論文 プレストレスト鉄筋コンクリート柱梁十字形部分架構における梁部 材の各種限界状態

嶋田 洋介*1·北山 和宏*2

要旨:梁曲げ破壊した PRC 柱梁十字形部分架構における梁部材について,各種限界状態を実験結果と平面保持を仮定した断面解析を用いて検討した。梁部材角は隅田・岸本等が提案する等価塑性ヒンジ長さに断面解析による曲率を乗じて算出し,残留曲げひび割れ幅を RC 梁部材の評価手法を準用して検討した。検討の結果,残留変形率は良好に評価できた。残留ひび割れ幅は精度に問題があるが提案した評価手法によって評価は可能である。各種限界状態は,実験,解析ともに,使用限界が主筋のひずみで,修復限界が残留変形角で決定され,限界状態を規定する損傷状況,及び梁部材角は解析によって概ね良好に評価できた。 キーワード:PRC 骨組,梁,耐震性能,限界状態,残留変形,残留ひび割れ幅,等価塑性ヒンジ長さ

1. はじめに

プレストレスト鉄筋コンクリート(PRC)構造の耐震設 計は、個々の部材、及び建物全体の地震時応答を意図し た通りに制御することを可能とする性能評価型耐震設 計法への移行に向けて、様々な研究が行われている。性 能評価型の耐震設計法を確立するためには、要求性能に 対応した各種限界状態を材料のひずみや、ひび割れ幅等 の物理量を用いて明確に規定することが必要である。既 往の PRC 柱梁十字形部分架構における梁部材を対象と した研究^{1),2)}では、ほとんどの試験体の修復限界が残留 変形角によって決定され、残留変形角を精度よく評価す ることの重要性が再確認された。

部材の損傷を解析的に検討する場合,平面保持を仮定 した断面解析によるのが簡便である。有限要素法によっ て精度よく部材損傷を検討することが可能だが,解析手 法が複雑であり実務設計には向いていない。

本稿では PRC 造梁部材の各種限界状態を実験結果,及び,平面保持を仮定した断面解析結果を用いて検討した。

また,各種限界状態を規定する損傷状況である残留変形 角,残留ひび割れ幅の評価手法についても考察した。

2. 試験体概要

本稿では、柱梁接合部パネルからの主筋、PC 鋼材の抜 け出し、梁コンクリートのめり込み等を考慮するため、 PRC 柱梁十字形部分架構の試験体を対象とした。既往の 正負交番載荷する実験^{2),3),4)}より、梁曲げ破壊(梁曲げ破 壊後に接合部破壊した試験体を除く)した試験体 11 体を 対象とする。試験体形状例(試験体 GB-2)を図-1,試験 体諸元を表-1 に示す。梁幅 b=250(mm)、梁せい D=400(mm)、梁せん断スパン比 3.56、柱断面 350× 350(mm)、柱せん断スパン比 3.47 は共通である。試験体 は全て一体打ちである。

コンクリート圧縮強度 σ_Bは 58.8~77.2(MPa), グラウト 圧縮強度は 56.4~70.3, PC 鋼材は異形 PC 鋼棒, 細径異 形 PC 鋼棒, PC 鋼より線をそれぞれ用い, 試験体 GBS-4 の梁断面中央に配置した細径異形 PC 鋼棒のみアンボン

