各種短繊維で補強した軽量2種コンクリートの引張軟化特性 論文

崔 智宣*1·山口 浩平*2·日野 伸一*3·梶原 秀夫*4

要旨: 軽量コンクリートは普通コンクリートと比較して引張, せん断強度が低下するため, 鋼繊維などの短 繊維による補強が必要である。本研究では、一般的に用いられるビニロン、ポリエチレンおよび鋼繊維を用 いて切欠きはりの3点曲げ試験を実施した.また、多直線近似法を用いて引張軟化曲線を推定し、普通コン クリートおよび軽量2種コンクリートの各種短繊維の混入率を考慮した式を提案した。 キーワード: 軽量2種コンクリート, 短繊維, 引張軟化特性, 3点曲げ試験, 残存引張強度

1. はじめに

軽量2種コンクリート(以下, SL)は粗骨材に加え細 骨材の全てまた一部にも人工軽量骨材を用いたコンクリ ートである。しかし,普通コンクリート(以下, N)を軽 量化することにより引張, せん断強度が低下するため, 短繊維による補強が有効である。SL を短繊維によって補 強すると,ひび割れ発生時に短繊維が引張力を負担する。 この短繊維の架橋効果により引張、せん断強度および靭 性向上の効果が期待できる。しかし、繊維の分散状況お よび発生したひび割れとの位置関係によって異なる架橋 効果を予測することは困難である。これらを得るために は, 引張軟化曲線を明らかにし, 特に最大強度到達後の 挙動把握が必要である。短繊維補強コンクリートの引張 軟化曲線を明らかにすることで、短繊維補強コンクリー ト部材の最大耐力だけでなくそれ以降の挙動をより精度 よく再現できると考えている. そこで本研究では、短繊 維として一般的に用いられているビニロン繊維、ポリエ チレン繊維および鋼繊維を対象として引張軟化特性につ いて検討を行い、各短繊維の引張軟化曲線のモデル式の 提案を行った。

2. 切欠きはりの3点曲げ試験

2.1 使用材料

コンクリート使用材料を表-1 に示す。セメントは普 通ポルトランドセメントを使用した。また, 普通コンク リートは骨材に海砂および砕石,軽量2種コンクリート は骨材全てに人工軽量骨材を使用した。短繊維は写真-1 および表-2 に示すビニロン繊維、ポリエチレン繊維お よび鋼繊維を使用し、各繊維の繊維長を 30mm とした. また, ビニロン繊維はストレートタイプ, ポリエチレン 繊維は集束タイプ¹⁾,鋼繊維はフックエンドタイプを使 用した。

2.2 試験体

コンクリートの示方配合を表-3 に示す. 試験体はコ ンクリート種類, 短繊維種類および短繊維混入率(以下, 混入率, V₂)をパラメータとした。コンクリートはNお よび SL, 短繊維および混入率(体積比)は施工性を考慮

種類 記号 性質 普通ポルトラン С 密度:3.16t/m³ ドセメント 表 彭 密 度 · 2 58t/m³ 海砂 普通S 吸水率:1.79%, 粗粒率:2.71 表乾密度:2.88t/m3 砕石 普通G 吸水率:1.92%,Gmax:20mm 絶乾密度:1.68t/m³ 人工軽量細骨材 軽量S 24時間吸水率:10.0% 粗粒率:2.69,実績率:53.2% 絶乾密度:1.27t/m3 24時間吸水率:10.3% 人工軽量粗骨材 軽量G **粗粒率:6.47 実績率:63.1%** Gmax:15mm 主成分:ポリカルボン酸系化合物 高性能AE減水剤 SP 密度:1.05~1.09t/m3 AE剤 AE 密度:1.06~1.10t/m³

表-1 使用材料

(a) ビニロン (b) ポリエチレン

写真-1 使用短繊維

表-2 短繊維の材料特性

后雄維種则	密度	繊維長	繊維径	引張強度	ヤング率
人立和以补出1里力门	(t/m ³)	(mm)	(µm)	(N/mm^2)	(kN/mm ²)
ビニロン (V)	1.30	30	660	900	23
ポリエチレン (PE)	0.97	30	68*	1870	43
鋼 (ST)	7.85	30	620	1000	200
				*	:参考文献 1)

