論文 RC 造有孔梁のせん断伝達機構に関する実験研究

平瀬 智樹*1・日比野 陽*2・篠原 保二*3・林 靜雄*4

要旨:本研究は,RC造有孔梁のせん断伝達機構を明らかにする目的で行った。力の流れが単純な孔際あばら 筋のない場合において,孔径比と補強筋角度を変動要因とした実験を行い,せん断強度が孔径比に反比例し, 補強筋角度の正弦に比例することを明らかにした。実験結果から,開孔斜め上下の部分を小さな梁とみなし, この梁にトラス・アーチ理論を適用することにより,せん断強度評価式を提案した。この提案式は,金物で 補強した場合においても精度よく評価でき,特に孔周り無補強の場合において既往の評価式より精度が向上 した。

キーワード:有孔梁, せん断強度, 孔径, 補強筋角度, トラス・アーチ, 金物

1. 背景・目的

鉄筋コンクリート造建物では,梁に設備配管用の貫通 孔を設けることが多々ある。孔を設けることによるせん 断強度の低下を防ぐための補強方法として,現在では孔 周りに簡易金物を配置することが一般的となっている。

設計では,金物で補強した場合のせん断強度を推定す ることが必要となるが,「鉄筋コンクリート構造計算規 準・同解説¹⁾」(以下,規準),「鉄筋コンクリート造建物 の靭性保証型耐震設計指針・同解説²⁾」(以下,指針)と もに,金物を適用範囲としておらず,各々の金物につい て検討が必要であるとしている。既往の研究では規準式 を準用している場合が多いが,様々な形状の金物をどの 程度の精度で評価できるかは明らかになっていない。

本研究では,まず力の流れが単純な孔周り無補強の場 合について,孔径によるせん断伝達機構の変化を明らか にする。次に補強筋の角度がせん断補強効果に与える影 響を明らかにすることから,力の流れが複雑な金物を用 いた場合へとアプローチする。そして,金物を用いた場 合のせん断強度の評価法を提案することを目的とする。

2. 実験概要

2.1 試験体概要

試験体形状を図 - 1, 試験体一覧を表 - 1, コンクリートの材料特性を表 - 2 に, 鉄筋の材料特性を表 - 3 に示す。全7体を計画し,梁幅 b=200mm,梁せい D=300mm, スパン L=780mm,主筋 3-D16(USD980),あばら筋 3-UD10(UBD785)@70とした。No.3~5は,付着割裂破壊 を防ぐため,各あばら筋の中間と孔の上下に D10(SD295A)の割裂補強筋を配置した。いずれの試験体 も,既往式¹⁾⁻³⁾により,曲げ降伏に先行して開孔部せん 断破壊となるように設計した。

*1 北陸電力(株) 工修 (正会員)

*2 東京工業大学 応用セラミックス研究所セキュアマテリアル研究センター助教 博士(工学) (正会員)

*3 東京工業大学 応用セラミックス研究所建築物理研究センター准教授 工博 (正会員)

*4 東京工業大学 応用セラミックス研究所セキュアマテリアル研究センター教授 工博 (正会員)

2.2 変動要因

No.1~4 は,孔周り無補強の場合に孔径がせん断強度 に及ぼす影響を確認するため,孔径比を変動要因とした。 せん断強度がコンクリートのみで決定するように,開孔 中心を通る 45 度の直線と交わらないようにあばら筋を 配置した(規準でいう c の範囲にあばら筋がないように した)。

No.5~7 は,開孔上下の補強筋の角度が補強効果に及 ぼす影響を確認するため,上下補強筋の角度を変動要因 とした。設計段階で林らの研究³⁾による開孔部接線ひび 割れ(図-1 中の赤線)を想定し,そのひび割れを横切 る断面積が同程度となるように上下補強筋を配置した。 D10の水平筋は上下補強筋の固定用であり,せん断性状 に影響を及ぼさないように折り曲げ定着を設けなかっ た(No.5のD13は折り曲げ定着とした)。