試験体名		GB-2	SB-3	GBS-4	M-2	M-5	N-4	N-5	Y-1	Y-2	Y-3	Y-4
PC鋼材		2-D22		3− <i>φ</i> 12.6	2- <i>ф</i> 9.2	2- <i>ф</i> 12.6	4- <i>q</i>	10.7	2- <i>ϕ</i> 12.7	2- <i>ф</i> 12.7	2− <i>φ</i> 15.2	4− <i>φ</i> 12.7
		異形PC鋼棒		細径異形PC鋼棒				PC鋼より線				
グラウト圧縮強度(MPa)		65.3			56.4				70. 3			
梁普通鉄筋 (主筋)	梁上端筋	2-D13		3-D13	3-D13	2-D19	4-D13	2-D13	2-D13	2-D19	2-D13	2-D13
	梁下端筋	2-D13		3-D13	3-D13	2-D19	2-D19	2-D13	2-D13	2-D19	2-D13	2-D13
	鉄筋材種	SD295A		SD490	SD345	SD345	SD345	SD295A	SD295A	SD345	SD295A	SD295A
コンクリート圧縮強度(MPa)		77. 2			58.8		63.4		68.8			
プレストレス率λ		0.79	0. 79	0.40	0.34	0. 41	0.49	0. 70	0. 61	0.39	0.69	0.76
<u>有効導入張力Tpe</u> 降伏時張力Tpy (%)		51.5	51. 1	52. 9	60. 5	54. 1	54.9	50. 1	59.5	59.5	59. 5	59.5
プレストレスレベル (T _{pe} /bDσ _B) (%)		5.4	5.3	3. 5	0.9	1.6	1.2	1. 1	3. 0	3.0	4. 2	5.9
梁断面				$ \begin{bmatrix} & & & \\$	Ø9.2 €	Ø 12.6	(Ø 0 Ø 10. 7 Ø 0	() () () () () () () () () () () () () (Ø Ø 12.7 Ø Ø	() () () () () () () () () () () () () (∅ ∅

表-1 試験体諸元・梁断面図

*1 首都大学東京大学院 都市環境科学研究科建築学域 博士前期課程 (正会員)

*2 首都大学東京大学院 都市環境科学研究科建築学域教授 工博 (正会員)

ドである。部材の曲げ終局耐力に対する PC 鋼材の寄与 率であるプレストレス率 λ は 0.34~0.79, PC 鋼材の降伏 時張力 T_{py}に対する有効導入張力 T_{pe}は 50.1~60.5%, PC 鋼材の有効導入張力による梁断面全体に対する軸力比 (プレストレスレベル)は 0.9~5.9%である。

3. 解析概要

3.1 平面保持を仮定した断面解析

本稿では平面保持を仮定した断面解析に、ファイバー 法(せい方向分割数 400)を用いた。材料の履歴モデルは、 コンクリートでは圧縮側包絡線及び除荷を中塚モデル ^{5),6)},引張側包絡線及び除荷を飯塚・野ロモデル⁷⁾とした。 鉄筋では Ramberg-Osgood 式に基づき、バウジンガー効 果を考慮した履歴モデル⁸⁾, PC 鋼材では Menegotto-Pinto 式に基づく履歴モデル⁹⁾とした。

解析では、コンクリートと鉄筋は完全付着とし、コン クリートと PC 鋼材はひずみ適合係数 F 値¹⁰⁾を用いて付 着性状を間接的に考慮した。既往文献¹¹⁾より、異形 PC 鋼棒では F=1.0 とした。細径異形 PC 鋼棒と PC 鋼より線 では, 異形 PC 鋼棒と丸鋼の中間程度の付着性状と考え, F=0.8 とした。なお, 試験体 GBS-4 の梁断面中央のアン ボンド PC 鋼材では F=0.03¹²⁾とした。

解析における断面の降伏点は内田・浜原等の研究¹³⁾ に習って,モーメントー曲率関係において初期剛性の6% 以下¹⁴⁾になる点とした。

3.2 梁部材角

断面解析により求めた曲率々を用いて梁部材角を算 出した。断面降伏以前は部材軸に沿った曲率分布を三角 形と仮定し、曲率を積分することにより梁部材角を算出 した。断面降伏以後は等価塑性ヒンジ長さ leq を仮定し て、式(1)を用いて梁部材角 R を算出した。

$$leq_{p} = \left(\frac{A}{R_{p}} + 0.42\right) D$$
(2)

$$A \times 10^{4} = \begin{cases} 114 - 88\eta P_{e}/T_{py} & \dots 異形 PC 鋼棒\\ 95 - 61\eta P_{e}/T_{py} & \dots PC 鋼より線\\ 45 & \dots 丸形 PC 鋼棒\\ leq_{r} = 0.5D \end{cases}$$
(3)

