論文 実験データベースを用いた RC 柱部材の終局強度算定式の精度検証

荒川 裕彦*1・谷 昌典*2・藤永 隆*3・孫 玉平*4

要旨:曲げせん断実験を行った 628 体の鉄筋コンクリート柱に関する実験データベースを作成して,それに 基づき,既往の曲げ終局耐力式及びせん断終局耐力式の精度の検証を行った。その結果,曲げ破壊を起こし た試験体に対しては NewRC 応力ブロックを用いた計算法が,せん断破壊を起こした試験体に対しては修正大 野・荒川式が高強度材料を使用した試験体に対しても実験結果を精度良く評価できることが明らかとなった。 さらに,両式を組み合わせることで,柱の曲げ及びせん断の破壊形式を比較的精度良く予測できることを明 らかにした。

キーワード:高強度材料, RC柱, データベース, 曲げ終局強度, せん断終局強度, 破壊形式

1. はじめに

近年,建築材料の高強度化が進み,圧縮強度が 100N/mm²を超えるような超高強度コンクリートや,降 伏強度が 1000N/mm²を超えるような超高強度鉄筋が実 用化されている。一般的に,このような高強度材料を用 いることによって,建物の高層化,耐久性や安全性の向 上,柱本数の減少や断面のスリム化による居住空間の自 由度の向上,などといった利点がある。

超高強度材料を RC 造建物に適切に利用するには,そ れを用いた部材の終局耐力を的確に評価する手法の確 立が不可欠である。一方,現行の設計規準や指針は,圧 縮強度 60 N/mm²までのコンクリートと SD490 級までの 鉄筋を対象としており,諸規準と指針に推奨されている 終局耐力の算定式の超高強度材料を用いた部材への拡 張性に関しては不明である。また,超高強度鉄筋を使用 した場合,主筋が降伏強度を発揮するとは限らず,現行 の「鉄筋コンクリート構造計算規準・同解説」に示され ている略算式のような,鉄筋の降伏を前提としている曲 げ耐力推定式では,計算結果が実際の耐力よりも大きな 値となってしまう恐れがある。

そこで、本論文は、高強度材料を使用した鉄筋コンク リート部材を含めて、現在推奨されている耐力推定式を どこまで適用することが可能であるか、高強度材料を用 いた部材に適用するときの問題点は何かを確認するこ とを目的として、既往の RC 柱部材の実験に関するデー タベースを作成し、実験結果に対する諸耐力推定式の予 測精度の検証を行うことを目的とする。

2. 実験データの概要

本研究で用いた実験データベースは、1983年から2009 年までに日本建築学会の学術講演梗概集と日本コンク リート工学協会の年次論文集に報告されたRC柱に関 する実験結果から、曲げせん断を受けて、破壊形式が明 記または判別できる試験体を収集した計628の試験体の 結果からなっている。1996年から2009年までのデータ に関する文献は付表-1にまとめて示すが、1983年から 1995年までのデータに関する文献については、文献1) にまとめられているので、本論では省略している。

表-1には実験変数の範囲を破壊形式別で示す。試験 体は、一辺の長さが 200mm 以上の矩形断面で、コンク リートの圧縮強度は 21N/mm²以上のもので、載荷形式は 逆対称変形を与える方法と、片持柱の形式の 2 通りであ る。なお、鋼管によって補強されたもの、繊維シート巻 き付け等で補強したもの、金属製の繊維等を混入したコ ンクリートを使用しているもの及び外殻プレキャスト 工法のものについては、対象から除外した。これらを除 外したのは、既存の耐力式の多くはそのまま適用できな いためである。また、付着破壊した試験体は、検討対象 としておりません。

破壊形式は、文献中に記載されている試験体について は、原著者の判断に従い、文献中に破壊形式が記載され ていなかった試験体計 176 体については、以下のルール に従って破壊形式を判別した。

 原文中に曲げ終局耐力の計算値が記載されているものは、実験での最大耐力が曲げ終局耐力の計算値の 95%を下回ったもの、もしくは、実験での最大耐力

*1 神戸大学大学院 工学研究科建築学専攻 大学院生 (正会員) *2 神戸大学大学院 工学研究科建築学専攻 助教 博士(工学) (正会員) *3 神戸大学 都市安全研究センター 准教授 博士(工学) (正会員) *4 神戸大学大学院 工学研究科建築学専攻 教授 工博 (正会員) が曲げ降伏耐力の計算値を下回った場合,「せん断 破壊」と判断した。また、原文中に曲げ耐力の計算 値が記載されず、耐力時部材角が RC 造建物の耐震 診断基準に示す、せん断破壊部材の耐力時部材角で ある 1/250rad より小さい場合,「せん断破壊」と判 断した。このような試験体は計 32 体あった。