*1 九州大学大学院 工学府都市環境システム工学専攻 (正会員) *2 九州大学大学院 工学研究院建設デザイン部門助教 博(工)(正会員) *3 九州大学大学院 工学研究院建設デザイン部門教授 工博(正会員) *4 九州大学大学院 工学府都市環境システム工学専攻 (非会員)

			混入家	W/C	W/C 単位量(kg/m ³)				単位容	2容 正統強度	引張強度	センガ係粉	
タイプ	コンク	繊維	证八十	w/C	W	C	ç	G	Б	積質量	/二小旧/云/文	小瓜瓜及	
			(%)	(%)	vv	C	3	U	г	(t/m^3)	(N/mm^2)	(N/mm^2)	(kN/mm^2)
N-00-1		なし	0.0	50.0	190	380	782	984	0	2.44	37.6	3.26	33.7
N-00-2	-	なし	0.0		213	427	870	862	0	2.33	35.2	2.09	32.7
N-V-05		ビニロン	0.5		190	380	776	977	7	2.41	32.3	3.13	28.5
N-V-10			1.0		190	380	770	969	13	2.41	36.5	3.24	29.2
N-V-15	並活		1.5		190	380	764	961	20	2.38	41.8	4.43	31.3
N-PE-05	百世	ポリエチレン	0.5		190	380	776	977	5	2.31	36.8	3.04	28.6
N-PE-10			1.0		190	380	770	969	10	2.33	39.0	3.60	25.1
N-ST-04		錮	0.4		213	425	868	859	31.4	2.33	32.7	2.77	29.7
N-ST-08			0.8		212	423	864	855	62.8	2.31	35.0	3.26	30.3
N-ST-12			1.2		211	422	860	852	94.2	2.35	36.8	3.86	30.6
SL-00		なし	0.0	47.5	233	490	542	408	0	1.65	40.3	1.89	14.5
SL-V-05		ビニロン	0.5	45.0 47.5	190	422	605	331	6.5	1.64	44.5	3.20	17.3
SL-V-10			1.0		190	422	601	329	13	1.67	50.7	4.29	17.6
SL-V-15	5 15 軽量2種 0 4 18 2		1.5		190	422	596	326	19.5	1.60	43.6	4.07	15.0
SL-PE-05		ポリエチレン	0.5		190	422	605	331	4.85	1.61	45.7	2.68	15.5
SL-PE-10			1.0		190	422	601	329	9.7	1.54	40.6	3.57	14.7
SL-ST-04		鎆	0.4		232	487	539	406	31.4	1.66	40.7	3.06	16.8
SL-ST-08			0.8		230	484	535	403	62.8	1.70	41.9	3.26	14.4
SL-ST-12			1.2		228	480	531	400	94.2	1.69	44.3	4.04	15.5

表-3 コンクリート示方配合および強度特性値

してビニロン繊維 0.5, 1.0, 1.5%, ポリエチレン繊維 0.5, 1.0%, 鋼繊維 0.4, 0.8, 1.2%とし, これに N および SL の短繊維無補強試験体を加えた計 18 タイプとした。最大 粗骨材寸法は普通骨材 20mm, 軽量 2 種骨材 15mm, ス ランプは 18cm, 空気量は N4.5%, SL5.0%とした。混和 剤には高性能 AE 減水剤, AE 剤, 増粘剤および消泡剤を 使用した。また,気中養生を行い,28 日間で圧縮強度 $40N/mm^2$ を目標とした。強度試験用試験体は ϕ 100× 200mm の円柱試験体を各 3 本以上製作した。曲げ試験用 試験体は 100×100×400mm の角柱試験体を各 5 体製作 した。また,図-1 に示すように試験体中央に幅 3.2mm, 深さ 30mm の切欠きを設けた。

2.3 試験方法

試験は各種強度試験および切欠きはりの3点曲げ試験 を実施した。強度試験はコンクリート標準示方書²⁾に準 じて圧縮強度,割裂引張強度,静弾性係数試験を行った。 強度特性値を表-3に示す。3点曲げ試験は JCI 規準・指 針の「切欠きはりを用いた繊維補強コンクリートの荷重 一変位曲線試験方法(JCI-S-002-2003)」³⁾に準じて3点曲 げ試験を行った。試験装置は万能試験機を使用し,図-1 に示すように,水平方向の拘束を取り除くために,両 支点とも可動構造にした。載荷速度はひび割れ開口変位 (以下,CMOD)の変化量が0.2mm/min程度とした。計 測項目は荷重,載荷点の鉛直変位,CMODとした。載荷 は試験体が完全に破断するまで行ったが,繊維補強試験 体については破断するに至らなかったため,載荷点の鉛 直変位5mmまでの載荷とした。またCMODはクリップ ゲージを用いて4mm程度まで計測を行った。