ここで, leq_p,leq_rはそれぞれ載荷ピーク時,除荷時の等価 塑性ヒンジ長さ, ηPe/Tpy は PC 鋼材の降伏張力に対する 有効導入張力の比(η はプレストレス有効率, Pe は初期プ レストレス導入力), R_pは載荷ピーク時部材角, D は梁せ いである。ただし,本稿では有効導入張力は載荷開始直 前の値を用いた。式(1)~(3)より,載荷ピーク時,除荷時 の部材角はそれぞれ式(4),式(5)によって算出される。

$$R_{\rm p} = \frac{0.42D + \sqrt{(0.42D)^2 + \frac{4AD}{|\phi|}}}{2}\phi \tag{4}$$

(5)

$$R_r = 0.5 D\phi$$

ここで、R_rは除荷時の部材角(残留変形角)である。

ただし、式(2)、式(3)はそれぞれ載荷ピーク時,除荷時の値である。そのため、載荷及び除荷途中の leq は後述 するルールを仮定し、曲率を関数として導いた。leq/D-曲率関係の説明図を図-2に示す。同図内の点 a~h は載 荷履歴の順番を示す。leq/D-曲率関係の履歴は下記に示 すルール A(同図内,実線)、ルール B(点線)、ルール C(-点鎖線)によって定めた。

- A) 載荷の途中において、曲率が経験最大部材角時曲率
 を超えた場合は式(4)を用いた。(a→b, d→e, g→h)
- B) 除荷後の逆方向載荷の途中において,曲率が経験最 大部材角時曲率を超えない場合は,経験最大部材角 時の点を目指す直線とした。(c→d, f→g)
- C) 除荷の途中は、載荷ピーク時の点と式(5)により定 まる除荷点を結ぶ直線とした。(b→c, e→f)

3.3 残留曲げひび割れ幅の最大値

PRC 部材の曲げひび割れ幅と部材角の関係について は検討資料が少なく、定量的な評価方法が無い。そこで 本稿では式(6)に示すように、RC 梁部材の場合の評価手 法¹⁶⁾を準用した。すなわち、PC 梁部材の曲げ変形の機 構を RC 梁と同様と考えた。ただし、通常の PC 梁では RC 梁と比較してスパンが長い場合が多く, RC 梁と同等 の変形機構を示すかどうかは今後検討の余地が残る。

$$w_{r,f} = \frac{1}{n_f} \alpha (D - x_n) R_r$$
(6)

ここで、wrfは残留曲げひび割れ幅の最大値、nfは最大曲 げひび割れ幅に対する曲げひび割れ幅総和の比(曲げひ 割れによる変形の割合、xnは断面の圧縮縁から中立軸ま

とんど研究がないため, RC 梁部材と同様に n=2 とした。 また、部材の全変形に対する曲げひび割れによる変形の 割合αは、部材の変形レベル、せん断強度と曲げ強度の 比等で変化するが,詳細な検討は為されていないため, α=0.95(一定)とした。xnは断面解析の結果(ただし、文献 16 に従い x_n≧0.2D とした)を用い, R_rについては断面解 析により求めた曲率を用いて式(5)によって算出した。

4. 実験結果及び解析結果

4.1 モーメント - 梁部材角関係

実験と解析の梁モーメントー梁部材角関係を図-3に 示す。同図の第2,4象限で実験値と解析値が大きく乖離 したが、これは実験では十字形柱梁接合部パネルからの 鉄筋の抜け出しが観察されたが、解析ではこの点を考慮 しないために生じたと考えられる。また、除荷履歴が梁 部材角4%以前では実験を解析が良好に再現したが、4% 付近から乖離し始めた。これは、実験では PC 鋼材が圧 縮力を負担することは無いが,解析では圧縮側 PC 鋼材 が圧縮力を負担したため、大変形時には PC 鋼材の導入 張力による原点指向性が弱化したためと考えられる。

4.2 残留変形角

残留変形角の実験値と解析値の比較を,残留変形率を 用いて検討した。残留変形率とは、残留変形角を載荷ピ ーク時の梁部材角で除したものである。残留変形率-載 荷ピーク時梁部材角関係を図-4 に示す。部材降伏前で は、解析値が実験値を過小評価する傾向が見られたが、 いずれの PC 鋼材種、プレストレス率でも、解析によっ て概ね良好に残留変形率を評価できた。