- 2) せん断破壊と判断したもの以外で、ひび割れ性状や 履歴性状に基づき、せん断ひび割れの進展による急 激な耐力低下が伴い、最終的にせん断破壊したと判 断できる場合、「曲げ降伏後せん断破壊」と判断し た。このような試験体は合計 41 体あった。
- 3) ほか103体の試験体は、「曲げ破壊」と判断した。

図-1に,(a)コンクリート強度,(b)主筋降伏強度,(c) せん断補強筋降伏強度,(d)軸力比,(e)せん断補強筋比, (f)せん断スパン比について,せん断破壊および曲げ破壊 した試験体の分布状況を示す。曲げ降伏後のせん断破壊 と判断されたものは,曲げ破壊試験体に含めている。

図-1より分かるように、コンクリート強度について は、60N/mm²以下の試験体が多いが、それ以上の超高強 度コンクリートを用いた試験体は数多く存在しており、 コンクリート強度が高いものの多くは曲げ破壊したと される試験体である。主筋の降伏強度については、200 ~800N/mm²の範囲に多くの試験体が分布しており、強 度が高いほどせん断破壊した試験体の割合も高くなる

傾向が見られる。帯筋の降伏強度については、幅広く試 験体が分布しており,破壊形式に及ぼす影響が明確に見 られない。超高強度補強筋を用いた試験体にもせん断破 壊したものが多く見られたが、それはそれらの試験体の 多くはせん断補強筋比が小さくせん断補強筋が柱の耐 力時に降伏しなかったためと考えられる。軸力比につい ては0.3~0.4程度の柱が多く、軸力比が低い試験体のほ うがせん断破壊した割合が大きい。せん断補強筋比につ いては 1.2%以下のものが多く、せん断補強筋比が小さ いほどせん断破壊しやすいことが分かる。一方、せん断 補強筋比が 1.2%よりも大きい試験体にはせん断破壊し たものも数体報告されているが、それらの試験体はいず れも片振りの繰返し載荷を受けたもので、最大耐力時の 部材角は 1.0%以上と大きく、ピーク点後の耐力低下も 比較的緩やかなものである。せん断スパン比については, せん断スパン比が 2.5 以上の領域ではせん断破壊をした ものがなく、せん断スパン比が 1.0 のものはほとんどせ ん断破壊をした。

3. 曲げ強度算定式の精度の検証

鉄筋コンクリート柱の曲げ終局強度算定式は,現在多 数提案されているが,本論では以下に挙げる3つの曲げ 終局強度算定式についての精度の検証を,曲げ破壊した 458 体のうち,変動軸力を作用させたものを除いた 403

破壊形式	試験体数	コンクリート	軸力比	せん断	主筋		帯筋	
		強度(N/mm²)		スパン比	強度(N/mm ²)	主筋比(%)	強度(N/mm ²)	帯筋比(%)
曲げ	458	21.4~193	-0.11~0.91	1.00~2.84	297~1448	0.88~5.69	223~1773	0.07~3.55
せん断	170	21.7~193	-0.15~0.69	1.00~2.00	314~1002	0.94~4.71	209~1720	0~1.93

表-1 実験変数の範囲

-188-

体を用いて行う。

精度検証の対象となる曲げ終局強度の算定式は,超高 強度コンクリートをも対象にできる NewRC 等価応力ブ ロックを用いた算定式(以下 NewRC 式)²⁾,日本建築学 会「建築耐震設計における保有水平耐力と変形性能」に 示されている曲げ終局強度式³⁾で,柱の中段筋を無視し たもの(以下 AIJ 略算式 1)と中段筋を考慮したもの(以 下 AIJ 略算式 2)の3つである。これら3つの式の詳細 については関連文献を参照されたい。

図-2 に実験曲げ耐力を曲げ終局耐力の計算値で除した値(以下耐力比と称す)のヒストグラムを示す。耐力比の平均値は3式とも1.0より大きく,安全側の評価をする式となっている。最も標準偏差が小さいのは NewRC