2.3 加力方法

実験は大野式逆対称加力で行った。正負繰り返し載荷 では,反対方向のひび割れの影響を受け,力の流れを把 握し難いと考えられるので,一方向単調載荷とした。部 材角 R=1/800,1/400,1/160,1/80 でそれぞれ載荷を一時 停止してひび割れの記録を行い,1/40 を超えたところで 除荷した。

3. 実験結果

3.1 破壊性状

最大耐力時のひび割れを図 - 2 に示す。いずれの試験 体も,R=1/800 で端部曲げひび割れ,開孔部対角ひび割 れ,R=1/400 で曲げせん断ひび割れの順に発生した(た だし,No.1 のみ曲げせん断ひび割れが発生しなかった)。 孔径の大きい No.1,2 は,R=1/160 で開孔部接線ひび割 れが発生した。また,開孔部上下に補強筋を配置した No.5~7 試験体は,配置しなかった No.3 に比べ,開孔部 ひび割れが分散する傾向にあった。全試験体,主筋は降 伏しておらず,開孔部ひび割れが拡大して最大耐力を迎 え,大きなせん断ずれが進んだことから,開孔部せん断 破壊と判断した。

3.2 孔径の影響

No.1 ~ No.4 の荷重変形曲線を図 - 3 に, 孔径比 H/D と せん断強度 Q_{max}の関係を図 - 4 に示す。孔径が大きいほ ど小さな変形角でせん断強度に達し, せん断強度は低く なった。孔径比とせん断強度は線形の関係にあり, 孔周 り無補強の場合は, 規準式, 指針式による計算値の 2 倍 以上のせん断強度となることがわかる。(なお, No.1 は, R=1/316 で一旦ピークを迎え荷重が低下したが, その後 実験終了まで緩やかに上昇した。これは, 主筋のひずみ からダボ効果によるものと判断し, コンクリートで決定 したせん断耐力は R=1/316 時のものとした。)

表 - 1 試験体一覧

	試験体名	孔径比	孔径	想定したひび割れと 交わる上下補強筋				
No.		H/D	Н					
			mm					
1	A2	1/2	150					
2	A3	1/3	100					
3	A5	1/5	60					
4	A10	1/10	30					
5	T 0	1/5	60	0° -D13-2本(=253mm ²)				
6	T 45	1/5	60	45°-D10-2組(=285mm ²)				
7	T 90	1/5	60	90°-D10-2組(=285mm ²)				

表-2 コンクリートの材料特性

コンクリート 設計強度	圧縮強度	圧縮強度 時ひずみ	ヤング係数	割裂強度
$F_{\rm C}(\rm N/mm^2)$	_B (N/mm ²)	(µ)	$Ec(\times 10^4 N/mm^2)$	_T (N/mm ²)
27	29.4	1998	2.92	2.6

表-3 鉄筋の材料特性

	动心	種類	呼び名	降伏強度	降伏ひずみ	引張強度	伸び
	리이꼬			$_{v}(N/mm^{2})$	_γ (μ)	(N/mm^2)	(%)
-	主筋	UBD980	D16	1062*	6634	1116	6.3
	あばら筋	USD785	UD10	937*	5879	978	9.6
	割裂補強筋 水平筋 上下補強筋	SD295A	D10	385	2035	525	19.1
	上下補強筋		D13	332	1813	464	23.0
					*は0.2	%オフセッ	ト耐力

No.7 (R=1/49)

3.3 水平筋の影響

No.3,5の荷重変形曲線を図-5に示す。水平筋の有 無でせん断強度の値に差はないが,水平筋のある場合の 方が大きな変形角でせん断強度に達した。No.5には定着 のない水平筋 D10と,定着のある0°の上下補強筋 D13 の2種類を配置したが,定着の有無に関わらず水平筋は せん断強度に影響を及ぼさなかった。

3.4 補強筋の角度の影響

No.5~No.7の荷重変形曲線を図-6に,上下補強筋の 角度の正弦 sin とせん断強度Q_{max}の関係を図-7に 示す。3体とも1/100より大きい変形角でせん断強度を 迎えた。材軸に対する上下補強筋の角度が大きくなる ほどせん断強度は大きくなり,sin に比例することがわ かる。これは,規準のsin + cos に比例するという記 述とは異なる結果となった。