2.4 結果および考察

今回試験を実施したタイプに加え,既往文献⁴⁾の一部 のデータも含めて検討を行った.N-V-15,N-PE-05, N-PE-10,N-ST-08,SL-ST-08はサンプリング不良により 4体,他は5体を引張軟化特性の検討データとした。図 -2および図-3にそれぞれNおよびSLの荷重-CMOD 関係を示す。同図は各タイプ4体以上の試験体の平均値 を示している。平均化は,任意の同一 CMOD に対する 各試験体の荷重の平均値とした。同図より,N-00および SL-00 はひび割れ発生後急激に荷重が低下し,SL-00 が N-00よりも急激な荷重低下を示した.ひび割れ発生によ る荷重低下率は短繊維の種類に関わらず混入率が大きく なるほど小さくなった。

図-2よりNにおいてビニロン繊維は混入率の増加に 応じて靭性の向上が見られた。ポリエチレン繊維は混入 率の増大にもかかわらず,靭性の向上効果は小さかった。 一方,鋼繊維は小さい混入率でも大幅に靭性が改善され た。図-3よりSLの場合,ビニロンおよびポリエチレン 繊維はひび割れ発生後,一旦荷重が低下するものの,再 び荷重が上昇する現象が見られた。特にSL-PE-10は最大 荷重がひび割れ発生荷重よりも大きくなった。しかし,

鋼繊維はその現象が見られなかった。また, SL-ST-12 は 急激な荷重の低下は見られず,徐々に荷重が低下し,ひ び割れ幅が広がっていった。

3. 引張軟化特性

3.1 引張軟化曲線の推定

切欠きはりの3点曲げ試験かた得られた荷重-CMOD関係から多直線近似法を用いて引張軟化曲線の推定を行った。引張軟化曲線の推定にはJCIで公開されている逆解 析プログラム⁵⁾を用いた。図-2 および図-3 に荷重-CMOD 関係の解析値を,図-4 および図-5 に引張軟化 曲線を示す。

図-7 引張軟化曲線モデル

図-2.3より最大荷重およびそれ以降の挙動は試験値 と解析値でよく一致していることが確認された。また, 図-4,5よりひび割れ発生後に結合応力が低下している が、短繊維補強試験体は短繊維の架橋効果により、ある 程度の応力を保持しながら仮想ひび割れ幅が進展してい る。この結合応力の低下は混入率が大きいほど小さく, 荷重-CMOD 関係と同様の傾向であった。また一部の試 験体は、ひび割れ発生後に結合応力が一旦低下するが、 再び上昇する現象が見られ、これらの試験体は荷重-CMOD 関係においても同様の傾向であった。

3.2 有効破壊エネルギー

図-4.5 に示す引張軟化曲線を用いて混入率による破 壊エネルギーGf SD を検討した。短繊維補強コンクリート の場合,図-4,5に示すように結合応力がゼロとならな いので、ある仮想ひび割れ幅までの有効破壊エネルギー で評価する必要がある。そこで、0.5mmのひび割れ幅は これ以上大きくなると鉄筋コンクリートの耐久性上、大 きな問題が生じる値であることから、仮想ひび割れ幅 0.5mm までの引張軟化曲線下の面積を有効破壊エネルギ -G_fと定義し算出した。算出結果を図-6 に示す。N, SL ともに混入率の増加とともに Gf も増大し、混入率に よる G_fの増大はコンクリート種類に関わらず鋼繊維が 最も大きい。Nは1.0%までにおいてはビニロン繊維とポ チレン繊維、ビニロン繊維の順に小さい値となった。

