論文 PRC 造床スラブの長期性状に関する実験研究

山本 俊彦*1

要旨:鉄筋コンクリート造床スラブの長期性能を改善するため、施工性・経済性から PRC 構造が用いられる ことがある。PRC 構造ではひび割れを許容するため、その影響を明確にする目的で、曲げおよび乾燥収縮ひ び割れを生じる PRC 造床スラブの長期性状に関する実験を行った。実験の結果、コンクリートの乾燥収縮に 伴うひび割れの発生によって、早期にたわみの増大と固有振動数の低下を生じたが、RC 造床スラブ試験体に 対してその優位性を示した。また、実験結果から PRC 造床スラブの長期たわみの予測手法を検討した。 キーワード: PRC 構造、コンクリート造床スラブ、長期たわみ、ひび割れ、クリープ、乾燥収縮

1. はじめに

PRC 構造は、比較的大きなスパンの鉄筋コンクリー ト造床スラブの短期および長期的な性能を制御するた めに使用されている。しかし、PRC 構造はコンクリー トに引張応力を許容することから、曲げおよび乾燥収 縮に起因するひび割れの発生等によって剛性が低下す る可能性がある。剛性低下は、床スラブの長期たわみ の増大や振動における応答変位の増大につながり、そ の健全性が損なわれかねない。このため、曲げと乾燥 収縮によってひび割れが生じる場合を想定した PRC 造 床スラブの長期載荷実験を行い、長期的な特性の変化 を調べた。これまで、鉄筋コンクリート造スラブの長 期性状に関する実験は数多く行われ、長期性状の予測 手法¹⁻⁵⁾も提案されているが、合成スラブを含めて PRC 造スラブ ⁶⁻⁷⁾に関しては少なく長期特性を予測するため には、十分とは言えない。プレストレス構造では、い わゆる釣合荷重法によって短期、長期の性状が計算・ 予測されており、緊張材による軸方向応力の効果につ いては考慮されないのが一般的である。本研究では, 鉄筋コンクリート造スラブとの比較によって,その効 果についても検討した。

2. 実験概要

2.1 試験体

試験体は単純支持の一方向スラブとした。試験体を 図-1 および表-1 に示す。試験体スラブの幅は 600mm, 板厚 160mm, スパンを 4000mm, スパン/板厚比は 25 と した。引張鉄筋比 *p*_tは, 0.53%とした。また, 図-2 に, 試験体 S1 の PC 鋼材および普通鉄筋の重心位置を示す。 図中の h は, スラブ下端からの高さ位置を示す。PC 鋼材 は幅 600mm の中央に 1 本, 鉄筋は幅方向に等間隔に配 置した。S2 の PC 鋼材は, h=80 での直線配置, S3 は鉄 筋のみの配置である。

2.2 使用材料

コンクリートの特性を**表**-2 に、また鋼材の特性を**表** -3、4 に示す。材齢 28 日でのコンクリート圧縮強度は 27.9MPa であった。コンクリートの乾燥収縮ひずみ *ε*_{sh} は形状 600×600×160 mm 部材により、また圧縮クリー

封殿休	スパン	板厚	普通	PC 鋼材	荷重((kN/m)	載荷方法(kN/m)			
武歌评	(mm)	(mm)	鉄筋	本数,配置形状	プレストレス力(kN)	D.L.	L.L.	ステップ	同荷重	
S1	4000	160	6-D10	1-12.7φ,パラボラ(e=52mm)	111	2.26	4.71	6	0.785	
S2	4000	160	6-D10	1-12.7 ø,直線(e=0mm)	101	2.26	2.35	3	0.783	
S 3	4000	160	6-D10	-	-	2.26	2.35	3	0.783	

表-1 試験体一覧

D.L.(自重), L.L.(積載荷重)

*1 大同大学 工学部建築学科教授 工博 (正会員)