4. せん断伝達機構

4.1 部分梁のアーチ機構

指針では, 孔際をあばら筋や斜め筋で補強した場合の せん断伝達機構を, トラス機構によるものとして理論的 な評価法を示している。しかし,金物で補強した場合は, 金物の形状が様々であること,金物の定着部が明確でな いことなどから, トラス機構による伝達機構は説明が困 難である。

指針では,本実験のように孔周り無補強の場合のトラ ス機構を示していないが,孔際をあばら筋で補強した場 合(図-8(a))の考え方を適用すると図-8(b)のような トラス機構になると考えられる。ここで,孔の斜め上下 の部分を切り取って考えると,一般梁のアーチ機構に類 似していることに着目する(図-8(c))。また,この部分 の開孔部ひび割れは,一般梁のせん断ひび割れに類似し ている。以上のことから,孔の斜め上下の部分を切り取 った梁(以下,部分梁)に一般梁のアーチ機構の考え方 を適用し,せん断強度の評価を試みる。評価式は以下の ようになる。

$$Q_{a} = 2 {}_{0} {}_{B}b\frac{D'}{2}\tan$$
(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

右辺の係数2は,孔の上下で2つの部分梁が存在し,せん断強度がその和であることを意味する。スパンじについては,図-9に示すように,主筋軸と開孔部ひび割れ

の交点が,開孔中心から約45度の位置であるという実験結果から,45度線と梁上(下)端の交点までの水平距離 D/2とした。

実験値と式(1)による計算値の比 Q_{exp}/Q_a と孔径比 H/D の関係を図 - 10 に示す。式(1)により,孔周り無補強の 場合のせん断強度を精度よく評価できることがわかる。 4.2 部分梁のトラス機構

前節では孔周り無補強の場合について考えたが,本節 では孔周りをあばら筋や金物で補強した場合を考える。 前節でも述べたように,金物を配置した場合の力の流れ は非常に複雑であり,詳細に把握することは困難である。 ここでは,図-11のように,孔際あばら筋や金物を部分 梁に一定間隔に配筋されたあばら筋に置換し,その効果 をトラス機構として評価することを試みる。評価式は式 (1)とトラス機構の負担分の和であり,以下のようになる。

$$Q_{su1} = 2b[d' p_{o oy} \cot + \{ 0 - b - (1 + \cot^2) p_{o oy} \} \frac{D'}{2} \tan \} (2)$$

$$d' : 部分梁の有効せい(=D'-d_c)$$

$$d_c : かぶり厚$$

$$P_o oy : 開孔部ひび割れを横切る補強筋量$$

$$p_o oy = k \sum_i (\frac{a_i}{bL'} iy \sin i) \qquad (3)$$

$$(0 - b/2 \epsilon 2 \epsilon 2 \epsilon 2 \epsilon \epsilon b p_{o oy} = 0 - b/2 \epsilon \epsilon \epsilon \epsilon)$$

$$k : \Xi換係数(=0.55)$$

$$a_i : 補強筋の断面積$$

$$iy : 補強筋の降伏強度$$

$$i : 補強筋が材軸 \epsilon \epsilon \epsilon \epsilon f a \epsilon \epsilon \epsilon \sqrt{\frac{0 - b}{p_o oy} - 1}$$

$$(2 \epsilon 2 \epsilon 2 \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon)$$

開孔部ひび割れの定義を図 - 12 に示す。ひび割れは, 接線ひび割れを仮定し,開孔の上(下)から発生するも のとした。孔径の小さい場合は,対角ひび割れとなる傾 向にあるが,孔径が小さいことにより,接線ひび割れと しても影響が小さいと考えられるので,これを許容する。

3.4 節から,補強筋断面積のsin 成分のみがせん断強 度に影響すると考えられ,補強筋量にsin 成分を与えた。

置換係数 k は 式(2)に式(3)を代入して k について解き, 既往の研究データ³⁾⁻³⁵⁾のうち, 孔際あばら筋で補強した ものでかつ補強筋量の小さい(0<po, oy<0.06)もの42 体について k の値を求め, それらの平均値から0.55 とし た(図-13)。

4.3 精度検証

式(2)の精度検証を、本実験の試験体と既往の研究 3)~35)

