論文 低強度コンクリート RC 柱の破壊性状に関する実験的研究

大石 祐太*1・三島 直生*2・畑中 重光*3

要旨:低強度コンクリートとは,一般に圧縮強度が13.5 N/mm²未満のコンクリートと定義され,本研究では低強度コンクリート RC 柱の水平加力実験を行い,既往の研究結果との整合性を確認した。その結果,低強度試験体には細かなひび割れが多数発生し,付着割裂ひび割れが発生し易いことを確認した。また,耐震診断において使用されている曲げ略算式を用いた場合,普通強度試験体においては概ね精度よく評価ができるものの,低強度コンクリート試験体においては危険側の評価となること,塑性断面解析によれば,曲げ耐力を精度良く評価することができることなどを確認した。これらの結果は既往の研究報告と一致する。 +-ワード:低強度コンクリート,水平加力実験, RC 柱,曲げ耐力

1. はじめに

阪神・淡路大震災の後,多くの被害報告から既存不適 格建物の耐震性能不足が指摘され,既存建物の耐震診 断・改修を促す「建築物の耐震改修の促進に関する法律」 が施行され,全国各地で新耐震設計以前の既存学校建築 物の耐震診断が数多く実施されるようになった。

既存 RC 造建築物の耐震診断および耐震補強設計を行 う際に,通常はコンクリートの圧縮強度を調査するが, その調査から, 1970年代前半の高度経済成長期における コンクリートの効率優先の量産体制や粗製乱造などで, 既存の RC 造建築物の中には圧縮強度が設計基準強度に 達していない品質の悪い構造物が存在していることが, 明らかになってきた一方で、日本建築防災協会の耐震診 断基準 ¹⁾では、コンクリート構造物のコンクリートの最 低圧縮強度を13.5N/mm²とし、それ以下のものについて は基本的には耐震補強の対象外としている。しかし、過 去の文献²⁾によれば、コンクリートの最低圧縮強度 13.5N/mm²の根拠が力学的挙動に基づくものではないた め、コンクリート強度が 13.5N/mm²以下であっても適切 な補強を施せば、耐震性を確保できる可能性は十分にあ ると考えられる。また、JCI 中国支部においても低強度 コンクリートに関する特別研究委員会が設置され³⁾,診 断、補強に関する研究が行われている。しかし、低強度 コンクリート部材の構造性能に関する研究は、まだ少な いのが現状である。

本報では、低強度コンクリート RC 柱について普通強 度コンクリート RC 柱と比較し、耐力および変形特性を 実験により調べ、既往の耐力式、および低強度コンクリ ートに対して示された既往の研究報告との整合性に関 して検討する。

2. 低強度コンクリート RC 柱に関する既往の研究

2.1破壊モードおよび耐力式

永坂ら⁴⁾および伊藤ら⁵⁾の研究によると、低強度コン クリートを用いた RC 柱の破壊性状については、付着割 裂破壊となりやすいことが分かっている。また、曲げ耐 力評価については、学会略算式を用いると、低強度域に おいて危険側の評価を示すことが明らかとなっている。

(後述の表-4 参照) せん断耐力評価については,耐震 診断基準で用いられている修正荒川式を用いると,低強 度コンクリートに対しては,危険側の評価となることが 明らかとなっているが,付着割裂式を用いることで概ね 安全側の評価を得ることができるとされている。

川上^のらの研究によると、大野・荒川式に低減係数を 乗じる山本らの提案式(以下、山本提案式)を用いるこ とで、せん断耐力を過小評価し、安全側の値を与える結 果となった。そこで、コンクリート強度がコンクリート 項のみに影響するものとして大野・荒川式の第1項のみ に低減係数を乗じた。その結果、それぞれの中間値を示 し、全体的に山本提案式よりは実験値との整合性が良か ったが、十分な精度を示すには至っていない。

2.2 耐震診断に対する適用

岸田ら⁷⁾の研究では、大野・荒川式に低減係数を乗じ て得られた結果を山本提案式として、また大野・荒川式 の第1項のコンクリート寄与分のみに影響するとして 第1項のみに低減係数を乗じて得られた結果を山本修 正式(後述の表-4参照)として耐震診断において、山 本らの提案する低減係数を用いることで、柱部材のせん 断耐力および、靭性指標の低減について妥当な結果が得 られたと報告されている。せん断余裕度は、山本提案式 を適用すると、Fc=13.5 N/mm²以下で急激に低下しFc=10