4.3 残留曲げひび割れ幅の最大値

残留曲げひび割れ幅の最大値-載荷ピーク時梁部材 角関係の実験値及び,解析値を図-5 に示す。残留曲げ ひび割れ幅の実験値は引張側主筋位置においてクラッ

クスケールを用いて計測した。梁部材角が2%を超える と,解析値が実験値を過大評価する傾向が見られたが, 式(6)を用いて残留曲げひび割れ幅と部材角との関係を 梁部材角2%程度までは十分な精度で評価できる。

全試験体について,残留曲げひび割れ幅の最大値の実 験と解析の比較を,鋼材種で分類して図-6 に示す。 は異形 PC 鋼棒,□は細径異形 PC 鋼棒,△は PC 鋼より 線の結果を示す。試験体数が少なく,統計的な評価とし ては正確とは言えないが,全体的に解析値が実験値を上 回っており,安全側に評価した。これは,実験では PC 鋼材の緊張力によりひび割れが閉じるが,式(6)は RC 梁 部材の計算式を準用しており,この点を考慮していない ためと考えられる。鋼材種別に見ると,実験と解析の比 (実験値/解析値)の平均値と標準偏差は,異形 PC 鋼棒, 細径異形 PC鋼棒, PC鋼より線の順に平均値が0.81,0.35, 0.82 となり,標準偏差が 1.02, 0.42, 0.82 となり,いず れの鋼材種でも大きなばらつきが見られた。

残留曲げひび割れ幅の計算式(6)内の残留変形角 R_r は 先に述べたように、実験と解析で概ね良好に一致した。 このため、同式の精度を上げるためには、曲げひび割れ の等価本数 n_f 及び、部材の全変形に対する曲げひび割れ による部材変形の割合 α について検討が必要である。

5. 各種限界状態の検討

5.1 損傷状況の定義

PRC 梁部材の各種限界状態を規定する損傷状況の提案¹⁷⁾を表-2に示す。実験でのコンクリートの損傷状況の評価はそれぞれ、コンクリートに圧縮ひび割れ発生で「軽微なかぶりコンクリートの圧壊を許容」、かぶりコンクリートの剥落で「コアコンクリート部分が健全であること」、圧縮側主筋までコンクリート剥落で「コアコンクリートに圧壊が生じないこと」と判断した。解析でのコンクリートの損傷状況の評価はそれぞれ、かぶりコンクリート圧縮縁がコンクリート圧縮強度に達する点を「軽微なかぶりコンクリートの圧壊を許容」、コアコ

キー2 久廷限史北部を相定する損傷状況											
具体的な損傷状況											
各種限界状態	λ	普通鉄筋	PC当	剛材	コンク	残留	残留ひ				
			付着が良い	付着が悪い	一般の曲げ部材	その他	変形角	び割れ			
使用限界	1 ~ 0.75	・ 僅かな 降伏を許容	弾性範囲	弾性範囲	0.9σ _B 以下	0.75σ _B 以下	ほぼゼロ	0.2mm 程度以下			
	0 7E 0 E		0.2%		(14/15 λ +0. 2)						
	0.75~0.5		オフセット		σ _B 以下						
	0.5以下	弾性範囲	耐力点以下		2/3σ _B 以下						
修復限界I	降什 2	も許穷	僅かな	调性贫困	軽微なかぶり=	1/400	0.2 ~ 1mm				
	μщ	20112	降伏を許容		圧壊を	程度以下	程度以下				
修復限界Ⅱ	主貨	东が	0.2%		コアコンクリ	1/200	1 ~ 2mm				
	座屈しな	はいこと	降伏を許容	オフセット	健全であ	らること	程度以下	程度以下			
安全限界	「「「「「」」」			耐力息以下							
	上作的	の座出	破断しないこと	降伏を許容	コアコンクリー 生じた	-	-				
	51510,101				エしゅ						

