論文 非対称鉄骨を内蔵した SRC 長柱の弱軸曲げ耐力

林 和宏*1·柴田 道生*2·高柳 和平*3

要旨:本論は1軸対称のT形鉄骨を内蔵したSRC長柱の弱軸曲げに関する耐力評価法の誘導を主眼とし,偏 心圧縮実験および数値解析を用いてその精度を検証した。非対称断面材では,部材に主軸曲げを生じる中立 軸の傾きが,軸力レベルによって変動する場合がある。本論で取り扱う1軸対称断面では,部材が弱軸曲げ を受ける際にこの問題が生じる。この場合,耐力評価において部材の降伏曲線をいかに明示的に求めるかが 鍵となるが本論では,軸力レベルによって変動する中立軸の傾きを,一義的に仮定することで近似解を得た。 また,導かれた長柱部材の弱軸曲げ耐力評価法は,実験および解析と良好な対応を示した。 キーワード:鉄骨鉄筋コンクリート構造,長柱,非対称断面,偏心圧縮実験,耐力評価

1. 序

鉄骨鉄筋コンクリート構造(以後 SRC 構造と呼ぶ) 骨組の内柱では、内蔵鉄骨として十字形鉄骨などの2軸 対称断面材が用いられる。しかし、建物外周の柱は、図 -1(a)に示すようなT字形1軸対称断面内蔵鉄骨(通 称:ヒコーキ)が用いられることが多い。このような部 材の断面は弱軸曲げに対しては対称性を持つが、強軸曲 げに対しては非対称の性質を示す。

鉄骨鉄筋コンクリート構造計算規準・同解説¹⁾(以後 SRC 規準と呼ぶ)では、図-1(a)のような非対称断面 の設計にあたり、非対称成分を無視した図-1(b)のよ うな断面に置き換える手法が示されている。この設計手 法は、本来存在する鉄骨を無視する分、部材耐力に対し てほとんどの場合で安全側の値を与えるが、それが過度 に至り経済設計の面からは不条理な場合も多い^{1),2)}。

以上から,建設コスト削減や省エネ・省資源設計の観 点では,部材の非対称性を無視しない,厳密な耐力評価 法の確立が求められる。しかし,非対称断面材に関する 研究は極めて少なく,西村・筒井などによって行われた 短柱部材に関する実験報告^{3),4)}以外見受けられなかった。

これを受け著者らは文献 5)で,1軸対称鉄骨内蔵 SRC 長柱が強軸曲げを受ける場合の厳密な耐力評価法に関

する研究を行った。1軸対称のT字形鉄骨を内蔵する SRC断面では,非対称軸である断面強軸に関して,部材 降伏曲線が正曲げ側と負曲げ側で対称形にならないこ とが問題であった。

本論は文献 5)に続いて,非対称鉄骨内蔵 SRC 長柱が 弱軸曲げを受ける場合の厳密な耐力評価法確立を目的 とし,実験的・解析的検証を行う。この弱軸曲げ(図-1(a)のような非対称断面に関して弱軸曲げを厳密に定 義することは困難であるが,本論では部材に強軸曲げ成 分が生じない曲げ圧縮を弱軸曲げと定義する)では部材 が対称性の性質を示す分,文献 5)の「強軸曲げ」よりも 扱いが容易であるが,部材降伏曲線が累加強度理論によ って明示的に求められないなど固有の問題がある。なお, 実験的検証では柱の両端に等しい偏心を与えた弱軸曲 げ対称偏心圧縮実験を行い,解析的検討では偏心圧縮実 験および耐力評価法の精度検証を行う。

2. 非対称断面材に固有の問題

2.1 図心の定義

一般に複数の非線形材料で構成され、しかもそれらの 図心が一致しない部材(本論で取り扱う非対称 SRC 断面 などが該当し,以後 非対称 Hybrid 部材と呼ぶ)では, 部材断面に一様なひずみを生じさせる軸力の作用位置 (以後,一様ひずみ圧縮位置)が,存在軸力のレベルに よって変化する。したがって,対称断面材における「中 心圧縮」という概念も成立しない。