-475-

プ係数 φ_c は形状 100 $\phi \times 200$ mm による材齢 28 日~782 日間の値を示した。鉄筋は D10 で SD295 材,緊張材は 7 本より直径 12.7mm のアンボンド PC 鋼材を用いた。

表-2 コンクリートの強度特性等

圧縮	引張	曲げ	ヤング係数	ε_{sh}	φ_c
(MPa)	(MPa)	(MPa)	(GPa)	(μ)	
27.9	2.73	3.79	24.0	540	3.89

表-3 鉄筋の強度特性等

仅	降伏	引張	やが係数	伸び	
任	(MPa)	(MPa)	(GPa)	(%)	
D10	356	510	206	26.7	

表-4 緊張材の特性

亿	断面積	降伏荷重	引張荷重		
恎	(mm ²)	(kN)	(kN)		
12.7 ø	98.0	156	183		

2.3 プレストレス

プレストレスは,パラボラ配置で自重をキャンセル する S1 と,直線配置で軸方向力のみ加える S2 の 2 種類 とした。プレストレス有効率を 0.85 とした。

2.4 試験体の弾性的特性

表-5 に試験体の弾性的な性質を示す。非釣合荷重で のスラブ中央最大曲げ応力は、S1 で 3.68MPa である。 プレストレスによる軸方向力を考慮したこの位置での 縁引張応力は、S1、S2で約2.7MPaである。S3は、自重 に積載荷重を加えた縁引張応力は、 3.61MPa である。 荷重によるたわみは、自重で 1.54mm、自重を含めた全 荷重で 3.14~3.20mm である。固有振動数は、下式によ り計算し、全荷重時で 8.14Hz~10.0Hz となった。

$$f_n = \frac{\pi}{2l^2} \sqrt{\frac{E_c I_c}{\rho A}} \tag{1}$$

ここに: f_n –固有振動数(Hz); l–スパン長さ(mm); E_c – コンクリートヤング係数(N/mm²); I_c –スラブの断面2次 モーメント(N/mm⁴); ρ –荷重を含めた質量(N/mm³);

A-スラブの断面積(mm²)

2.5 実験条件・測定方法

材齢 28 日まで乾燥を防ぎシート養生し,型枠脱型後 プレストレスを与え,支点に設置した。同日表-1 に示 す載荷ステップによりコンクリートブロック@10.0kg を用いて等 分布載荷し,材齢 782 日まで持続した。除荷は材齢 782 日で載荷と逆ステップで行った。長期たわみの測定は 変位計により,固有振動数の測定は人体歩行や日常生 じる程度の振動を対象として,サンド バッグ(500g)をスラ ブ上 250mm から落下させ,自由振動を記録した。実験 は,周辺の環境の温湿度の変化を受ける実験室内で行 った。参考に図-3 に温湿度の変化を旬日の平均で示す。

図-3 温湿度の材齢による変化

3. 長期載荷実験の結果

3.1 載荷時の試験体のたわみ

載荷時のスラブのたわみを表-6 および図-4 に示す。 S2,S3 は、自重のたわみ測定が出来ないため、自重たわ み計算値 $\delta_c/0.85(1.54$ mm/0.85=1.81mm)を加算し、曲げ応 力と共に原点をずらして表した。自重たわみ計算でヤ ング係数を修正しているのは、初載荷であることと、載

表-6 載荷時および材齢 782 日の実測たわみ

試験体	載	荷時	材齢 782 日			
	$\delta_{28}(\mathrm{mm})$	$\delta_{28}/(\delta_c/0.85)$	$\delta_{782}(\mathrm{mm})$	$\delta_{782}\!/\!\delta_c$		
S 1	4.06	1.08	25.5	7.95		
S2	3.99	1.08	28.6	9.12		
S 3	6.41	1.74	33.8	10.8		

