論文 鉄筋腐食によって劣化した RC 部材の HPFRCC を用いた補修工法の提案

浅野 翔也*1・前田 徳一*2・大橋 亮介*3・小林 孝一*4

要旨:本研究では,鉄筋腐食によって劣化した鉄筋コンクリート部材を対象とした,複数微細ひび割れ型繊 維補強セメント複合材料(以下 HPFRCC)を用いた補修工法を提案し,耐荷力,鉄筋の防食性能を比較検討した。 実験では,鉄筋の質量減少率が0%,2.5%,5%,10%の供試体に,それぞれ,未補修,HPFRCC で補修,質 量減少率が5%,10%の供試体のみ HPFRCC と繊維ネットを併用して補修し,曲げ試験を行った。その結果, 本研究の範囲から鉄筋の質量減少率が10%程度であれば,HPFRCC で断面修復を行うのみで,健全な状態の 耐荷力が回復できることが確認できた。また,HPFRCC の高い防食性能を確認することができた。 キーワード:鉄筋腐食,補修,断面修復,HPFRCC,繊維ネット

1. はじめに

近年,鉄筋コンクリート(以下 RC)構造物の鉄筋腐食に よる劣化が問題となっている。鉄筋腐食は, RC 構造物 の耐荷力を低下させるため,鉄筋腐食の生じた構造物の 合理的な補修工法の開発が必要不可欠である。

鉄筋腐食によって劣化した構造物を補修する際には ポリマーセメントモルタルによる断面修復工法が用い られることが多いが,本研究では複数微細ひび割れ型繊 維補強セメント複合材料(以下 HPFRCC)を用いた断面修 復工法を提案する。

HPFRCCは、初期ひび割れ発生後も引張応力が上昇す る「擬似ひずみ硬化特性」、微細なひび割れが複数に分散 して生じる「複数微細ひび割れ発生」という特徴を有す る。そのため、HPFRCCを断面修復材として使用した場 合には、引張力の分担、高い鉄筋の防食性能が期待でき る。鉄筋腐食の生じた RC構造物を HPFRCC で補修した 際の防食性能は、倉知ら¹⁾²⁾により明らかとなっているが、 その場合の耐荷性能については明らかにされていない。 そこで、本研究では、鉄筋の腐食により劣化した RC 部 材に対して HPFRCC の吹付けにより断面修復した供試 体の曲げ耐荷性能および、断面修復材として鉄筋防食性 能を評価することとした。また、HPFRCC による引張力 の分担は不十分であるため、さらに HPFRCC のひび割れ 分散性を向上させるために、繊維ネットを併用する工法 についても耐荷力,変形性能を検討した。

2.実験概要

2.1 使用材料及び配合

(1) 母材コンクリート

母材コンクリート(以下 NC)の配合を表-1 に示す。水 セメント比は55%、セメントは早強ポルトランドセメン ト(密度:3.15g/cm³),細骨材に陸砂(密度:2.59g/cm³), 粗骨材には砕石(密度:2.61g/cm³)を用いた。

(2) HPFRCC

HPFRCC の配合を**表**-2 に示す。繊維は、混入量 2.0%、 長さ 12mm(直径 40 μ m)のポリビニルアルコールと、長 さ 9mm(直径 12 μ m)のポリエチレン繊維を混合して使用 した。HPFRCC 設計・施工指針³⁾に示されている一軸引 張試験よって引張試験を行った。図-1 にその結果を示す。

図-1 一軸引張試験結果

水	水セメント比 細骨材率 単位量 (kg/m ³)						スランプ		空気量	Imp	
	(%)	(%)	水	セメント	細骨材	粗骨材	AE減水剤	.剤 (cm) (%)			
	55	49.4	180	327	810	920	0.8175	7.	0	4.6	
	表-2 HPFRCC 配合										
	水結合材比 単位量 (kg/m ³) #### 泪 黒 (us 10) フロ				-	空	気量				
	(%)		水	結合材			(mm)		(%)	
	34		312	917		2	142)	5	. 0	

表-1 NC 配合

*1 岐阜大学大学院 工学研究科社会基盤工学専攻 (正会員)