構造力学の定義では、1 点を通る任意の直交軸に関し て、等価断面1次モーメントがそれぞれ0となる点を「図 心」と定めている(以後,弾性図心と呼ぶ)。合成構造 断面では、各構成要素のYoung 係数、断面積、断面1次

*1 京都大学防災研究所 JSPS 特別研究員 博士(工学) (正会員)
*2 摂南大学 理工学部建築学科教授 工博 (正会員)
*3 摂南大学大学院 工学研究科社会開発工学専攻 大学院生

モーメントをそれぞれ E_j , A_j , S_j とおけば,

$$\frac{\sum E_j S_j}{\sum E_j A_j} = 0 \tag{1}$$

が成立する点が弾性図心となり、これは二軸対称断面材 もしくは弾性部材の場合、一様ひずみ圧縮位置に相当す る。これに対し非対称 Hybrid 部材では、一様ひずみ圧縮 位置が軸力0の場合は弾性図心に一致するが、軸力の増 大とともに両者の位置は離れていく。従って、弾性図心 に関する *N*-*M* 相関関係上の降伏曲線の頂点は、図縦軸

(軸力 N の軸) とは異なった位置に存在する^{2),5)}。

我が国の鋼・コンクリート合成構造では、塑性理論に 基づく設計体系が構築されており、降伏曲線の頂点で全 塑性モーメントが0とならないことは、部材の耐力評価 の上で不都合である⁵⁾。また、部材に曲げモーメントが 生じていた方が、より大きな軸力を負担できるというこ とは、一般的な2軸対称断面の常識から外れるものであ る²⁾。本論では、上記の問題解決のために、新たな「図 心」に関する定義を行う。弾性図心が軸力0の時の「一 様ひずみ圧縮位置」であるのに対し、新たに定義する「図 心」は降伏軸力の際に「一様ひずみ圧縮位置」に一致す る。この新に定義した図心を以後「塑性図心」と呼び、 本論では以後、この「塑性図心」に関して議論を行う。

図-2のように、SRC 柱のコンクリート部中心を座標 原点に選び、鋼材図心が原点より c だけ離れているよう な断面を考える。ここで、コンクリートの断面積 A_c と 鋼材の断面積 A_s の比率を $A_s/A_c = 0.05$ 、材料構成則を鋼 材については完全弾塑性型、コンクリートは完全パラボ ラ型と仮定すれば、座標原点と一様ひずみ圧縮位置の距 離を e_{eq} と定義した場合、降伏軸力に対する存在軸力比 $n \ge e_{eq}/c$ の関係が、図-3の鎖線のようになる。「弾 性図心」が図-3中の横軸と鎖線の交点 • であるのに 対し、今回定義した「塑性図心」は ○ の位置にあたる。

2.2 1軸対称断面の降伏曲線

前節の「塑性図心」の定義により、非対称 Hybrid 部材の降伏曲線の頂点は、N-M 相関関係上の縦軸と一致し

た。しかし,非対称断面部材では,非対称軸に関する降 伏曲線が「正曲げ」側と「負曲げ」側で異なる形状を示 すため,部材耐力評価の上ではなお難渋さが伴う。文献 5)では,図-4に示す1軸対称鉄骨内蔵SRC長柱が強軸 曲げを受ける場合を検討対象とした。このような荷重条 件では,上記の降伏曲線の非対称性が問題となった。

これに対して、本論で取り扱う「弱軸曲げ」は、図-4に示す断面では対称軸に関する議論となるため、一見 既往の対称断面材に関する理論が適用できるように思 われる。しかし、合成構造断面の全塑性モーメントを累 加強度理論によって求める場合、曲げの向きに対する中 立軸の傾きは既知である必要がある。本論で扱う1軸対 称断面の弱軸曲げでは、軸力レベルによって弱軸曲げを 生じる中立軸の傾きが変化する。