ル化の検討を行った。一般に、Nの引張軟化曲線は2直 線で表され、その折曲がり点応力は引張軟化開始点応力 の1/4 としたモデルが多用されている。一方で、短繊維 補強した場合,破断に至らないことから、2 直線でモデ ル化はできない。そこで、東山らの研究のを参考にして モデル化の検討を行った。図-7 に引張軟化曲線のモデ ルを示す。各折曲がり点の応力および仮想ひび割れ幅を 設定する前の条件として、まず短繊維無補強コンクリー トについては N, SL に関わらず従来通り 2 直線(灰色網 掛け部分)でモデル化を行う。さらに短繊維補強した場 合,Nは3直線(黒色実線)で,SLはSL-STは3直線, それ以外は4直線(赤色破線)でモデル化を行った。こ れは2.4 および3.1 で述べたように、SLのビニロン繊維 およびポリエチレン繊維については荷重および結合応力 が上昇する現象が見られており、精度良く評価するため に上記のように決定した.また,各種短繊維補強コンク リートは最終破壊まで至ることができなかったため,同 図に示すように3直線では第2折曲がり点以降,4直線 では第3折曲がり点以降の応力を一定の値としている。

次に、各折曲がり点の応力 σ および仮想ひび割れ幅 w の値の決定方法を述べる。決定の際は図-8および図-9 に示すデータを使用した。同図中のプロットは図-4,5 に示す引張軟化曲線の各折曲がり点に相当する解析値を 示している。

第1折曲がり点応力は,Nの場合,図-8の解析値(●) より引張軟化開始点応力の 1/3 とした 1/3 モデルを基本 とし、ビニロン繊維および鋼繊維については各繊維の混 入率の影響を考慮しながら、それぞれ(0.18V+1/3) ft, $(0.25V_{f}+1/3)$ f_t とした。仮想ひび割れ幅 (W₁) (同図解 析値(○))は他の仮想ひび割れ幅(W₂)(同図解析値(△)) と比較して混入率による値の変動率は小さいので一定

図-9 引張軟化曲線の解析値とモデルの比較(軽量2種コンクリート)

カノーや	第1折曲	由がり点	第2折日	曲がり点	第3折曲がり点		
91)	σ_{BP1}	W1	σ_{BP2}	W2	σ_{BP3}	W ₃	
N-00-1	$f_{\rm c}/3$		0	$5.1G_{c}/f_{c}$	_	_	
N-00-2	<i>J I</i> , <i>S</i>	$0.30G_f/f_t$	Ŭ	0.10557			
N-V-05	$(0.18V_{f})$		$0.28V_f f_t$	$(-0.16V_f +$	-		
N-V-10	+1/3)f			$5.1G_{\rm c})/f_{\rm c}$		-	
N-V-15				(0.271/			
N-PE-05	$f_t/3$		$0.21V_{f}f_{t}$	$(-0.2/V_f +$	-	-	
N-PE-10	0.		50-	$5.1G_f)/f_t$			
N-ST-04	$(0.25V_f)$		$(0.13V_f +$	$(-0.25V_f +$	-	-	
N-ST-08	$+1/3)f_{t}$		$(0.23) f_t$	$5.1G_{f})/f_{f}$			
N-ST-12	6.10			, , ,			
SL-00	$f_t/2$		0	$3.6G_f/f_t$	-	-	
SL-V-05	C 10		$0.18V_f f_t$	$(-0.05V_f +$	0.0514 6	$4W_{2(SL-00)}$	
SL-V-10	$f_t/2$			$3.6G_{c})/f_{c}$	$0.25V_f f_t$	$= 14.4G \epsilon/f$	
SL-V-15		$0.20G_f/f_t$		(0.051)		2007	
SL-PE-05	$f_t/2$		$0.40V_f f_t$	$(-0.05V_f +$	$0.56V_{f}$	$3W_{2(SL-00)}$	
SL-PE-10	51			$3.6G_f)/f_t$		$= 10.8G_f/f_t$	
SL-ST-04	$(0.10V_{f})$		$0.40V_f f_t$	$(-0.14V_f +$			
SL-ST-08	$+1/2)f_{\star}$			$36G_{c})/f_{c}$	-	-	
SL-ST-12	· 1,2)ji			2.00 ////			

表-4 引張軟化曲線モデル式

値の 0.30G_f/f_t とした。一方で, SL は図-9の解析値(●) より引張軟化開始点応力の 1/2 とした 1/2 モデルを基本 とし, N と同様に混入率の影響を考慮し, 鋼繊維を $(0.10V_{f}+1/2) f_i$ とした。仮想ひび割れ幅 (W₁) は同図解 析値(○) より一定値の 0.20G_f/f_i とした。ここで, G_f は N-00, SL-00 の破壊エネルギー, つまり図-10 N-00 およ び図-11 に示す SL-00 のモデルの面積である。モデルは 同図に示す N-00, SL-00 の引張軟化曲線下の面積と一致 するように各折れ曲がり点の値を決定している。また, f,は各タイプの割裂引張強度である。