	使用限界			修復	限界 I	修復降	艮界Ⅱ	安全限界		
		梁部材角(%)	要因	梁部材角(%)	要因	梁部材角(%)	要因	梁部材角(%)	要因	
GB-2	実験	0.35	主筋	1.12	残留変形角	1.51	残留変形角	3.65	コンクリート	
	解析	0.39	PC鋼材	1.27	残留変形角	1.59	残留変形角		—	
SB-3	実験	0.35	主筋	1.09	残留変形角	1.55	残留変形角	5.19	コンクリート	
	解析	0.39	PC鋼材	1.27	残留変形角	1.61	残留変形角		—	
GBS-4	実験	0.47	主筋	1.15	残留変形角	1.64	残留変形角	2.60	PC鋼材	
	解析	0.54	主筋	1.53	残留変形角	1.95	残留変形角		_	
M-2	実験	0.38	主筋	0.69	残留変形角	1.06	残留変形角	2.62	PC鋼材	
IVI-2	解析	0.51	主筋	1.02	残留変形角	1.33	残留変形角	-	_	
M-5	実験	0.63	主筋	0.96	残留変形角	1.40	残留変形角	3.83	コンクリート	
M-0	解析	0.41	主筋	1.05	残留変形角	1.38	残留変形角		_	
N-4	実験	0.65	主筋	1.07	残留変形角	1.54	残留変形角	3.66	コンクリート	
IN=4	解析	0.42	主筋	1.14	残留変形角	1.46	残留変形角		—	
N-5	実験	0.47	主筋	0.91	コンクリート	1.89	残留変形角	3.06	PC鋼材	
N-J	解析	0.41	主筋	1.27	残留変形角	1.63	残留変形角		_	
V_1	実験	0.25	主筋	1.01	残留変形角	1.60	残留変形角	4.32	主筋	
• •	解析	0.49	主筋	1.20	残留変形角	1.56	残留変形角		_	
V-2	実験	0.50	主筋	0.96	残留変形角	1.39	残留変形角	_	_	
1-2	解析	0.52	主筋	1.03	残留変形角	1.37	残留変形角		_	
V-3	実験	0.33	主筋	1.45	残留変形角	2.10	残留変形角	4.15	主筋	
1-5	解析	0.49	主筋	1.32	残留変形角	1.66	残留変形角		—	
V-4	実験	0.40	主筋	1.66	残留変形角	2.22	残留変形角	3.96	主筋	
1-4	解析	0.39	主筋	1.39	残留変形角	1.73	残留変形角	—	—	

ンクリート圧縮縁がコンクリート圧縮強度に達する点 を「コアコンクリート部分が健全であること」, コアコ ンクリート圧縮縁が補強筋による拘束効果を考慮した コンクリート圧縮強度に達する点を「コアコンクリート に圧壊が生じないこと」と定義した。

5.2 実験及び, 解析による各種限界状態の比較

実験及び,解析を用いて検討した各種限界時の梁部材 角とそれを決定した要因を表-3に,梁モーメント-梁 部材角関係(包絡線)と各種限界状態を図-7に示す。実験, 解析ともに使用限界のほとんどが主筋のひずみによっ て決定され,修復限界(I, II)のほとんどが残留変形角で 決定された。使用及び修復 I, II の各限界時における梁 部材角は実験ではそれぞれ 0.25~0.65%, 0.69~1.66%, 1.06~2.22%,解析では 0.39~0.54%, 1.02~1.53%, 1.33~1.95 となり,実験と解析の比(実験値/解析値)の平均値がそれ ぞれ 0.98, 0.89, 1.03,標準偏差がそれぞれ 0.33, 0.16, 0.15 となり,精度良く評価出来た。

また,解析では全試験体において安全限界が決定され なかった。これは先に示した様に,解析では圧縮側 PC 鋼材が圧縮力を負担したために,コンクリートの損傷が 抑制されたこと,主筋の座屈・破断や PC 鋼材の破断を 評価できないこと等が原因である。