図-5は、図-4の断面に関する、二軸曲げ降伏曲線(塑 性図心に対する) である。図の横軸 m_x と縦軸 m_y はそ れぞれ、部材の強軸曲げ全塑性モーメント M_x と弱軸曲 げ全塑性モーメント M_y を、弱軸曲げの基準強度 M_{oy} (弱 軸曲げに関する降伏曲線における全塑性モーメントの 最大値) で除した値である。検討の軸力レベルは、降伏 軸力に対する存在軸力比 n が、0 から 0.8 の 5 種類とし た。また、図中の $\Box \triangle \diamondsuit$ はそれぞれ、部材中立軸の傾 き ψ が 0°、90°、180°のときの全塑性モーメントの値で ある。図から、部材が強軸曲げを受ける場合は中立軸の 傾きが 0°乃至 180°で一義的に決まるのに対し、弱軸曲げ の場合は 90°前後を変動していることがわかる。従って、 このような断面では強軸曲げモーメント m_x が 0 となる 弱軸曲げであっても、中立軸の傾きが 90°とは限らない。

図-6は、図-4の断面で中立軸の傾き ψ を90°に固定 した場合の、軸力比nと曲げの向き ϕ の関係である。図 -6から、中立軸の傾き ψ が90°の場合の全塑性モーメ ントの向き ϕ の値は、軸力レベルが n_1 以下ならば $\phi \ge 90°$ 、以上ならば $\phi \le 90°$ の関係が成立する。

以上の考察から、図-2のような1軸対称断面材の弱 軸曲げ降伏曲線は、軸力レベルによって中立軸の傾きが 変動することから、累加強度理論を用いて明示的に求め ることが出来ない。

図-4 1軸対称断面試験体概要(単位:mm)

図-6 中立軸の傾きが90°の場合の曲げ向き

2.3 弱軸曲げ降伏曲線の近似法

現行の合成構造の設計体系は、累加強度理論に基づい ている。しかし、本論が対象とする非対称断面材が弱軸 曲げを受ける場合は、累加強度理論を用いて明示的に降 伏曲線を求めることが出来ない。そこで、累加強度理論 に基づく部材弱軸曲げ降伏曲線の近似法を示す。

図-5中の実線で表した軸力比 0 の場合の二軸曲げ降 伏曲線を見ると、図中縦軸上に • で示した弱軸曲げ全 塑性モーメントの m_y の値が、中立軸の傾き ψ が 90°の 場合の全塑性モーメント \triangle に関する m_y の値に近いこ とがわかる。さらに、他の軸力レベルに関する検討でも \triangle に関する m_y の値は、部材弱軸曲げ全塑性モーメント の近似値として用いることができる。

図-7と図-8は、上記の考察に基づいた、部材弱軸曲 げ降伏曲線の近似法と精解の比較である。この内、図-7は精解と近似法による N-M 相関関係上の降伏曲線を、 図-8は各軸力レベルにおける精解に対する近似法の値 の比率 m_{ra}を示す。図-7から、太破線で示した弱軸曲 げ降伏曲線の精解に対し、細実線で示した近似法がその 値を良好に近似できていることがわかる。また図-8か ら、両者の誤差は最大でも約2%であり、この近似法が 極めて高い精度を有していることがわかる。

以上から、図ー4のような1軸対称断面材の弱軸曲げ 降伏曲線は、中立軸の傾き ψ を 90°として求めた全塑性 モーメントの値から、強軸曲げに関する成分 m_x を無視 することで、累加強度理論を用いて明示的に近似できる。