*2 東洋紡績株式会社 スーパー繊維事業部 (正会員)

*3 岐阜大学 工学部社会基盤工学科 (正会員)

*4 岐阜大学 工学部社会基盤工学科 准教授 博(工) (正会員)

(3) 繊維ネット

繊維ネットは高強度ポリエチレン製のものを用いた。 その形状を図-2 に示す。10mm ピッチの格子状であり, 強度は格子 5 本(50mm)あたりで 2.7kN, ヤング率は 50~70kN/mm²である。なお,強度とヤング率はメーカー 保証値である。

2.2 載荷用供試体

本研究では,主筋の腐食量のコントロールを容易にす るため,また,主筋以外の材料の劣化の影響を除くため, 以下の方法で供試体を作製した。供試体は,一般的な実 構造物と同程度の鉄筋比となるように設計した。

(1) 腐食鉄筋の作製

載荷用供試体の引張鉄筋は,経年による劣化を模擬す るためあらかじめ100mm×100mm×2000mmのRC部材 を作製した上で図-3のように電食で腐食させた。鉄筋の 目標質量減少率である,2.5,5,10%となるように式(1)⁴) を用いて通電時間を逆算し,鉄筋を腐食させた。また, 腐食鉄筋にはD13(SD345)を使用し,健全時の降伏強度は 381MPa である。

W=0.766×IT (1)
ここで、W: 腐食量(g)、IT:積算電流量(A・h)である。電
食させた鉄筋は、電食が完了した後、図-3の部材からは
つりだした。

(2) 質量減少率の測定

電食終了後,はつりだした鉄筋は、ウォータージェットで錆を落とした後,腐食後の質量を計測した。質量減 少率の算出には式(2)を用いた。

$$C = \frac{m \times l_c - m_c}{m \times l_c} \times 100 \tag{2}$$

ここで、 $C: 質量減少率(%), m: 錆除去後の健全な鉄筋 の長さ 1cm あたりの質量(g/cm), <math>m_c: 錆除去後の腐食鉄 筋の質量(g), l_c: 腐食鉄筋の長さ(cm)である。$

(3) 載荷試験用供試体の作製

供試体の一覧,形状及び寸法を表-3,図-4に示す。供 試体は各水準2体ずつとした。供試体断面は,100mm× 200mm,全長が1600mm,スターラップの間隔は60mm ピッチとした。補修を行わないNC供試体は,断面100mm ×200mmを全てNCで打設する一体型とした。HPFRCC で補修を行うHPFRCC供試体は,母材のコンクリート部 分を160mmの断面で作製した後,質量減少率0,2.5,5, 10%の引張鉄筋を配置し,HPFRCCを積層厚40mmで吹 付けることによって,劣化した部材に断面修復すること を模擬した。また,打継面の表面処理は,母材コンクリ ート打設時に遅延材を打設面に散布しておき,翌日に高 圧洗浄機でモルタル部分を落とすことで,ウォータージ ェットでの表面処理を模擬した。

繊維ネットを併用する場合には、母材に数 cm 厚で

HPFRCC を吹付け,その上に繊維ネット置き,更にその 上に HPFRCC を吹き付けることで HPFRCC と繊維ネッ トの一体化をはかった。なお,腐食量が 5%の供試体に は 100mm×1600mmの繊維ネットを1枚,腐食量が 10% の供試体は同じものを2 枚用いて補修を行った。

なお、本研究に用いた供試体は、健全なコンクリート 母材を用い、スターラップも腐食してないため、実際の 腐食状況をより忠実に再現した場合よりも耐荷力が大 きくなることが予想される。

(4) はりの曲げ載荷試験

曲げ載荷試験の概要図を図-5 に示す。等モーメントス パン長 300mm, せん断スパン長 550mm の中央 2 点載荷 の単純漸増載荷とした。計測項目は荷重, 変位, ひずみ,