6. まとめ

既往の梁曲げ破壊した PRC 柱梁十字形部分架構にお ける梁部材の実験結果と,平面保持を仮定した梁断面解 析の結果を検討し,以下の知見を得た。

- (1). 平面保持を仮定した断面解析と隅田・岸本等が提 案する等価塑性ヒンジ長さを組み合わせることに より, PRC 梁部材のモーメントー部材角関係を概 ね良好に評価できた。
- (2). RC 梁部材の残留曲げひび割れ幅の評価手法を準 用した式(6)によって、定数の同定と精度に課題は 残るが、PRC 梁部材の残留曲げひび割れ幅を評価 することは可能である。
- (3). 各種限界状態を検討した結果,限界状態を規定す る損傷状況が実験,解析ともに,使用限界は主筋 のひずみによって,修復限界は残留変形角によっ てそれぞれ決定され,その時の梁部材角も概ね良 好に評価できた。

参考文献

- 嶋田洋介,北山和宏: PC 柱梁十字形部分架構の梁部 材における各種限界状態の検討,日本地震工学会大 会梗概集,pp.22-23,2009
- 2) 矢島龍人,北山和宏:梁曲げ破壊型プレストレスト コンクリート十字形部分骨組みの耐震性能に関す る研究,コンクリート工学年次論文集, Vol.32, No.2, pp.511-516, 2010
- 北山和宏,田島祐之,矢島龍人:PRC 柱梁十字形部 分架構の耐震性能評価に関する実験的研究(その1), 日本建築学会大会学術講演梗概集,構造 IV, pp.157-158,2008
- 4) 北山和宏,岸田慎司,田島祐之,宮崎裕ノ介:付着 性能に着目したプレストレスト鉄筋コンクリート

(PRC)柱梁十字形部分架構の復元力特性に関する研究(その1,2),日本建築学会大会学術講演梗概集, 構造 IV, pp.1-4,2006

- 5) 中塚 佶:コンクリートの応力度-ひずみ度特性と コンクリート曲げ部材の終局特性に関する基礎的 研究,大阪大学大学院博士論文, 1989
- 6) 下村健太郎、中塚 佶、前川元伸:定ひずみ繰り返 し単軸圧縮応力を受けるコンクリートの応力度-ひずみ度関係の履歴則、日本建築学会近畿支部研究 報告集、構造系(38)、pp.33-36、1998
- 7) 飯塚崇文,野口 博:正負交番載荷時の高強度鉄筋 コンクリートの構成モデル、コンクリート工学年次 論文報告集, Vol.13, pp.49-54, 1991
- 藤井俊二,青山博之,梅村 魁:材料特性より求めた鉄筋コンクリート断面のモーメントー曲率関係,日本建築学会大会学術講演梗概集,構造系 48(構造), pp.1261-1262, 1973
- 9) 北島英樹,福原武史,陳 静,孫 玉平:高強度 RC 部材の耐震性能評価法の提案 その1 材料の繰り返 し応力-歪関係のモデル化,日本建築学会九州支部 研究報告.九州支部.1,構造系(44), pp.349-352, 2005
- 10) 六車 熙, 渡辺史夫, 西山峰広:アンボンド PC 部 材の曲げ終局耐力に関する研究, プレストレストコ ンクリート, Vol.26, pp.10-16, 1984
- 11) 柴田祐丞、岸本一蔵:鋼材種および変形量を考慮した PC 梁部材の終局曲げ耐力算定法、第 17 回プレストレストコンクリートの発展に関するシンポジウム論文集, pp.165-170, 2008
- 12) 嶋田洋介,北山和宏: PRC 十字形部分架構における 梁部材のひずみ適合係数に関する考察,日本建築学 会大会学術講演梗概集,構造 IV, pp.811-812, 2009
- 14)田島祐之,北山和宏:梁曲げ破壊するプレストレスト鉄筋コンクリート柱梁十字形部分架構の梁部材における等価粘性減衰定数の定量評価,日本建築学会構造系論文集,No.644, pp.1831-1840, 2009
- 15) 隅田 寛, 岸本一蔵, 李 徳基, 大野義照: PC 梁部 材の残留変形率算定式, プレストレストコンクリー ト, Vol.49, pp.80-89, 2007
- 16) 日本建築学会:鉄筋コンクリート造建物の耐震性能 評価指針(案)・同解説,日本建築学会,2004
- 17) 日本建築学会: PC 構造研究の現状,新 PC 基準へ向 けての活動およびプレストレス技術を有効利用し た建物例,日本建築学会大会 PD 資料, pp.22-38, 2007