3. 非対称断面 SRC 長柱の弱軸曲げ偏心圧縮実験

1 軸対称鉄骨内蔵の SRC 長柱の両端に,等しい偏心量 を与えた,弱軸曲げ対称偏心圧縮実験を行った。

3.1 試験体

試験体概要を図ー4に,試験体名・載荷条件・基本諸量 および無次元化した最大耐力を表-1に示す。試験体は1 辺12cm角のコンクリート中に板厚6mmの鋼板を溶接組

立した T 形断面鉄骨(T-56×50×6×6)を挿入し,主筋お よびフープは 9mm, 3mm 丸鋼を用い,材端に厚さ 20mm のエンドプレートを溶接した。

試験体名は、1 文字目は材長を(A:120cm, B:240cm), 2 文字目は偏心量を(L:偏心大,s:偏心小),を表す。 また、 $N_o \ge M_{oy}$ は試験体の降伏軸力と弱軸曲げの基準強 度(弱軸曲げに関する降伏曲線における全塑性モーメン トの最大値)である。試験体両端の偏心量 e_x は降伏軸 力 と 弱 軸 曲 げ 基 準 強 度 で 無 次 元 化 し た 偏 心 量 が $N_o e_x / M_{yo} = \sqrt{3}$, $1/\sqrt{3} \ge xas$ ように定めたもので, これは $N_o \ge M_o$ で無次元化した N-M 相関曲線上では 30° \ge 60°の方向に対応する。

次に,鋼材の引張試験結果を表-2に、コンクリートの 調合設計を表-3に示す。なお、コンクリートの調合では 細骨材の含水率に応じて水及び細骨材量の補正を行った。 3.2 載荷・測定システム

試験体の材端に所定の偏心量を与えるための材端移動 装置と,全方向回転自由な支持条件を実現する交差かまぼ こ支承を図-9に示す。材端移動装置は、図-9(a)に示す 調整用ボルトAを動かすことでA'の枠が左右(x方向)

表-1 試験体一覧

試験体名	材長	材齢	F _c	e_x	No	M_{oy}	п	т
	cm	B	MPa	cm	kN	kNm	$(=N/N_o)$	$(=Ne_y/M_o)$
AL	120	82	25.15	2.84	575	9.34	0.450	0.787
As	240	118	26.23	0.95	587	9.55	0.792	0.462
BL	240	112	26.15	2.84	581	9.46	0.317	0.553
Bs	240	110	21.40	0.95	524	8.60	0.526	0.305

に移動し, 試験体に *x* 方向 (弱軸曲げ)の偏心を与える。 また, ボルト B を動かすことで B'のプレートが上下に移 動し, *y* 方向 (強軸曲げ)の偏心を与える。

また,試験体の変形性状に関する測定システムでは, 部材の中央および両端のx 方向変形とy 方向変形(図-9(a)参照)を測定する。

3.3 図心と偏心量と材端移動装置の関係

本論では,2.1 節で定義した塑性図心に対して議論を 進める。ただし,前節で示した材端移動装置は,標準状 態で試験体の断面中央に荷重作用線がくる(図-9(a)参 照)。従って,荷重作用線を試験体塑性図心と一致させ るためには,図-9(a)の状態からy方向に

$$e_{y} = A_{f} \left({}_{s} \sigma_{y} - F_{c} \right) j / N_{o}$$
⁽²⁾

だけ、試験体を移動させる必要がある。ここに、 A_f は 鉄骨フランジの断面積、jはフランジ中心と試験体断面 中央の距離、 $_{s}\sigma_{y}$ は鉄骨の降伏応力、 F_{c} はコンクリー ト強度である。本論で取り扱う試験体では、 e_{y} の値が約 3.8mm となる(試験体によって F_{c} の値が違うため、厳 密には各試験体で e_{y} の値が異なる)。ちなみに、弾性図 心を基準とした場合の e_{y} の値は約 3.1mm であり、本論 で取り扱う断面では、両者の差は断面せいの約 1/200 で あった。この値は、 $\mathbf{図} - \mathbf{1}$ (a)に示したような実施設計 で用いる1軸対称断面でもほぼ同じである。