*1	三重大学大学院	工学研究科建築学専攻	(正会員)	
*2	三重大学大学院	工学研究科建築学専攻	博士(工学) (正会員	()
*3	三重大学大学院	工学研究科建築学専攻	工博 (正会員)	

N/mm²程度でせん断破壊が先行する傾向となった。また、 山本修正式を適用した場合も、ほぼ同様であった。

3. 実験概要

3.1 試験体

表-1 に試験体諸元を,表-2 に使用したモルタルの 調合表を,表-3 に鉄筋の性質を示す。試験体は3 階建 て RC 事務所建築の1 階部分の1 スパン分を想定し,実 構造物の 1/5 スケールとしている。骨材も 1/5 スケール としているため,試験体はモルタルを用いて作製した。 Fc=7N/mm²のコンクリートは,既往の研究を参考に,セ メントの一部を石灰石微粉末で置換することにより,作 製した。

図-1 に試験体寸法を示す。試験体は 100mm×100mm の正方形断面を持つRC柱で,内法高さは500mmとした。 実構造物の 1/5 スケールを想定しているため,主筋は 4-D6,せん断補強筋は φ3.2 を用いている。柱のかぶり 厚さは 10mm とした。また,梁・土台は 250mm×150mm の長方形断面を有しており,柱に対して十分大きな剛性 を確保するため,主筋は 4-D13、せん断補強筋は φ6を 用いている。柱試験体の打設と同時に φ5×10cm の円柱 試験体を作製し,圧縮強度試験を行った。打設後に材齢 14日で脱型し,その後,実験室内にて気中養生を行った。 3.2 試験方法

図-2 に試験装置の概要を示す。本試験では、耐震診 断2次診断を想定し、梁を剛体と仮定して柱のみを対象 とした要素試験を行った。加力方法は、2N/mm²の軸力 を維持しながら、オイルジャッキにより静的漸増繰り返 し水平載荷を行った。載荷プログラムは、まず、1/1000rad の変位を与え、その後 1/500rad ずつ増加させていき、荷 重が増加しなくなった時点で押し切った。測定は、ジャ ッキ頭部のロードセルで荷重を測定し、変位計により、 各部の変位を測定した。また、試験体への軸力の分布を 測定するために、コンクリート表面のひずみをひずみゲ ージにより測定した。その結果、ほぼ均等に軸力を加え ていることが確認できた。

柱 梁·土台 試験時 設計基準強度 試験体名 圧縮強度 断面寸法 断面寸法 せん断補強筋 せん断補強筋 N/mm² 主筋 主筋 N/mm^2 mm × mm mm × mm 6.25 Fc7-1 7 4-D6 *φ* 3.2-@60 4-D13 ϕ 6-@50 Fc7-2 6.64 100×100 250 × 150 Pt=1.06% Pw=0.27% Pt=0.68% Pw=0.19% 21.75 Fc21-1 21 Fc21-2 26.96

表-2 モルタルの調合表								
Fc	W/C	W	С	Р	S			
N/mm ²	%	kg/m ³	kg/m ³	kg/m ³	kg/m^3			
7	129	262	204	234	1638			
21	60	202	438	-				
「注]Fc:設計基準強度、W/C:水セメント比、W:単位水量、C:単位セメント量、								

P:単位石灰石微粉末量, S:単位細骨材量

表-3 鉄筋の性質

呼び名	降伏点 N∕mm²	ヤング係数 N/mm ²			
D6	370	1.23×10^{5}			
φ 3.2	566	2.1×10^{5}			

図-1 試験体寸法および配筋図

0

0

1000

100

図-2 試験装置概要

(単位:mm)