試驗休	荷重(kN/m)		スラブ縁応力 (MPa)			スラブ中央	たわみ δ_c (mm)	固有振動数 fcal(Hz)			
武歌评	W.L.	Ub.L.	曲げ σ_b	軸力 σ_0	合計 σ_{total}	D.L.	Ub.L.*	D.L.	W.L.		
S1	6.97	4.71	3.68	-0.983	2.70	1.54	3.20	14.3	8.14		
S2	4.61	4.61	3.61	-0.894	2.72	1.54	3.14	14.3	10.0		
S 3	4.61	4.61	3.61	- 3.61		1.54 3.14		14.3	10.0		

表-5 試験体の弾性的な性質

*Ub.L. (非釣合荷重: W.L. - プレストレスによる吊り上げ荷重), W.L.(作用荷重: D.L.+L.L.)

荷に時間がかかることにより,初期の変形の増大を考慮 したためである¹⁾。鉄筋コンクリート造スラブ試験体 S3 のたわみは,明瞭な曲げひび割れの発生により,計算 値 $\delta_c/0.85$ (3.69mm)に比して 1.74 倍となった。プレスト レス試験体 S1, S2 は,計算値 $\delta_c/0.85$ (S1=3.76mm, S2=3.69mm)よりやや大きなたわみを示したが,明瞭な ひび割れの発生は見られなかった。

3.2 長期たわみ

スラブの長期たわみを表-6 および図-5 に示す。長期 たわみは、初期材齢に急速に進行し、材齢 200 日以降に はやや進行速度が遅くなり併せて季節的な変動を伴っ て経過した。特に図-3 に示される周辺湿度の高い時期 には長期たわみは戻りが見られた。材齢 782 日での長期 たわみ δ_{782} はPC 鋼材がパラボラ配置のS1 が最も小さく、 鉄筋コンクリート造のS3 が最も大きい値を示し(25.5mm ~33.8mm)、弾性計算たわみ計算値 δ_c (S1=3.20mm, S2,S3=3.14mm)に対して 7.95~10.8 倍となった。

3.3 長期載荷終了後のたわみの戻り

長期載荷は材齢782日まで行い、除荷した。除荷時の

もどりたわみは δ_{782} を 0 とし,負で示した。たわみの戻 りを表-7 および図-6 に示す。S2 と S3 は,最後の除荷ス テップを直線で延長し自重によるたわみの戻りを外挿 し推定した。載荷時のたわみ δ_{28} との比は,1.13~1.40 と なり PRC スラブ試験体は,長期的に大きな剛性低下を 示した。材齢 28 日の載荷時に既にひび割れを生じた RC スラブ試験体 S3 は,戻りたわみ量は大きいが,長期的 にはそれほど大きな剛性低下は示さなかった。

表-7 除荷時のたわみの戻り

社時休	たわる	比		
武观平平	δ_{782r}	δ_{782r+}	$ \delta_{782r+} /\delta_{28}$	
S1	-5.35	-5.35	1.32	
S2	-2.85	-5.59	1.40	
S 3	-3.70	-7.24	1.13	

 δ_{782r} :除荷時のたわみの戻り量

 $\delta_{782r+}:\delta_{782r}$ に外挿による自重戻りたわみ量を加算

図-6 除荷時のたわみの戻り δ_{782r} と曲げ応力 σ_b の関係

3.4 試験体スラブのひび割れ

表-8 および図-7 にスラブの長期載荷終了時のひび 割れ状況を示す。ひび割れ幅は、いずれも0.3mm以下で あった。載荷時には S1, S2 には曲げひび割れを生じな かったが、長期的には多くのひび割れを生じた。引張 クリープ限度や内部鉄筋による乾燥収縮ひずみの拘束、 断面内の収縮の不均一な進行などにより、コンクリー トの引張強度以下の曲げ応力であっても、コンクリー

表-8 スラブの長期載荷終了時のひび割れ状況

試験体	本数	間隔(mm/本)	最大高さ h(mm)
S 1	10	184	60
S2	14	140	80
S 3	22	126	100

図-7 最終ひび割れ状況(縦線間隔 500mm)