図-2 繊維ネット

///m///

図−3 電食方法

ひび割れの進展状況とした。荷重はロードセル,ひずみ はひずみゲージ,変位は高感度変位計,ひび割れの進展 状況はマイクロスコープにて計測した。変位は,支点, 載荷点,等モーメントスパン間に等間隔で設置した合計 7ヶ所で計測した。曲げひび割れ幅は,等モーメントス パン間から左右にそれぞれ 5cm 延長した 40cm の区間で 測定した。荷重が 15kN, 30kN, 45kN, たわみが 5mm の 際は,対象区間全てのひび割れの幅を,たわみが 10mm, 15mm の際は最大ひび割れ幅のみ計測した。また,曲げ 載荷試験は,ひずみゲージによって計測しているコンク リートの圧縮ひずみが低下し始めたら終了した。

2.3 塩水散布用供試体

図-4 と同様の供試体に図-6 のように治具を装着し、 上部ボルトを締めることによって曲げひび割れを導入 した。HPFRCC の積層厚は, 無積層, 30mm, 40mm とし たが積層厚が 30mm の供試体のみは, 断面寸法が 100mm ×190mm である。積層厚 30mm, 40mm の場合の引張鉄 筋のかぶりは、それぞれ 12mm、22mm であり、かぶり が鉄筋の防食性能に与える影響を検討した。HPFRCC 積 層無のNC供試体は、0.2mmの曲げひび割れが入るまで 上部ボルトを締めてひび割れを導入した。HPFRCC 供試 体は,NC 供試体と同じたわみ量になるまで上部ボルト 締め,ひび割れを導入した。それぞれの供試体に導入し たひび割れ幅を表-4に示す。ただし、ここに示したひび 割れは、目視で確認できるもののみであり、HPFRCC供 試体には、ここに示した以外にも多数の微細なひび割れ が生じている。6時間毎に5分間,濃度3%の塩化ナトリ ウム水溶液を散布し,60日間塩水散布を行った後に鉄筋 をはつり出し、プラニメーターで鉄筋の腐食面積を測定 して鉄筋の防食性能を評価した。

2.4 付着強度試験

文献5)に従って実施した付着強度試験に用いた供試体 を図-7 に示す。コアドリルを用いて,供試体に,直径 50mm,深さ 60mm(HPFRCC の積層厚 40mm)の切込みを 100mm 間隔で3本入れた。切込みを入れた部分に,直径 50mm の鋼製アタッチメントをエポキシで接着し,硬化 後,付着強度試験を実施した。また,付着強度試験は, 供試体1体あたり3ヵ所,供試体3体の合計9箇所で行 った。

3.実験結果および考察

3.1 付着強度試験結果

付着強度試験結果,および付着破壊個所,を表-5 に示 す。付着強度試験を行った9個所のうち,4個所は破壊 面に HPFRCC 部が含まれていたが,何れも HPFRCC と 母材の界面を横断した破壊であり HPFRCC と母材の界 面で破壊した供試体は無かった。また,いずれの試験個

[単位:mm]

図-5 載荷試験

図-6 塩水散布供試体

表-4 塩水散布供試体に導入したひび割れ幅

積層圧	供試体 位置	ひび割れ幅(mm)						
毎き屋	노	0.10	0.10	0.06	0.10	0.20	0.15	0.10
卅 1月	下	0.04	0.08	0.10	0.08	0.06	0.10	
HPFRCC	노	0.04	0.04	0.04	0.04			
30mm	下	0.04	0.04	0.02	0.02	0.04	0.04	
HPFRCC	노	0.04	0.04	0.02	0.02			
40mm	下	0.04	0.02	0.02	0.02	0.02	0.02	0.02

単位[mm]

図-7 付着試験に用いた供試体

表-5 付着試験結果

-		
試験 No.	付着強度 (N/mm ²)	破壊個所
1	2.03	母材
2	2. 02	HPFRCC/母材
3	2. 24	HPFRCC/母材
4	2.03	HPFRCC/母材
5	2.14	母材
6	2. 24	母材
7	2.34	HPFRCC/母材
8	2. 01	母材
9	2. 12	母材