の試験体計 236 体により行った。データの選定条件は以下の(1)~(7)である。

- (1) bD 400cm²である。
- (2) 単独の円形孔を有する。
- (3) 開孔位置がスパン中央でかつ材軸上である。

図 - 14 式(2)の精度

- (4) 一般部にあばら筋が配筋されている。
- (5) 逆対称加力である。
- (6) 補強方法が,あばら筋,水平筋,上下補強筋, 金物による。または,それらの組み合わせである。
- (7) 金物の角度が明確である(円形や複雑な形状で ない)。

式(2)による精度を図 - 14 に,規準式 Q_{su2} による精度 を図 - 15 に示す。どちらの式も精度良く評価でき,式(2) は実験値/計算値が1付近に,規準式は1より大きく分布 することがわかる。式(2) おいては,実際の建物におけ る配筋とは離れてはいるのもの,孔周り無補強の場合も 精度良く評価できる。また,金物を用いたものだけで比 較した場合,式(2)は平均値1.06,標準偏差0.18 であり, 規準式は平均値1.17,標準偏差0.20 であった。

5. まとめ

(1) 孔径比と補強筋の角度を変動要因とした有孔梁試 験体でせん断実験を行った。孔周り無補強の場合,せん 断強度は規準式,指針式の2倍以上となった。せん断強 度は,孔径比に反比例して低下し,補強筋断面積の正弦 成分に比例して増加することがわかった。また,定着の

有無に関わらず,水平筋はせん断強度に影響をあたえなかった。

(2) 実験結果より, せん断強度評価式の提案を行った。 これは,開孔斜め上下の部分を小さな梁とみなし, この 梁にトラス・アーチ理論を適用したものである。提案式 の精度は,規準式と比較して,金物で補強した場合については同程度であり,孔周り無補強の場合については大 きく向上した。

謝辞

高周波熱錬(株)の中村佳史氏には,本実験で主筋・ あばら筋として使用した高強度鉄筋を提供していただ きました。ここに深く感謝いたします。

参考文献

凡例

年次 : コンクリート工学年次講演会論文集 大会 : 日本建築学会大会学術講演梗概集 **支部:日本建築学会**支部研究報告集

- 日本建築学会:鉄筋コンクリート構造計算規準・ 同解説,2010
- 日本建築学会:鉄筋コンクリート造建物の靭性保 証型耐震設計指針・同解説, 1999
- 3) 林 靜雄ほか:鉄筋コンクリート有孔梁のせん断

伝達に関する実験研究,年次, Vol.12, No.2, pp.333-338, 1990.6

- 4) 有孔ばり研究委員会:鉄筋コンクリート有孔ばり
 に関する研究(その3),日本建築学会論文報告集,
 Vol.66, pp. 449-452, 1960.10
- 5) 村内 明ほか:鉄筋コンクリート有孔梁のせん断 補強に関する実験的研究(その1)~(その2), 大会, pp.1361-1364,1973.10
- 6) 東 洋一ほか:斜めワイヤーメッシュで補強した 鉄筋コンクリート造有孔梁の多数回繰り返し水平 加力実験(その1)~(その3),(その6),大会, (pp. 1495-1498,1981.9),(pp. 1763-1764,1983.9), (pp. 499-500,1985.10)
- 7) 黒正清治ほか:鉄筋コンクリート造有孔ばりの実験的研究(その3)~(その4),大会, pp. 1499-1502, 1981.9
- 8) 福知保長ほか:鉄筋リングで補強した鉄筋コンク リート造有孔梁のせん断実験,東海支部, pp. 121-124,1982.2
- 9) 福知保長ほか:トラス形鉄筋で補強した鉄筋コン クリート造有孔梁のせん断実験,東海支部, pp. 157-160,1983.2
- 10) 福知保長ほか:正方形鉄筋リングで補強した鉄筋 コンクリート造有孔梁の実験的研究,大会, pp. 1761-1762,1983.9
- 11) 市之瀬敏勝ほか: RC 有孔ばりの変形モードに関す る実験的研究,年次, Vol.5, pp. 469-472, 1983.4
- 12) 津村浩三ほか:鉄筋コンクリート有孔梁の弾塑性 挙動(その3),大会, pp. 241-242, 1988.10
- 13)津村浩三:鉄筋コンクリート有孔梁のせん断破壊
 に関する研究,日本建築学会構造系論文報告集, Vol.407, pp. 47-59,1990.1
- 14) 渡辺朋之ほか:高層鉄筋コンクリート造建物の耐 震性に関する研究(その4),大会, pp. 421-422, 1989.10
- 15)林 靜雄ほか:偏心閉口を有する鉄筋コンクリー
 ト梁の実験研究,年次,Vol. 14,No.2,pp. 227-232, 1992.5
- 16)林 靜雄ほか:ひび割れの抑制を考慮した鉄筋コンクリート造有孔梁のせん断補強,年次,Vol.24, No.2,pp.295-300,2002.6
- 17) 林 靜雄ほか:開孔を有する鉄筋コンクリート梁 のせん断性状に及ぼす補強方法の影響,年次, Vol. 32, No.2, pp. 235-240, 2010.6
- 18) 佐藤立美ほか:新形状の補強金物による鉄筋コン クリート有孔梁の開口補強に関する実験的研究