式で,以下 AIJ 略算式 1, AIJ 略算式 2 の順となった。

図-3 には、コンクリート強度、柱の軸力比及び主筋 降伏強度が計算耐力の精度に及ぼす影響を示す。AIJ 略 算式に基づく耐力比が 2.0 を超えるケースもあるが、図 中には 2.0 までを示す。コンクリート強度の影響につい ては、NewRC 式による計算値はコンクリート強度の大小 に関わらず、安定して柱の耐力を安全側に評価できてい る。一方 AIJ 略算式による計算値は、コンクリート強度 が高くなるほど実験値を危険側に評価する傾向が見ら れる。軸力比については、NewRC 式による計算値は特に 影響が見られていないが AIJ 略算式による計算値は、軸 力比が 0.3~0.4 程度付近で危険側に評価するケースが増 えたり、低軸力領域と高軸力領域では逆に過度に安全側

図-3 各パラメータ別の曲げ耐力比の分布

に評価したりする傾向が見られる。主筋降伏強度の影響 については、NewRC 式による計算値でも、700 N/mm² 以上の超高強度主筋を用いた柱に対して 20%過大評価 するケースが散見された。これは、超高強度主筋を用い た場合は、付着応力が高くなり、主筋は普通強度主筋よ りもすべりやすくなり、曲げ強度の算定時によく用いら れる"平面保持の仮定"が成立しなくなることが考えら れるのに対して、NewRC 式等の現行の算定式には、そ れが考慮されていないためと思われる。

なお,曲げ耐力の耐力比が極端に低い数体の試験体は, いずれもアンボンドの高張力鋼棒を主筋に用いたもの で,それらの試験体を除いて図-2に示すヒストグラム に記載した平均値や標準偏差の算定を行った。

4. せん断終局強度算定式の精度の検証

RC 柱のせん断終局強度算定式については、実験式や 理論式が多く提案されているが,本研究では以下に挙げ る5つのせん断強度式についての精度の検証に、せん断 破壊を起こしたとされる 170 体のうち, 全ての既往式に 要求されるデータがそろえなかった 12 体を除いた 158 体の実験結果を用いた。検証対象のせん断式は, せん断 強度の算定式として広く用いられている修正大野・荒川 式⁴⁾,「鉄筋コンクリート造建物の終局強度型設計指針」 で推奨されている A 法と B 法⁵⁾, NewRC せん断 WG の 提案式その1とその2⁶(以下 NewRC 式と呼ぶ)である。 ただし終局指針の A 法については、コンクリートの強 度低減係数をそのまま用いた場合, コンクリート強度が 非常に高い試験体のせん断強度の算定ができなくなる ため, Nielsen が提案している強度低減係数⁷⁾を用いて, 修正した式(以下修正 A 法と呼ぶ)について検証を行 った。諸耐力式の詳細は表-2にまとめて示す。

図-4 にせん断耐力の実験値を計算値で除した耐力 比のヒストグラムを示す。図-4 より明らかなように、 B 法による計算値は実験値をやや過大評価しているの に対して、それ以外の式による計算値は実験値を安全側 に評価している。最もばらつきの小さいのは修正大野・ 荒川式で、以下 NewRC 式 1、NewRC 式 2 と続く。

図-5 には材料強度が耐力算定式の精度に及ぼす影響を、ばらつきの小さい修正大野・荒川式と、比較的精度の良い NewRC 式 2 について示す。図-5 より修正大野・荒川式の精度は材料強度の影響をほとんど受けないことがうかがえる。このことは、修正大野・荒川式は超高強度材料を用いた RC 柱部材の終局せん断強度の予測にも適用できることを示唆している。一方、NewRC 式 2 による計算値は、コンクリート強度が 60 N/mm²以下の試験体や超高強度主筋を用いた試験体には、過大に評価するケースが見られている。

図-4 せん断耐力比のヒストグラム

5.破壊形式の予測精度

精度検証を行った曲げ強度算定式とせん断強度算定 式の組み合わせで破壊形式がどの程度の精度で予測で きるかについて検討を行う。

図-6 にせん断耐力の計算値 Q_{su} を曲げ耐力の計算値 Q_{mu} で除した値を横軸にとり,実験値を曲げ耐力の計算 値で除した値を縦軸にとった結果を示す。横軸が 1.0 を 下回る領域はせん断破壊領域, 1.0 より大きい領域は曲 げ破壊領域と見ることができる。曲げ耐力の算定には NewRC 式, せん断耐力の算定には修正大野・荒川式を用