4. 実験結果

4.1 ひび割れ性状

図-3 に実験終了時のひび割れ状況図を示す。普通強度コンクリート試験体と低強度コンクリート試験体を 比較すると、写真-1 のように、普通強度コンクリート 試験体では1本の大きなひび割れが発生するのに対して、 写真-2 のように、低強度コンクリート試験体では多数の細かなクラックが発生することがわかる。また、普通 強度コンクリート試験体、低強度コンクリート試験体と もに曲げ破壊が支配的であるが、写真-3 のように、低強度コンクリート試験体では付着破壊が発生すること がわかる。ただし、本試験体では付着破壊が発生すること がわかる。ただし、本試験体は縮小モデルであり、かぶ り厚さが小さいことも影響していると考えられる。これ らの性状は既往の研究とも一致する。また、写真-4 の ように、低強度コンクリート試験体は普通強度コンクリ ート試験体と異なり、梁、土台部分の破壊が進行した。

4.2 水平荷重一層間変形角履歴曲線

図-4 に水平荷重-層間変形角履歴曲線を示す。同図 によると、普通強度で作製された Fc21-1 試験体は R=1/50rad で最大耐力 22.25kN に達し、R=1/16rad で最大 耐力の 80%まで耐力低下した。Fc21-2 試験体は R=-1/55rad で最大耐力 25.29kN に達し、R=1/14rad で最大 耐力の 80%まで耐力低下した。低強度で作製された Fc7-1 試験体は R=-1/60rad で最大耐力 12.84kN に達し、 R=1/16rad で最大耐力の 80%まで耐力低下した。Fc7-2 試 験体は R=-1/35rad で最大耐力 13.55kN に達し、R=1/15rad で最大耐力の 80%まで耐力低下した。いずれの試験体も 最大耐力以降の耐力低下は緩やかであり、最大耐力以降 の変形性状にあまり大きな違いは見られない。

4.3 水平荷重-層間変位角関係および耐力評価

図-5 に水平荷重-層間変形角関係の包絡線を示す。 普通強度コンクリートで作製した Fc21-1,Fc21-2 試験体 は R=1/500rad までに柱頭と梁, 柱脚と土台の境界部に曲 げひび割れ, R=1/250rad までに柱頭, 柱脚部の曲げひび 割れ, R=1/100rad で梁, 土台へのひび割れが発生した。 その後, R=1/50rad 程度で最大荷重となり, 柱頭, 柱脚 部のかぶりコンクリートの圧壊, 柱頭, 柱脚部の抜け出 しが発生した。その後, 最大荷重の 80%程度まで耐力低 下した時点で試験を終了した。

写真-1 ひび割れ性状(Fc21-2 試験体)

写真-2 ひび割れ性状(Fc7-1 試験体)

写真-3 付着破壊(Fc7-1 試験体)

写真-4 梁端面のひび割れ(Fc7-2 試験体)

図-4 水平荷重-層間変位角関係

低強度コンクリートで作製した Fc7-1, Fc7-2 試験体は R=1/500rad で柱頭と梁, 柱脚と土台の境界部に曲げひび 割れ、R=1/250rad で柱頭、柱脚部の曲げひび割れ, R=8/500rad 付近で主筋の付着ひび割れ, R=1/100rad で梁, 土台へのひび割れが発生した。Fc7-1 試験体においては R=-1/60rad で, Fc7-2 試験体においては R=1/35rad で最大 荷重となり, Fc7-1 試験体においては R=1/16rad で, Fc7-2 試験体においては R=1/10rad で柱頭, 柱脚部のかぶりコ ンクリートの圧壊, 柱頭, 柱脚部の抜け出しが発生し, 最大荷重の 80%程度まで耐力低下した時点で試験を終了 した。

また,鉄筋コンクリート終局強度設計に関する資料⁸⁾ を参考に剛性を下式を用いて算定した。

i) 弾性剛性 (k_e) $k_e = Q/\delta$ $\delta = \delta_B + \delta_S$ $\delta_B = Q \cdot h_0^{-3}/12E_c \cdot I_e$ $\delta_S = \kappa \cdot Q \cdot h_0/G_c \cdot A_c$ ii) 降伏時剛性 (k_y) $k_y = k_c \cdot \alpha_y$ $k_c = Q \cdot h_0^{-3}/12E_c \cdot Ic$

 $I_c = b \cdot D^3/12$

$\alpha_{\rm v} = (0.043 + 1.65 \text{ n} \cdot \text{p}_{\rm t} + 0.043 \text{ a/D} + 0.33 \eta_0) (\text{d/D})^2$