(その4),大会, pp. 925-926, 1994.9

- 19) 佐藤立美ほか:一筆書き簡易形状の高強度開口補
 強金物を使用した RC 有孔梁のせん断補強効果に
 関する研究,大会, pp. 69-70, 2003.9
- 20) 佐藤立美ほか:高強度補強金物を用いた RC 有孔梁 のせん断耐力に関する研究(その1)~(その3), 大会, (pp. 259-262, 2006.9), (pp.231-232, 2007.8)
- 21) 佐藤立美ほか: F_e=100N/mm² 級のコンクリートを 用いた RC 有孔梁の力学的特性に関する基礎的研 究,大会, pp. 229-230, 2007.8
- 22) 南 宏ーほか:13,000 級開孔補強筋を用いた RC 有 孔梁のせん断破壊性状(その1)~(その3),大
 会, pp. 935-940, 1994.9
- 23) 南 宏ーほか:高強度開孔補強筋を用いた RC 有孔
 梁のせん断破壊性状に関する実験的研究(その1)
 ~(その2),中国支部, pp. 13-20, 2000.3
- 24) 松崎育弘ほか: RC 有孔梁のせん断抵抗要素に関す る実験的研究, 大会, pp. 445-446, 1996.9
- 25) 松崎育弘ほか:高強度材料を用いた RC 有孔梁のせん断性状に関する実験研究(その1)~(その2), 大会, pp. 925-928, 1999.9
- 26) 松崎育弘ほか:高強度開口補強金物を用いた RC 有 孔梁のせん断性状に関する実験研究,大会, pp. 237-238,2002.8
- 27) 松崎育弘ほか:高強度開口補強金物を用いた大口
 径 RC 有孔梁のせん断性状に関する実験研究,大会,
 pp. 227-228, 2007.8
- 28) 三橋博巳ほか:鉄筋コンクリート造有孔梁に関す る実験的研究,大会, pp. 929-930, 1999.9
- 29) 三橋博巳ほか:鉄筋コンクリート造有孔梁の開孔 補強方法に関する研究(その1)~(その2),大 会, pp. 243-246, 2006.9
- 30) 三橋博巳ほか:開孔補強筋使用の RC 造有孔梁のせん断性状に関する実験研究(その1)~(その2), 大会, pp. 461-464, 2008.9
- 31) 武田 寛: RC 造有孔梁のせん断強度に関する実験 的研究,大会, pp. 89-90, 2005.9
- 32) 武田 寛: 有孔梁のせん断強度に関する実験的研 究,大会, pp. 253-254, 2006.9
- 33) 武田 寛:有孔梁上下部の補強効果に関する実験 的研究,大会, pp. 235-236, 2007.8
- 34) 武田 寛: 有孔梁のせん断強度に関する実験的研究,大会, pp. 465-466, 2008.9
- 35) 白井伸明ほか: RC 造有孔梁のせん断抵抗機構に関 する検討(その1)~(その2),大会, pp. 677-680, 2006.9