外力の変化に伴う変形挙動を評価することができてい る。従って、本解析手法を用いることで、火災加熱を受 けるコンクリート構造物の温度変化および変形挙動につ いて、概ね妥当な解析結果が得られることが示されたも のと考えられる。

4. 火災時におけるトンネル全体系の変形挙動解析 4.1 解析概要

本解析手法を用いて、図-19に示すような外径 12m, 覆工厚さ 700mm のトンネルを想定して、トンネル内で 火災が生じた時の覆工の変形挙動について検討を行った。

ここでは構造形式の違いが解析結果に及ぼす影響を 比較するため、覆工を1次覆工(厚さ400mm)と2次 覆工(厚さ300mm)に分割したケースを想定した解析 も行った。以下では、分割していないケースを一体型、

図-19 想定したトンネル概要および外力条件

分割したケースを分割型とする。

解析モデルは対称性を考慮して 1/2 モデルとした。奥 行きは厚さ 100mm として,内側外側ともに芯かぶり 60mm の位置に D19 の鉄筋を1本ずつ配置した。

熱的境界条件は、内空側の雰囲気温度として図-8 に示 すRABT加熱を与えた。地山側の雰囲気温度は20℃とした。 コンクリートの圧縮強度は、一体型は 54N/mm², 分割 型は 1 次覆工が 54N/mm², 2 次覆工は現場打ちを想定し て 24N/mm²と設定した。1 次覆工と 2 次覆工の界面には 厚さ 2mm の層状要素を設けた。分割型では、この層の ヤング係数を \Rightarrow 0 とし、圧縮に変位した時のみ作用する バネを設けることにより、界面のすべり挙動をモデル化 した。また、構造体は周辺地盤を模擬した地盤バネによ って支持され、地盤反力は地盤バネが圧縮に変位した時 のみ作用するものとした。地盤反力係数は k=50,000kN/m³を設定した。

長期荷重として土水圧を想定して図-19 に示す外力 およびコンクリートの自重を導入した。なお、外力は一 体型では覆工全体に、分割型では1次覆工のみに作用さ せた。なお、水平方向の外力と対称面における水平方向 の反力の差は約0.1%であり、外力を地盤バネが受け持つ 影響については無視できるものと考えられる。

4.2 解析結果

各ケースの加熱開始から6時間後の時点における円周 方向のひずみ分布を図-20に、スプリングライン(S.L) での断面内の円周方向応力分布を図-21に示す。

長期荷重載荷時の応力分布は,一体型では全断面圧縮 状態であるが,分割型では1次覆工部分のみで圧縮を受 けることになる。

加熱開始から1時間後では,3章の解析結果と同様に 熱膨張ひずみが過渡ひずみよりも卓越するため,加熱面 付近では応力状態が圧縮側へ移行し,断面内の釣り合い を保つため外側では引張側へ移行する。分割型では2次 覆工部分に圧縮応力がほとんど作用していないことから, 加熱面から200~300mm付近で引張応力が生じることに なる。しかし,この領域でひび割れの発生には至らず, 温度の上昇に伴って応力状態は圧縮側へ移行する。加熱

開始から6時間後では,外側の引張応力が増加する。こ のような応力分布は円周方向にほぼ一様であり,図-20 中に示すようなひび割れが生じる。外側に生じる引張応 力の程度は長期荷重時の分布形状に依存しており,1次 覆工部分により大きな圧縮応力を受けていた分割型の方 が,ひび割れが生じにくい結果となった。

以上の結果から,トンネル構造物が内部で火災加熱を 受ける時,内部で温度上昇に伴って劣化するとともに, 覆工の外側にもひび割れが生じる可能性が考えられる。 また,トンネル構造物の耐火解析を行う際に,本解析手 法を用いることで構造形式の違いに起因する変形挙動の 差を評価可能なことが示された。よって,本解析手法は 今後,複雑な構造形式の構造物にも適用可能な手法とな る発展性を有しているものと考えられる。

5. まとめ

本研究では、3次元有限要素法を用いて高温加熱を受けるコンクリートの熱伝導解析および熱応力解析の一方 向連成解析を行った。得られた知見を以下に示す。

- (1) コンクリートおよび鉄筋の温度上昇に伴う強度低下,熱膨張ひずみおよび過渡ひずみの発生までモデル化した耐火解析を行った。本解析手法を用いて, 実大試験体を用いた載荷加熱実験を対象としてシミュレーション解析を行うことで,コンクリートの温度変化および変形挙動を概ね評価することができ,本解析手法の妥当性を示した。
- (2) 熱膨張ひずみおよび過渡ひずみの影響により、断面 内の応力分布が変化することで、加熱面に対して裏

面側に引張応力が生じ,ひび割れを誘発することが シミュレーション解析より示された。

(3) トンネル構造物を対象とした耐火解析を行い、3次 元ソリッド要素を用いた本解析手法を用いることで、構造形式の違いに起因する挙動の差を評価可能なことを示した。従って、本解析手法の有用性が示されたものと考えられる。

参考文献

- 土木学会:コンクリート構造物の耐火技術研究小委 員会報告ならびにシンポジウム論文集, pp.3-12, pp.25, pp.55, 2004.
- 野口貴文ほか:コンクリートの高温特性とコンクリ ート構造物の耐火性能研究委員会、コンクリート工 学年次論文報告集, Vol32, No1, pp.45-52, 2010.
- 市原三馨,水野敬三,道越真太郎,丸屋剛:耐火セ グメント継手部の火災時の挙動に関する実験的お よび解析的研究,コンクリート工学年次論文報告集, Vol30, No3, pp.73-78, 2008.
- 中島浩亮,中村光,国枝稔,山本佳士:3次元 RBSM を用いたコンクリートの耐火性能評価手法の開発, コンクリート工学年次論文報告集, Vol31, No1, pp.937-942, 2009.
- 5) 田嶋仁志,岸田政彦,神田亨,森田武:火災高温時 におけるシールドトンネル RC 覆工断面の変形挙動 解析,土木学会論文集 E, Vol.62, No.3, pp.606-618, 2006.9.
- 道越真太郎,小林裕:高強度コンクリートの高温時 における力学的性質,日本建築学会大会学術講演梗 概集 A-2, pp79-80, 2004.8.
- 7) 道越真太郎,小林裕,黒岩秀介:圧縮力を受けるコンクリートの高温時におけるひずみ挙動,日本建築学会構造系論文集,第621号,pp169-174,2007.11.
- Eurocode2: Design of concrete structures Part1,2 General rules-Structural fire design, BS EN 1992-1-2, 2004.
- 9) 安部武雄,古村福次郎,戸祭邦之,黒羽健嗣,小久 保勲:高温度における高強度コンクリートの力学的 特性に関する基礎的研究,日本建築学会構造系論文 集,第515号,pp163-168,1999.1.
- 10) 土木学会: 2007 年制定コンクリート標準示方書 [設計編], pp.42-43, 2007.
- 常世田昌寿,山下平祐:拘束力を伴って 700℃まで 加熱されるコンクリートの熱間および冷間圧縮試 験,日本建築学会大会学術便概集 A-2, pp.5-6, 2006.9.
- 日本建築学会:構造材料の耐火性ガイドブック, pp.160-162, 2009.