ここに,

 $\delta_B: 曲げ変形量(mm), δ_s: せん断変形量(mm), A_c: コンク$ $リート断面積(mm²), <math>\kappa$: 形状係数(=1.2), G_c: コンクリート のせん断弾性係数(N/mm²), E_c: コンクリートのヤング係数 (N/mm²), I_c: 等価断面 2 次モーメント(mm⁴), h₀: 柱内法高 さ(mm), k_c: コンクリート断面に対する弾性曲げ剛性 (N/mm), α_y : 降伏時の弾性低下率, b: コンクリート断面幅 (mm), D: コンクリート断面せい(mm), n: ヤング係数比, p_t: 引張鉄筋比, a: シヤースパン(mm), η_0 : 軸力比

図-5に計算結果を示す。その結果,普通強度試験体, 低強度試験体ともに,概ね精度良く剛性を算定できた。

表-4 および図-6 に、実験による最大耐力と既往の 算定式,および塑性断面解析による計算値を比較した一 覧を示す。ただし、山本提案式は低強度コンクリートに 適用される式のため、また、靱性保証型付着考慮式は普 通強度試験体においては付着ひび割れが発生したため、 それぞれ計算を省略した。解析条件として以下を仮定し た。すなわち、圧縮縁コンクリートの限界ひずみ度は 0.3%、平面保持の仮定が成立、コンクリートの応力度-ひずみ度関係はバイリニア型で表示、そして Ec は Fc/0.0015 とした。また、鉄筋もバイリニア型のモデルと し、Fy/Es の時点を鉄筋の降伏ひずみ度と規定した。

図-5 水平荷重-層間変位角関係包絡線

表-4 最大耐力に対する実験値および計算値

		曲げ			せん断						
試験体名	実験値	略算式*1		断面解析		大野·荒川min式*2		山本提案式*3		靭性保証型付着考慮式 ^{*4}	
	kN	計算値	実験値/	計算値	実験値/	計算値	実験値/	計算値	実験値/	計算値	実験値/
		kN	計算値	kN	計算値	kN	計算値	kN	計算値	kN	計算値
Fc21-1	22.25	22.26	1.00	20.92	1.06	30.48	0.73	-	-	-	-
Fc21-2	25.29	22.41	1.13	21.63	1.17	31.86	0.79	1	-	-	-
Fc7-1	12.84	20.44	0.63	14.27	0.90	26.40	0.49	15.68	0.82	10.45	1.23
Fc7-2	13.55	20.59	0.66	14.90	0.91	26.50	0.51	16.32	0.83	11.07	1.22

[注] *1 曲げ耐力略算式 $Mu = 0.8a t \cdot \sigma_y \cdot D + 0.5N \cdot D(1 - \frac{N}{b \cdot D \cdot Fc})$

*4 靭性保証型付着考慮 式 $V_u = \frac{\lambda v \sigma_B}{2} b_{eje}$

*2 大野荒川min式
$$Q_{su} = \left\{ \frac{0.053P_{\cdot}0.23(18 + F_c)}{M/(Q \cdot d) + 0.12} + 0.85\sqrt{P_{w} \cdot s\sigma_{wy}} + 0.1\sigma_{0} \right\} \cdot b \cdot j$$

*3 山本提案式 $Q_{su2} = k_r \cdot \left\{ \frac{0.053 P_{t} 0.23 (18 + F_c)}{M/(Q \cdot d) + 0.12} + 0.85 \sqrt{P_w \cdot s\sigma_{wy}} + 0.1\sigma_0 \right\} \cdot b \cdot j$ $k_r : 0.244 + 0.056 \sigma_B$ ここに、at:引張鉄筋断面積、σy:鉄筋降伏点強度、D:柱断面せい N:柱軸方向力,b:柱断面幅,Fc:コンクリート圧縮強度 M/(Qd):せん断スパン比,Pw:せん断補強筋比,sσy:せん断 補強筋の降伏点強度、σo:柱軸方向応力度、σB:コンクリ ート圧縮強度、A:トラス機構の有効係数、v:コンクリート 圧縮強度の有効係数、be:トラス機構に関与する断面の有効 幅,je:トラス機構に関与する断面の有効せい