4. 数值解析

たわみ曲線を差分近似した1次元連続体の変位増分 解析を行い実験結果を検証した。解析概要を以下に示す。

4.1 解析モデル

部材の両端に等しい偏心 $e_x \ge e_y$ を与えた偏心圧縮 柱を図-10のようにモデル化し、各点の曲率をたわみの 2次差分で近似する。また、解析における断面は図-1 1に示すようにコンクリートを縦横とも12分割、鉄骨は ウエブ・フランジともに板厚方向が1分割で幅が10分 割、鉄筋1本を縦横2分割計4分割とした。また、軸方 向は材長を8分割とした(図-10中のn=8)。

表-2 鋼材の引張試験結果

	降伏応力	引張強度	伸び率	
	MPa	MPa	%	
鉄骨	279	419	26.15	
鉄筋	292	424	32.10	

表-3 コンクリートの調合

水セメント比	水	セメント	砂	粗骨材	AE 剤
W/C(%)	W(kg)	C(kg)	S(kg)	G(kg)	Ad(kg)
65	210	323	867	830	3.46

(a) 材端移動装置と試験体 (b) 交差かまぼこ支承図-9 材端移動装置と支承

図-10 解析モデル

4.2 仮定

- 1) 平面保持仮定が成立する。
- 2) 垂直応力および軸力の符号は圧縮を正,軸ひずみは縮み を正とする。
- 材料構成法則は図-12のパラボラ型とし、比例限度r はコンクリートではr=0,鋼材ではr=0.6とする。
- コンクリートには引張強度およびコンファインド効果を 期待しない。

5. 実験結果と解析結果の比較

5.1 荷重-中央点たわみ関係

図-13に試験体 4 体の荷重 - 中央点たわみ関係を示す。 縦軸は作用荷重と降伏軸力の比 n を,横軸は弱軸曲げに関 する中央点たわみ量 u_4 を表す。図中の -- -- は実験で 得られた荷重-- 弱軸曲げ中央点たわみ関係を、実線はこれに 対応する数値解析を、鎖線は偏心量 e_x に対応する弾性解

$$u_4 = Pe_x L^2 / \left(8EI_y\right) \tag{3}$$

を示す。

弾性解と実験結果の対応は,原点近傍の弾性立上りで 良好であり,これは所定の偏心量が正しく与えられたこ とを示している。また,実験結果と数値解析の対応は, 荷重条件によらず概ね良好である。

5.2 試験体中央での n-m 相関関係

図-14と図-15に試験体4体について、軸力と部材中央 曲げモーメントの関係を示す。図は縦軸に作用荷重と降伏 軸力の比*n*を、横軸に部材中央モーメントと弱軸曲げの 基準強度の比*m*、をとる。また、図中の太破線は実験値

を,1 点鎖線は数値解を示し,最外縁の実線は降伏曲線 を表す。実験値と数値解は良好な対応を示すが,最大耐 力点を少し過ぎた時点では実験値は急激な耐力低下を 示すのに対し,数値解の耐力低下は緩やかであり,終局 状態では降伏曲線に漸近していく。

6. T 形鉄骨内蔵 SRC 長柱の弱軸曲げ耐力評価

二軸対称断面 SRC 長柱の耐力評価法は,文献 6)~9)など がすでに示されている。中でも,文献 9)で示された拡大モ ーメント指標を用いた長柱部材耐力評価法(以後,拡大モー メント指標法)は,非線形弾塑性長柱部材の耐力評価におい て,良好な精度を有していることが確認されている。本論に 先行する文献 5)ではこの拡大モーメント指標法を拡張する ことで,1軸対称鉄骨内蔵 SRC 長柱が強軸曲げを受ける場 合の耐力評価を行った。本論もこれに続き,同法を用いた弱 軸曲げ耐力評価を試みる。