第2折曲がり点応力(σ_{BP2})はN, SLともに図-8, 9の解析値(▲)より混入率と線形関係を有するように した.ただし,N-STについては得られた引張軟化曲線を 精度よく再現するために 0.4~1.2%の範囲において線形 関係を有するモデルとしている。そのため,0.0~0.4%間 の混入率は適用外であることに注意していただきたい。 また,第2折曲がり点の仮想ひび割れ幅(W₂)は同図解 析値(△)より混入率の増大に応じて小さくなる傾向が 見られる。そこで簡易的に混入率と線形関係を有するよ うにした。

第3折曲がり点応力(σ_{BP3})は同図解析値(\blacksquare)より 線形関係を有すると考えられ、 σ_{BP2} と同様な決定方法と した。仮想ひび割れ幅(W_3)は同図解析値(\Box)より混 入率による影響は見られなかったため、東山らと同様に SLのビニロン繊維は $4W_{2(SL-00)}$,ポリエチレン繊維は $3W_2$ (SL-00)とした。なお、図-10、11には提案したモデルを 合わせて載せており、解析値と一致していない部分があ

るが,引張軟化曲線の一部分を一致させるのではなく, 全体とモデルを一致させるためにこのような結果となっ ている。以上から,**表-4** に各折曲がり点の値を,**図**-10 および**図**-11 に引張軟化曲線と提案したモデルとの 比較を示す.同図より各繊維のモデルは引張軟化曲線を 精度良く再現できると考えられる。なお,本モデル式の 適用範囲は f_t が 1.89~4.29N/mm², V_f がビニロン繊維 0~ 1.5%,ポリエチレン繊維 0~1.0%, N の鋼繊維 0.4%~ 1.2%, SL の鋼繊維 0%~1.2%とした範囲内である。

4. まとめ

本研究で得られた結果を以下に示す。

- N, SLともにひび割れ発生以降の荷重の低下率は短 繊維の種類に関わらず混入率が大きくなるほど小 さくなった。
- 2) ひび割れ発生後の短繊維の架橋効果は各繊維で違い が見られた.それは SL に顕著に表われ、ビニロン およびポリエチレン繊維はひび割れ発生後、一旦荷 重は低下するが、再び荷重が回復した。一方、鋼繊 維にはそれが見られなかった.しかし、SL-ST-12は 急激な荷重の低下は見られず、徐々に荷重が低下し、 ひび割れ幅が広がっていった。
- 3) 多直線近似法による引張軟化曲線の推定を行った。 試験値と解析値は最大荷重および最大荷重以降の 挙動においてよく一致していることが確認された。
- 4) 引張軟化曲線を用いて有効破壊エネルギーを検討し

た。N, SL ともに混入率の増加とともに有効破壊エ ネルギーも増大し、その増加率はN, SL ともに鋼繊 維が最も大きかった.

- 5) 引張軟化曲線を簡便に取り扱うためにモデル化の提 案を行った. 短繊維無補強は2直線, 短繊維補強の 場合, N は基本的に3直線モデル, SL は4直線モデ ルとした.
- 謝辞本研究は、太平洋セメント株式会社,株式会社クラレ、東洋紡績株式会社から材料を提供頂き実施しました。ここに記して謝意を表します。

参考文献

- 山口信他:高分子量ポリエチレン繊維を用いた繊維 補強コンクリートの靱性確保を目的とした調合と その基礎物性に関する実験的研究,日本建築学会構 造系論文集, Vol.73, No.634, pp.2091-2100, 2008
- 2) 土木学会: コンクリート標準示方書, [規準編], 2005
- JCI 規準・指針:切欠きはりを用いた繊維補強コンク リートの荷重-変位曲線試験方法 JCI-S-002-2003.
- 4) 崔智宣他:鋼繊維補強された軽量2種コンクリートの引張軟化特性,コンクリート工学年次論文集 Vol.31, pp.1327-1332,2009
- 5) JCI 規準・指針: JCI-S-001-2003,切欠きはりを用いた コンクリートの破壊エネルギー試験方法, 2003
- 東山浩士他:ポリプロピレン繊維補強軽量コンクリートの引張軟化特性,「材料」Vol.57, No.1, pp.90-96, 2008