トにひび割れが生じたと考えられる。ひび割れ間隔は 126mm~184mm, ひび割れの底面からの最大高さは S3 で 100mm であった。これは、クリープ係数を考慮した 修正ヤング係数による S3 の中立軸位置高さ h=97mm(弾 性計算値 h=125mm)と同程度であった。

3.5 スラブの固有振動数の変化

スラブの固有振動数は,図-8に示す方法で各材齢に亘 って測定した。スラブの固有振動数の変化を図-9および 表-9に示す。材齢28日での初載荷時の固有振動数は,

自重で14.9Hz~15.4Hz となり計算値に比して1.04~1.08 とやや高い値を示した。全荷重載荷時は、7.84Hz~10.3Hz となり計算値に比して 0.952~1.00 と同じかやや低い値 を示した。S3の固有振動数は、載荷時たわみから求めら れる静的な剛性低下率 0.57(動的剛性:0.57^{1/2}=0.75)に比し て、0.95 とほとんど低下を示さなかった。

固有振動数は、長期的に材齢初期に低下を示しその後

図-9 固有振動数の材齢に伴う変化

図-8 固有振動数の測定方法

たわみの増大速度が変化する材齢 200 日以降安定した値 を示した。782 日の最終材齢での固有振動数は, 6.81Hz ~8.43Hz で計算値に比して 0.767~0.843 となった。また, 除荷後の固有振動数は, 11.0Hz~13.1Hz で計算値に比し て 0.769~0.916 となった。鉄筋コンクリート造試験体 S3 は,除荷前後での計算値に対する固有振動数の比はほぼ 一定であるのに対し,特に PC 鋼材パラボラ配置の S1 は, 大きな回復を示した。

4. 実験結果の検討

材齢 782 日での試験体スラブの除荷時のたわみ,および長期たわみの検討を表-10 に示す。

4.1 試験体の除荷時の剛性

材齢 782 日での荷重除荷時の戻りたわみ δ_{782r+} は, 5.35mm~7.24mm となり,弾性たわみ計算値 δ_c に対し 1.67~2.30 倍と除荷時のスラブの剛性は大きな低下を示 した。図-7 に示す最終ひび割れ状況と単純支持梁のモ ーメント分布から判断すると,本試験体スラブコンクリ ートのひび割れ強度は,2.2MPa 程度と推定される。これ は,材料試験引張強度 2.73MPa の 0.8 程度となる。スラ ブの剛性低下を ACI-318 の有効断面 2 次モーメント法²⁰ により計算すると,0.478~0.678 となる。長期的な実測 剛性低下は,これより 10~20%程度大きく,プレストレ ス試験体の方がやや大きい。

4.2 試験体の長期たわみ

コンクリートスラブの長期たわみは, 材齢 782 日で 25.21mm~33.51mm となった。

試験体		固有振動	b数(Hz)*		比				
	$f_{28,DL}$	$f_{28,WL}$	<i>f</i> _{782,DL}	$f_{782,WL}$	$f_{28,DL}/f_{cal}$	$f_{28,WL}/f_{cal}$	f _{782,DL} /f _{cal}	f _{782,WL} /f _{cal}	
S1	15.4	7.84	13.1	6.81	1.08	0.963	0.916	0.837	
S2	15.1	10.3	12.6	8.43	1.06	1.00	0.881	0.843	
S3	14.9	9.52	11.0	7.67	1.04	0.952	0.769	0.767	

表-9 固有振動数の変化

*f_{28,DL}, f_{28,WL}: 材齢 28 でのそれぞれ荷重 D.L., W.L.での実測値

f782,DL, f782,WL: 材齢 782 日でのそれぞれ荷重 D.L.,W.L.での実測値

	除荷時戻りたわみ			長期たわみ							
試験体	$ \delta_{782r+} $	$\delta_c/ \delta_{782r+} $	$I_e * / I_c$	δ_{782}	δ_{cr}	δ_{sh}	φ^{**}	$\varphi_{c,v/s}^{***}$	δ^{****}	δ/δ_{782}	
	(mm)			(mm)	(mm)	(mm)			(mm)		
S1	5.35	0.598	0.678	25.21	16.04	3.82	3.00	3.55	27.34	1.08	
S2	5.58	0.563	0.67	28.01	18.61	3.82	3.34	3.55	28.73	1.03	
S3	7.24	0.434	0.478	33.51	22.45	3.82	3.10	3.55	36.04	1.08	