所も 2.0N/mm² 以上の高い付着力を保っていた。以上の ことから, HPFRCC と NC の付着は良好であることが確 認された。

3.2 載荷試験

(1)ひび割れの進展

表-6に、腐食率10%のNC供試体、HPFRCC供試体、 HPFRCCと繊維ネットを併用した供試体のひび割れの幅 と本数を示す。なお、ひび割れ幅は、荷重が15kN、30kN、 45kN、たわみが5mm、10mm、15mmに達した際に計測 している。表-6より、HPFRCCで補修することで、微細 なひび割れが複数に分散すること、繊維ネットを併用す ることで更に微細となり、ひび割れ分散性が向上してい ることが分かる。しかし、鉄筋が降伏して以降は、 HPFRCCで補修した供試体、繊維ネットで補修した供試 体共に、ひび割れ本数が増加することは無く、局所的に ひび割れ幅が増大していく傾向を示した。

(2)荷重-たわみ関係

図-8 に、各供試体の荷重-たわみ関係を示す。全ての 水準において、それぞれ2体ずつ載荷試験を行っている が、それらの間の差は小さかったため、1 体の結果のみ 示す。

図-8より, HPFRCC で補修したことによって, いずれの供試体においても,降伏荷重,終局荷重,最大荷重が未補修の供試体よりも大きくなっており, HPFRCC による耐荷力の向上がみられた。

また, 表-6 に示したように, たわみがある程度大きく なると、HPFRCC 積層部分のひび割れ幅も局所的に非常 に大きくなり, ひずみ軟化し HPFRCC は引張力を分担し なくなる。このことから、局所的なひび割れの拡大が生 じて以降は、荷重が低下していくと思われたが、鉄筋降 伏以降も荷重の低下が見られなかった。これは, HPFRCC の高い付着力が原因と考えられる⁵⁾。NCは,ひび割れ付 近で鉄筋との付着破壊を生じて鉄筋の抜け出しが起こ り、ある程度の区間の鉄筋のひずみが一様に増大するの に対し、HPFRCC は付着力が高く、鉄筋との一体性を保 たれる材料であるため, HPFRCC で補修した供試体の鉄 筋は、未補修の供試体の鉄筋に比べて、局所的により大 きなひずみが発生する。このことから, HPFRCC で補修 した供試体の鉄筋は、ひずみ硬化が生じ、高い応力が生 じているため見かけ上、耐荷性能が高くなっているもの と考えられる。

HPFRCC に加え,繊維ネットを併用して補修すること で,特に腐食率 10%の場合に,最大荷重,変形性能が大 きくなっており, HPFRCC のみで補修するよりも,補修 効果が高くなっている。これは,表-6より,繊維ネット がひび割れの局所化を抑制し,分散させているためと考 えられる。また,腐食率 5%の供試体と比較して腐食率

表-6 ひび割れの幅と本数

未補修供試体

	荷重	(kN)	34)	
	15	30	5	10	15
最大ひびわれ幅(mm)	0. 028	0.080	0.353	1.400	1.700
平均ひび割れ幅(mm)	0.027	0.061	0.199		
ひび割れ本数(本)	2	3	3		

HPFRCC で補修した供試体

	荷重	(kN)	34)	
	30	45	5	10	15
最大ひびわれ幅(mm)	0. 015	0.046	0. 089	0.350	0.900
平均ひび割れ幅(mm)	0. 018	0. 030	0. 032		
ひび割れ本数(本)	2	8	21		

HPFRCC と繊維ネットで補修した供試体

	荷重	(kN)	変位(mm))
	30	45	5	10	15
最大ひびわれ幅(mm)	0. 021	0. 032	0. 050	0.057	0.850
平均ひび割れ幅(mm)	0.016	0. 025	0. 033		
ひび割れ本数(本)	3	10	28		

10%の供試体の方が、繊維ネットの効果が高いのは鉄筋 の腐食が進行することで鉄筋の断面積のばらつきが大 きくなり、鉄筋の断面欠損が大きな箇所断面には局所的 に大きなひずみが発生するため、鉄筋と比較して弾性率 の小さな繊維ネットの効果がより発揮でき、耐荷力、変 形性能が増大したと考えられる。