拡大モーメント指標法では部材の曲げ耐力 M_d が,存在 軸力 Nに対応した全塑性モーメント $M_o(N)$ を,拡大モー メント指標 μ で除した値として求められる。

$$M_d = M_o(N)/\mu \tag{4}$$

文献9)では拡大モーメント指標µを,存在軸力,材料特性,断面性能,材長等の陽な関数として示している。本論では,式(4)中の*M₀(N)*の値に2.3節の手法によって導かれた全塑性モーメントの近似解を代入することで,図 -4に示す T 形鉄骨内蔵の1軸対称断面 SRC 長柱の弱軸曲 げ耐力評価を行った。

図-16は上記の耐力評価法と3章の実験結果および 4章の数値解析結果の比較を示す。縦軸は作用荷重と降 伏軸力の比nを,横軸は材端モーメントと弱軸曲げの基 準強度の比 m_y を表す。図中の細実線は全塑性理論解(降 伏曲線),太実線は今回提案した耐力評価法,破線は数 値解を示す。また、 \bullet と \odot は材長 120cm と 240cm の試 験体の実験値を示す。提案式と実験値および数値解の対 応は概ね良好である。また、提案式は実験結果および数 値解に対しておおよその場合安全側の値を与える。

7. 結論

非対称断面鉄骨を内蔵する SRC 長柱の弱軸曲げ対称 偏心圧縮実験とそれに対応する数値解析を行うととも に,誘導した耐力評価法との比較から以下の結論を得た。

- 1) 偏心圧縮実験において, 所定の偏心量は正しく与えら れた。
- 2) 実験結果と数値解析の対応は良好である。
- 1 軸対称 SRC 断面の弱軸曲げに関する降伏曲線は、
 中立軸の傾きを一義的に仮定することで近似できる。
- 4) 導いた耐力評価法と実験結果および数値解析の対応 は良好であり、ほぼ安全側の結果を示した。

謝辞

本研究は 2010~2012 年度日本学術振興会 科学研究 費 基盤研究(C)「非対称鉄骨を内蔵する鉄骨鉄筋コン クリート長柱の耐力評価 研究課題番号:22560577」(研 究代表者:柴田道生)の一部として行われた。また、コ ンクリートの打設に関して便宜を賜ったタイコーKK 藤 木英晴氏・入澤享氏・濱田秀敏氏に厚く感謝します。

参考文献

- 日本建築学会:鉄骨鉄筋コンクリート構造計算規準, 2001
- 柴田道生:非対称断面 Hybrid 長柱の力学性状,日本 建築学会構造系論文集,No.656, pp.1935-1940, 2010.10.
- 松田聖一・筒井茂行・馬場望・西村泰志: T 字形鉄骨 を内蔵する SRC 柱の曲げ破壊性状,日本建築学会近 畿支部研究報告集, No.43, 2003.06
- 松田聖一・筒井茂行・馬場望・西村泰志: 圧縮力を受けるT字形鉄骨を内蔵するSRC柱の曲げ破壊性状, 日本建築学会近畿支部研究報告集, No.44, 2004.06
- 5) 柴田道生・林 和宏: 非対称鉄骨を内蔵した SRC 長 柱の強軸曲げ偏心圧縮実験, コンクリート工学年次 論文集, Vol.32, No.3, pp.139-144, 2010.06
- 若林 實・吉田 望:細長い合成柱の設計式,日本 建築学会論文報告集, No.278, pp.27-36, 1979.04.
- 柴田道生:SRC 梁-柱の耐力,構造工学論文集,日本建築学会,Vol.40B, 1994.3, pp.359-366.
- 藤永 隆・津田恵吾・松井千秋:種々の形状の鉄骨を 内蔵する SRC 長柱の累加耐力,日本建築学会構造系 論文集,No.531, pp.173-179,2000.05.
- 9) 柴田道生:2 軸曲げを受ける SRC 長柱の耐力予測, 日本建築学会構造系論文集, No.539, pp.159-165, 2001.01