表-10 材齢 782 日でのたわみの検討

* I_e : 有効断面 2 次モーメント(ACI318 2008)²⁾, ** $\varphi = \delta_{cr} / |\delta_{782r+}|$, $\delta_{cr} = \delta_{782r+} - \delta_{28} - \delta_{sh}$, δ_{sh} 式(3), (4)による *** $\varphi_{c,v/s}$: 寸法効果による修正クリープ係数 ($\varphi_c = 3.89$, CEB-FIP 2010⁴⁾), δ ****: 式(5), (6)による

一般に長期たわみは、乾燥収縮によるたわみを含めて
 下式⁸⁾で表される。

$$\delta = \delta_e + \delta_{cr} + \delta_{sh} \tag{2}$$

$$\delta_{sh} = \xi_w \phi_{sh} l^2 \tag{3}$$

$$\phi_{sh} = 0.7 \frac{\varepsilon_{sh}}{h} \rho^{\frac{1}{3}} \tag{4}$$

ここに: δ_e –弾性たわみ; δ_{cr} – クリープたわみ; δ_{sh} –乾燥収 縮によるたわみ; ξ_w – たわみ係数 (=0.125 単純支持); ϕ_{sh} –乾燥収縮による曲率; ρ –補強筋比(%)

試験体コンクリートの乾燥収縮は、スラブと同断面の 600×600×160mm コンクリートで、540 μ であった。式 (3)、(4)から乾燥収縮によるたわみ δ_{sh} を計算すると、 3.82mm となる。これは、長期たわみの 11~15%に相当 する。式(2)から、弾性たわみと乾燥収縮たわみを引いて、 材齢 782 日のクリープたわみを計算すると 16.04mm~ 22.45mm となる。クリープたわみを材齢 782 日で測定さ れた除荷時戻りたわみ δ_{782r+} で割ると 3.00~3.34 となる。 試験体コンクリートの 100 ϕ ×200mm シリンダーによる クリープ係数は 3.89 で、これを MC2010⁴⁾による寸法効 果で補正すると 3.55 となる。

ここで、下式による長期たわみ計算値を求めと、

$$\delta = \delta_{782r+} + \delta_{cr} + \delta_{sh} \tag{5}$$

$$\delta_{cr} = \varphi_{c,vk} \cdot \delta_{782r+}$$

 $\delta_{sh} = 3.82mm$

(6)

長期たわみ計算値δは、27.34mm~36.04mm となり、 実測たわみに対する比は、1.03~1.08 となる。上記の結 果から、PRC、RC スラブの長期たわみは、長期的なスラ ブの剛性低下を把握し、コンクリートのクリープ係数と 乾燥収縮から、長期たわみを計算することが可能と考え られる。

4.3 固有振動数

試験体の固有振動数の計算値との比較を表-11,図-9 に示す。材齢782日での固有振動数は,材齢28日の初 載荷時に比べ約20%低下した。長期たわみに関する予測 式は幾つか提案されているが,長期的な固有振動数⁹に ついてはPRC構造を含めて定まった手法は示されてい ない。表-11には,有効断面2次モーメントに基づいた 固有振動数計算値との比較を示した。固有振動数の計算 値に対する比, *fpl/feft, fwl/feft, fpl/f782r+*,*fwl/f782r+*, は, それぞれ 1.10, 1.05, 1.18, 1.12となった。実測固有振 動数はいずれも計算値に対して高い値を示した。その中 で,材齢782日での除荷時たわみから求めた剛性による 固有振動数との比の方が高い値を示した。図-10は,材 齢28日と材齢782日での固有振動数とコンクリート弾 性係数に基づいた計算値*fcal*に対する相関を示した。ま た,参考のために実測の載荷時および除荷時戻りたわみ