図-9に、荷重-たわみ関係のたわみ 6mm までの拡大図 を示す。なお、2.5-HP の供試体のみ初期勾配が異なって いるが、これは供試体の載荷時の下面が HPFRCC 吹付け 面であり凹凸があったため、載荷初期に供試体が支点上 で若干移動したためである。未補修の供試体と HPFRCC で補修した供試体を比較すると、HPFRCC で補修した供 試体の方が、剛性が高くなっていることが分かる。また、 鉄筋の降伏は、概ねたわみが 4mm 前後であることが確 認できる。

3.3 最大荷重と質量減少率の関係

はりの曲げ載荷試験で得られた各供試体の最大荷重 とその計算値を表-7,最大荷重と質量減少率との関係を 図-10 に示す。耐力計算は簡易的に行い,鉄筋の断面積 は腐食により均一に減少すると仮定し,鉄筋の質量減少 率が10%の場合は単純に鉄筋の断面積を90%として計算 し,HPFRCCで補修した場合には一軸引張試験より得ら れた引張強度の3.8MPaにHPFRCCの積層断面積を乗し た値である引張分担力15.2kNを加え,繊維ネットで補修 した場合には引張耐力のメーカー公称値である4.8kNを 引張分担力に加えた。

本研究では鉄筋腐食によって劣化した構造物を簡易 的に模擬した供試体を用いているが,表-7の計算値,平 均最大荷重がある程度一致していることから、本研究で 用いた供試体と鉄筋腐食によって劣化した実構造物に は妥当性があるといえる。HPFRCC で補修することで、 腐食率 2.5%の供試体は 7.3kN, 5%の供試体は 8.2kN, 10% の供試体は11.0kN 最大荷重が向上し,腐食率が大きくな るほど、HPFRCCによる耐荷力の回復効果が大きくなっ ている。これは、鉄筋の腐食が進行するほど、鉄筋の断 面積が減少し、その部分に高い応力が発生するため、 3.2(2) で述べたような鉄筋のひずみ硬化現象が起きや すくなっていると考えられる。ただし、その場合には鉄 筋に局所的に極めて大きなひずみが発生するため、例え ば本研究の場合よりもさらに劣化が進行した場合や,地 震時の柱のような大変形を想定した試験を行い、変形や じん性について調査する必要があると考えられる。

しかし、本研究の範囲からは、0-NC と 10-HP の供試 体の最大荷重がほぼ同じことから、10%程度の質量減少 率ならば、HPFRCC で断面修復を行うことで、健全な状 態の耐荷力を回復させることができることが明らかに なった。

表-7 供試体ごとの最大荷重と質量減少率

供試体	最大	平均最大	最大荷重の	質量
呼称	荷重(kN)	荷重(kN)	計算値(kN)	減少率(%)
0-NC-1	54. 7	F1 0	55 0	0. 0
0-NC-2	55.0	54. 0	00.9	0. 0
0-HP-1	63. 5	60.0 64.0		0. 0
0-HP-2	62. 1	02.0	04. 0	0.0
2. 5-NC-1	53.9	F2 0	54 F	3. 2
2. 5-NC-2	52. 1	55.0	04.0	3. 1
2. 5-HP-1	57.8	60.2	62 /	2. 9
2. 5-HP-2	62. 8	00.3	03.4	2. 9
5-NC-1	50. 2	E0 4	52 1	5.4
5-NC-2	50.7	50.4	D3. I	5.4
5-HP-1	57.9	EQ 7 60 0		5.0
5-HP-2	59.4	JO. /	02.0	5.0
5-net-1	59.7	50 0	61.9	5. 1
5-net-2	60. 0	59.0	04. 0	4. 9
10-NC-1	45.4	45.2	50.2	10. 2
10-NC-2	45.2	45.3	50.3	10. 3
10-HP-1	57.3	F6 2	50.2	9.7
10-HP-2	55.3	00.0	09. Z	9.6
10-net-1 57.9		58.8	62 0	9.6
10-net-2 59.7		50.0	02.0	9.8