表-2	せん断強度式	一覧	(SI	単位)
-----	--------	----	-----	-----

	公 2 ビル町国及	20 元 (01 十四/				
修正大野・荒川式		日本建築学会終局指針式Bi	法			
$Q = \begin{cases} k & k \\ 0.115 (c \sigma_B) \end{cases}$	$(+17.6)$ + 0.85 $\sqrt{p \sigma}$ + 0.1 σ bi $k = -0.82 p^{-0.23}$	$Q_u = Q_t + Q_a \qquad Q_t = bj_t p_u \sigma_{hy} \cot \phi \qquad Q_a = \alpha (1 - \beta) b D v_c \sigma_B / 2$				
$\mathcal{Q}_u = \begin{bmatrix} \kappa_u \kappa_p & a/D + \end{bmatrix}$	$0.12 \qquad \qquad$	$\beta = (1 + \cot^2 \phi) p_w \sigma_{hy} / v_c \sigma_g \qquad v = (2a / D + 1) / 4 \qquad \cot \phi = 1.0$				
NewRC せん断 WG 打	是案式1	NewRC せん断 WG 提案式 2				
$Q = bj_t p_w \sigma_{wy} \cot \phi + \alpha$	$(1-\beta)bDv_c\sigma_B$ $Q \leq bj_iv_o\sigma_B/2$ $\sigma_{wy} \leq 125\sqrt{v_o\sigma_B}$	$Q = bj_t p_w \sigma_{wy} + \alpha (\gamma / \alpha - \beta) bD$	$Q = bj_{t}p_{w}\sigma_{wy} + \alpha (\gamma/\alpha - \beta)bDv_{c}\sigma_{B} Q \leq (bj_{t}v_{c}\sigma_{B}/2)\gamma/\alpha$			
$\beta = (1 + \cot^2 \phi) p_w \sigma_{wy} /$	$v_c \sigma_B v = 1.7(1+2n)\sigma_B^{-1/3} \le 1 \cot \phi = \min(A, B, C) \ge 1$	$\sigma_{wy} \leq 125 \sqrt{v_c \sigma_B} p_w \geq 0.03 v$	$\sigma_{\rm wy} \leq 125 \sqrt{\nu_c \sigma_{\rm B}} p_{\rm w} \geq 0.03 \nu_c \sigma_{\rm B} / \sigma_{\rm wy} \gamma = \alpha n > 0.5 - 2 \Phi \mathcal{O} \succeq \ref{eq:powerset}$			
$A = 2.0 - 3n \qquad B =$	$j_{i}/(2\alpha D) \qquad C = \sqrt{V_{o}\sigma_{B}/(p_{w}\sigma_{wy}) - 1.0}$	$\gamma = \left\{ \sqrt{4(n+2\Phi)(1-n-2\Phi)} + (n+2\Phi)(1-n-2\Phi) + (n+2\Phi)(1-n-2\Phi)(1-n-2\Phi)(1-n-2\Phi) + (n+2\Phi)(1-n-2\Phi)(1-n-2\Phi) + (n+2\Phi)(1-2\Phi)(1-n-2\Phi)$	$\gamma = \{\sqrt{4(n+2\Phi)(1-n-2\Phi)+(L/D)^2} - L/D\}/2 n \leq 0.5 - 2\Phi O \geq 3$			
日本建築学会終局	$Q_a = Q_t + Q_a$ $Q_t = bj_t p_w \sigma_{hy} \cot \phi$ $Q_a = \alpha (1 - \beta) b D v_c \sigma$	$\beta_B/2 \qquad \beta = (1 + \cot^2 \phi) p_w \sigma_{hy} / v_c \sigma_{hy}$	$\gamma^{2} \qquad \beta = \left(1 + \cot^{2} \phi\right) p_{w} \sigma_{ky} / \nu_{c} \sigma_{B}$			
指針式 A 法修正	$v = 0.7 - \sigma_B / 200 \sigma_B < 40 v = 0.5 40 < \sigma_B < 50 v = 1.5$	$D_{c}\sigma_{B}^{0.34}$ 50< σ_{B}				
k _u : 断面せい寸法)	こよる補正係数 $_{c}\sigma_{B}$: コンクリート圧縮強度 a	/D:せん断スパン比 p _w :せ	たん断補強筋比 p_t : 引張鉄筋比 σ_{wy} :			
せん断補強筋降伏	強度 σ_0 : 平均軸応力度 b : 断面幅 D : 断面せ	い d:有効せい j:応力中	心間距離 j_t : 主筋中心間距離 (NewRC			
式については塑性	重心間距離) ν:コンクリート有効強度係数 η -	$h:$ 無次元化軸力比 ϕ : 主約	筋係数($=p_t \sigma_y \sigma_B$) σ_y : 主筋降伏強度			
$\alpha : \alpha = \{\sqrt{1 + (L/D)}\}$	$(2^{2} - L/D)/2$					
2 1.8 1.6 一型1.4 減、1.2 1.8 1.6 一型1.4 減、1.2 1.8 1.6 減、1.2 一型2 0.8 0 0 40 コング	2 1.8 1.6 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.9 1	2 18 18 16 14 14 12 14 14 12 14 14 12 14 12 14 14 12 14 14 12 14 12 14 12 14 12 14 10 14 14 12 14 10 18 16 16 18 16 16 18 16 18 18 18 18 18 18 18 18 18 18	0 500 1000 1500 主筋降伏強度 (N/mm ²)			
1.6 単 1.4 本 1.2 1 盤 0.8 0.4 0.4 0.2 0 0 0 0	1.6	1.6 二 二 二 二 二 二 二 二 二 二 二 二 二				
0 40 コンク	80 120 160 200 0 500 1 リート圧縮強度 (N/mm ²) せん断補強筋間	000 1500 2000 条伏強度 (N/mm ²)	0 500 1000 1500 主筋降伏強度 (N/mm ²)			
	(h) Now					
(b) NewRC 式 2 図ー5 各パラメータ別のせん断耐力比の分布						
2.5 2 1.5 0.5 0	 (a) 曲げ破壊した試験体 	$ \begin{array}{c} 2 \\ 1.8 \\ 1.6 \\1 \\1 \\ 0 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0 \\ 0.5 \\ (b) \pm \hbar \mathbb{E} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	図ー6 組合せによ	: る耐力推定精度				