試験体	$R_{d,28}$			$R_{d,782}$						
	f_{DL}/f_{cal}	f_{WL}/f_{cal}	$\left(\delta_c/\delta_{28}\right)^{0.5}$	f_{DL}/f_{cal}	f_{WL}/f_{cal}	$\left(\delta_c/ \delta_{782r+} ight)^{0.5}$	f_{DL}/f_{eff}	f_{WL}/f_{eff}	f_{DL}/f_{782r+}	f_{WL}/f_{782r+}
S1	1.08	0.961	0.964	0.916	0.837	0.773	1.11	1.02	1.18	1.08
S2	1.06	1.03	0.962	0.881	0.843	0.750	1.08	1.03	1.17	1.12
S3	1.04	0.952	0.759	0.769	0.767	0.658	1.11	1.11	1.17	1.16
平均	1.06	0.981	0.895	0.855	0.816	0.727	1.10	1.05	1.18	1.12

表-11 固有振動数の計算値との比較

R_{d.28}, R_{d.782}: 固有振動数の計算値に対するそれぞれ材齢 28 日, 782 日実測値の比

feff: 有効断面 2 次モーメントを用いた固有振動数計算値(Ie)

f_{782r+}:除荷時戻りたわみによる剛性に基づいた固有振動数計算値

の弾性たわみ計算値に対する比の 0.5 乗の値を併せて示した。

上記から,長期的な固有振動数は,ひび割れによる剛 性低下を考慮してやや高めの安全側に求めることがで きる。

5. まとめ

PRC, RC スラブの長期載荷実験から以下のことが明らかになった。

- 1) 長期載荷実験開始時の荷重載荷時,PRC 造スラブ はひび割れが発生しなかったが、長期的に乾燥収縮 によりひび割れを生じた。モーメント分布とひび割 れ発生状況から、試験体コンクリートのひび割れ強 度は、材料引張強度の 0.8 程度と推定された。
- ひび割れの生じたスラブの剛性低下を ACI-318 の有 効断面 2 次モーメント法により計算すると,0.478 ~0.678 となり,実測剛性は,これより 10~20%程 度低く,プレストレス試験体の方がやや低下が大き かった。
- PRC, RC スラブの長期たわみは、長期的なスラブの 剛性低下を把握し、コンクリートのクリープと乾燥

収縮から、長期たわみを計算することが可能と考え られる。

4) 長期的な固有振動数の変化は、ひび割れによる剛性 低下を考慮してやや高めの安全側に求めることが できる。

参考文献

- CEB-FIP: Model Code1990, London, Thomas Telford, 1990
- ACI 318: Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, 2008
- 3) 日本建築学会:プレストレスト鉄筋コンクリート (Ⅲ種PC)構造設計・施工指針・同解説,2003
- CIB, Model Code 2010 First complete draft, Federation International du Beton, 2010
- 5) 日本建築学会:鉄筋コンクリート構造計算基準・同 解説,2010
- 6) 岩田ほか:鉄筋コンクリートおよびプレストレス鉄筋コンクリート二方向スラブの長期たわみ制御に関する研究,日本建築学会構造系論文集,第625号, pp.425-432,2008.3
- 岩田ほか: RC および PRC スラブの長期たわみ制御 設計法,日本建築学会大会学術講演梗概集, pp.639-640,2008.9
- Miller, Alfred L.: Warping of Reinforced Concrete Due to Shrinkage, ACI Journal 54(11), pp.939-950, May, 1958
- 9) 山本俊彦:曲げおよび乾燥収縮ひび割れを生じる鉄 筋コンクリート造床スラブの動的特性の変化に関 する実験研究,コンクリート工学年次論文集, Vol.32, No.2, pp.445-450, 2010