図-6 実験値と計算値の比較

曲げ耐力については、耐震診断において使用されている 曲げ略算式を用いた場合、普通強度コンクリート試験体 においては概ね精度よく評価ができているが、低強度コ ンクリート試験体においては計算値が実験値を大きく 上回り、過大評価する傾向がある。これは、低強度試験 体では引張鉄筋の降伏前に圧壊で最大耐力が決定する のに対し、略算式では引張鉄筋の降伏を前提としている ことによるものと考えられる。これに対して、コンクリ ートの圧壊を考慮できる塑性断面解析を行った結果、普 通強度試験体、低強度試験体ともに精度よく実験値を推 定することができた。この結果から、付着ひび割れが発 生したが、本実験の範囲では、平面保持の仮定が概ね成 り立っていると考えられる。これらの結果は既往の研究 とも一致する。

せん断耐力については、曲げ破壊が支配的であったた め、全ての試験体において耐震診断で使用されている大 野・荒川 min 式では安全側の評価となった。また、大野・ 荒川 min 式に低減係数を乗じた山本提案式では耐力を概 ね精度良く評価できている。靭性保証型付着考慮式では、 低強度試験体においては実験値が計算値を上回り安全 側の評価となっている。この事から、本実験の範囲にお いては、付着すべりが発生はしたが、卓越しなかったと 言える。

6. まとめ

6.1 結論

本研究では,低強度コンクリートを用いた RC 柱の破 壊性状を柱部材実験により検討した。その結果,本実験 の範囲において,以下のことが分かった。

- (1) 普通強度コンクリート試験体では数本の大きなひび 割れが発生するのに対して、低強度コンクリート試験 体は細かなひび割れが多数発生する。また、付着割裂 ひび割れが発生する。
- (2) 耐震診断において使用されている曲げ耐力略算式を 用いた場合,普通強度コンクリート試験体においては 概ね精度よく評価ができているが,低強度コンクリー ト試験体においては危険側の評価となった。また,塑 性断面解析によれば,曲げ圧縮破壊を考慮できること から,曲げ耐力を精度良く評価することができる

6.2 今後の課題

本研究では、曲げ耐力を精度良く評価することができ たが、せん断強度の評価に関しては、現段階では精度良 く評価することは難しく、今後検討する必要があると考 えられる。また、柱部材だけでなく、今後は壁の特性を 含めた検討が不可欠である。低強度コンクリートで造ら れた建物の耐震診断を行うためには、低強度コンクリー ト部材に関する実験データをさらに蓄積する必要があ る。

参考文献

- (財)日本建築防災協会「2001年改訂版 既存鉄
 筋コンクリート造建築物の耐震診断基準 同解説」
- (社) JCI 中国支部「低強度コンクリートに関する 特別研究委員会報告書」, 2010.6
- 市橋重勝、山本泰稔、片桐太一、秋山友昭、ジム・トムプソン: 低強度コンクリートに装着した 接着系あと施工アンカー筋の挙動に関する実験的 研究、日本建築学会大会学術講演梗概集、C-2, pp.397-407, 2000.9
- ネ坂具也,東城正晃,大川善丈: 極低強度コン クリートの用いられた RC 短柱の耐力と変形能に関 する実験的研究,日本建築学会大会学術講演梗概 集, C-2, pp.157-160, 2005.9
- 伊藤嘉則,槇谷榮次,沢崎詠二:種々の方法で 耐震補強された低強度コンクリートRC柱の補強効 果に関する研究,日本建築学会構造系論文集, No.613, pp.97-104,2007.3
- 6) 5) 川上裕佳,高月行治,藤原顕太郎,根口百世, 南宏一:低強度コンクリート部材の耐震性能評価 に関する基礎的研究,日本建築学会大会学術講演 梗概集, C-2, pp.333-342, 2007.8
- 7) 岸田幸治,田村雄一,三島直生,畑中重光:低 強度コンクリートで造られたRC建築物の耐震診断 に関する研究,コンクリート工学年次論文集,Vol. 30,No.3, pp.1291-1296, 2008
- 8) 日本建築学会「鉄筋コンクリート終局強度設計に関 する資料」,第18章,pp.70-71,1987.9