3.4 塩水散布試験結果

表-8に塩水散布試験の結果を示す。供試体には鉄筋が 2本入っており、それらを鉄筋A、鉄筋Bとして区別し ている。なお、今回は鉄筋の腐食面積の測定は、鉄筋が 腐食しやすい下側に曝露された供試体のみ測定した。NC 供試体の腐食面積率が4%であるのに対し、HPFRCC供 試体は、鉄筋が全く腐食していなかった。これはHPFRCC に発生するひび割れが極めて微細であるためと、 HPFRCCはNCに比べて、W/C、W/Bが低く、内部構造 が緻密であるため、塩化物イオンが主鉄筋まで到達しな かったためと考えられる。また、ひび割れを導入した際 のたわみは約2.5mmであり、図-9から、鉄筋が降伏す る前の段階のおおよそ使用限界状態にあると判断され る。このことから、使用限界状態において、HPFRCCは 高い防食性能を有していることが確認できた。

4.まとめ

本研究では、鉄筋腐食によって劣化した RC 部材の, HPFRCC を用いた補修工法として、鉄筋の裏側までウォ ータージェットではつり、HPFRCC を吹き付けて断面 修復する工法を提案し、耐荷力、鉄筋の防食性能を比較 検討した。また、繊維ネットの併用した場合の耐荷力も 検討した。得られた主な結果を以下に示す。

- (1)HPFRCC で補修することにより、ひび割れが微細に分散し、繊維ネットを併用することで更にひび割れが微細に分散するが、鉄筋降伏以降はひび割れ本数が増加することはなく、局所的にひび割れ幅が増大していく。
- (2)鉄筋の質量減少率が10%程度であれば, HPFRCCで 断面修復を行うのみで,健全な状態の耐荷力を回復 させる。
- (3)繊維ネットは、特に腐食が進行し、見かけの鉄筋比がある程度小さくなった場合に効果を発揮し、耐荷力を回復させる。
- (4)HPFRCC は高い防食性能が確認でき,特に使用限界 状態のひび割れが微細に分散する状態であれば,極 めて高い防食性能を有する。
- (5)以上のことから、本研究で提案した補修工法は、大 変形性能を求められない、はり部材への補修工法に おいて特に有効である。

表-8 塩水散布試験結果

積層厚 (mm)	鉄筋呼称	腐食 面積(cm ²)	腐食 面積率(%)	平均腐食 面積率(%)	
0	鉄筋A	27.6	4. 32	2 07	
0	鉄筋B	23.0	3.61	5. 97	
20	鉄筋A	0.0	0.0	0.0	
30	鉄筋B	0.0	0.0	0.0	
40	鉄筋A	0.0	0.0	0.0	
40	鉄筋B	0.0	0. 0	0.0	

謝辞

本研究の一部は日本学術振興会科学研究費補助金(基 盤研究 (A)21246072,代表者:下村匠)の助成を受けて実施した。ここに記して謝意を表す。

参考文献

- 1) 倉知星人,加藤善史,小林孝一,六郷恵哲:繊維混 入率が HPFRCC の塩分透過抑制機能に及ぼす影
 響,コンクリート工学年次論文集, Vol.31, No.1, 2009
- Koichi Kobayashi, Takashi Iizuka, HoshitoKurachi and KeitetsuRokugo : Corrosion Protection Performance of High Performance Fiber Reinforeced Cement and Concrete, Cement & Concrete Composites, Vol.32, pp.411-420, 2010
- 3) 土木学会:複数微細ひび割れ型繊維補強セメント複合材料設計・施工指針(案),コンクリートライブラリー127,2007.3
- 4) 田森清美,丸山久一,小田川昌史,橋本親典:鉄筋の発錆によるコンクリートのひび割れ性状に関する基礎研究,コンクリート工学年次論文集,Vol.10, No.2, pp.505-510, 1988
- 5) 土木学会:土木学会規準 JSCE-K 561-2003, コンクリ ート構造物用断面修復材の試験方法(案), 2003
- 水田武利,稲熊唯史,林承燦,六郷恵哲:HPFRCC に より下面増厚した RC 部材の曲げ性状に関する研 究,コンクリート工学年次論文集, Vol.30, No.1, 2008