いた。これら二つの算定式を選択したのは、それぞれ各 種耐力を最も良い精度で評価できたためである。**図-**

6(a)は曲げ破壊したと判断された試験体をプロットした もので,図-6(b)はせん断破壊したと判断された試験体

1996	荒木康隆ら:pp.1-, 金川基ら:pp.5-, 内田健一郎ら:pp.9-, 加藤武彦ら:pp.157-, 村田耕司ら:pp.167-, 竹中啓之ら:pp.171-, 但木幸男ら:
	pp.175-,廣橋恵美ら:pp.237-,勝倉靖ら:pp.295-,神野靖夫ら:pp.335-,若田目宏ら:pp.747,中本直希ら:pp.777,堀江啓ら:pp.805-,
1997	金杉英輝ら:pp.1-, 宇和田満之ら:pp.3-, 大山博ら:pp.5-, 柴田正隆ら:pp.7-, 高見信嗣ら:pp.25-, 中澤淳ら:pp.33-, 小室努ら:pp.37-, 藤
	田将輝ら:pp.65-, 小杉一正ら:pp.69-, 青木洋一ら:pp.97-, 塩川真ら:pp.141-:pp.681-, 今井和正ら,
1998	中澤淳ら:pp.337-, 山下祐司ら:pp.339-, 伊藤一隆ら:pp.377-, 鈴木敏夫ら:pp.381-, 山口雄二ら:pp.679-
1999	森直哉ら:pp.793-, 藤田将輝ら:pp.797-, 熊澤敬輔ら:pp.839-, 藤本純一ら:pp.845-
2000	村田義行ら:pp.103-, 山内茂一ら:pp.191-, 松本至ら:pp.195-, 黒瀬行信ら:pp.607-
2001	小坂英夫ら:pp.45-,山内茂一ら:pp.399-,松本智夫ら:pp.405-,丸太誠ら:pp.419-,鄭文淑ら:pp.451-,鈴木英之ら:pp.481-,前田博之ら:
	pp.527-
2002	井ノ上一博ら : pp.1-, 金東範ら : pp.341-, 中谷誠ら : pp.343-, 仁科誠治ら : pp.373-, 小室努ら : pp.409-, 堀伸輔ら : pp.415-, 鹿野仁史ら : pp.419-,
	宮脇毅ら:pp.431-, 鈴木英之ら:pp.443-
2003	奥田将人ら:pp.7-, 中村陽介ら:pp.129-, 半田士昌ら:pp.131-, 柏瀬孝子ら:pp.141-, 鹿野仁史ら:pp.145-, 高森直樹ら:pp.147-, 渡辺英義
	ら:pp.151-, 羽鳥敏明ら:pp.155-, 鈴木学ら:pp.197-, 岡田亨ら:pp.221-, 小林正和ら:pp.249-
2004	鈴木紀雄ら:pp.403-, 犬飼瑞郎ら:pp.407-, 高稲宜和ら:pp.427-, 岸本一蔵ら:pp.457-, 松島正樹ら:pp.465-, 奥本拓也ら:pp.473-, 羽鳥敏
	明ら:pp.477-, 孫玉平ら:pp.485-, 岩岡信一ら:pp.491-, 森本敏幸ら:pp.493-
2005	新田兼也ら:pp.145-,高濱健ら:pp.161-,金子貴司ら:pp.167-,杉本訓祥ら:pp.179-,松島正樹ら:pp.181-
2006	松本智夫ら:pp.363- 2007 林和也ら:pp.287-,
2008	鈴木紀雄ら:pp.525-, 丸太誠ら:pp.595-, 山本雄亮ら:pp.603-, 遠藤芳雄ら:pp.611-, 増田安彦ら:pp.755-
2009	佐藤幸博ら:pp.233-, 塩屋晋一ら:pp.259-, 橘高将義ら:pp.287-, 傳野悟史ら:pp.507-

付表-1 データベースに用いた参考文献一覧 AIJ 梗概集

をプロットしたものである。図-6(a)でせん断破壊領域 に曲げ破壊したとされる試験体は80体あり、うち40体 は曲げ降伏後にせん断破壊を起こした試験体で、純粋な 曲げ破壊を起こした試験体は 40 体,曲げ破壊した試験 体に占める割合は約10%である。一方,図-6(b)で曲げ 破壊領域にせん断破壊したとされる試験体が 10 体存在 しており, せん断破壊した試験体に占める割合はわずか 約6%となっている。つまり, NewRC 曲げ式による曲げ 耐力と修正大野・荒川式を組み合わせれば、高強度材料 を用いた RC 柱の破壊形式を 6~10%以内の誤差で判別 できることがわかる。なお、曲げ耐力の算定に NewRC 式, せん断耐力の算定に NewRC 式 2 を用いた場合, せ ん断破壊領域に曲げ破壊した試験体は 49 体で、うち曲 げ降伏後のせん断破壊した試験体 33 体を除くと、純粋 に曲げ破壊した試験体は 16 体となり、曲げ破壊した試 験体に占める割合は約4%であるが、曲げ破壊領域にせ ん断破壊したとされる試験体は 25 体存在しており、せ ん断破壊した試験体に占める割合は約 16%となってお り、せん断破壊柱の判別率がやや悪い。

6.まとめ

曲げせん断実験を行った RC 柱の実験結果を用いて, 実験結果のデータベースを作成し,既往の曲げ終局耐力 式及びせん断終局耐力式の精度の検証を行った。その結 果,曲げ破壊した試験体に対しては NewRC 式を,せん 断破壊したとされる試験体に対しては修正大野・荒川式 を用いることによって,コンクリート強度が 193 N/mm² までの超高強度コンクリートを使用した RC 柱の終局耐 力を、実験パラメータに左右されることなく、精度良く 評価できることが明らかとなった。さらに、二つの式を 組み合わせることによって、高強度 RC 柱の曲げ破壊及 びせん断破壊の破壊形式を 6~10%以内の誤差で的確に 予測することが可能であることが明らかとなった。

参考文献

- Sun, Y., Sakino, K. and Yoshioka, T.: Flexural Behavior of High-Strength RC Columns Confined by Rectilinear Reinforcement, 日本建築学会構造系論文集, 第 486 号, pp.95-106, 1996.8
- 日本建築学会:鉄筋コンクリート造建物の耐震性能 評価指針(案)・同解説, p.94, 2004
- 日本建築学会:建築耐震設計における保有水平耐力 と変形性能, pp.396-397, 1990
- 4) 広沢雅也ら:軸力を受ける鉄筋コンクリート部材の 強度とねばり、日本建築学会学術講演梗概集, pp.817-818, 1971.11
- 5) 日本建築学会:鉄筋コンクリート造建物の終局強度 型設計指針, pp.105-120, 1990.1
- 6) 倉本洋ら:柱部材に対する NewRC せん断強度式の 耐力予測精度,日本建築学会学術講演梗概集, pp.705-706, 1993.9
- M.P.Nielsen : Limit Analysis and Concrete Plasticity Second Edition, CRC Press, pp.397-399, 1999