論文 既存建物袖壁付き柱の補強に関する群アンカーの実験的研究

伴 幸雄*1·山本 泰稔*2·近藤 龍哉*3·大和 征良*4

要旨:本研究は既存袖壁付き柱を鉄骨枠付き補強パネルにより増し厚補強する工法の部分要素実験として行なった。本論文のアンカー要素試験体は基礎梁の構面内にあと施工アンカーを鉛直に埋め込んだ鉛直打設型 モデルである。実験は変形角制御にて正負漸増繰り返し交番載荷し,耐力性能と変形性能を検証した。鉛直 打設型における,耐力・破壊モードの評価について,アンカーの埋込み深さ・定着長さだけでなく,基礎梁 あばら筋と鉄骨枠の関与があることを明らかにし,耐力および破壊の判別方法について提案し,鉄骨枠の効 果を考慮した場合の破壊部位判定式係数を $\alpha = 2.0$ と仮定したとき,概ね実験結果と符合することを確認した。 **キーワード**:袖壁付き柱,住まいながら補強,あと施工アンカー,基礎梁影響,実験研究

1. はじめに

既存RC造中層集合住宅の長辺方向の構面は袖壁付 き柱が多い。この袖壁付き柱に建物外側から「住まいな がら補強」として補強パネルを取り付けて,せん断耐力 の上昇と変形性能の向上を狙うものである。¹⁾

補強パネルの4辺は鉄骨枠(山形鋼)で,これに縦横筋 を溶接配筋する。鉄骨枠にはアンカー留め付け用に穿孔 を施す。既存枠(柱・上下梁)に接着系アンカーで留め付 ける。その後にモルタルを圧入する。

今回の実験では、アンカー要素試験体は基礎梁の構面 内にアンカーを鉛直に埋め込んだ水平接合部を想定し たモデルと、構面外にアンカーをせん断型に埋め込んだ 鉛直接合部を想定したモデルの2種類とした。本報は、 鉛直に埋め込んだモデルについて報告する。本論文では、 既存との接合におけるあと施工アンカーの評価方法の 確認実験結果を記す。実験結果の分析にあたって、アン カー筋の抵抗が、せん断抵抗より引張力を受けることに よる埋め込み部および定着部のコンクリート破壊が支 配的であったことから、群アンカーが主に引張応力を受 けた時の挙動として、既往の評価式の使用²⁾、類似した 部位の評価式の準用、破壊メカニズムの想定などをもと に群アンカーの設計の考え方を検討した。

2. 実験概要

2.1 試験体

試験体は、あと施工アンカーを鉛直に埋め込んで、主 に垂直応力に抵抗するようにしたもの16体である。変 動因子として、アンカー筋径、アンカー本数、有効埋め 込み深さ、加力点高さを変動因子にした。表-1に試験

表-1 試験体諸元

試	アン	/カー筋	+田 こえ	埋込	定着	加力
験	ホモッドク		- 星込 形式	深さ	長さ	高さ
体	呼び名		11710	(mm)	(mm)	(mm)
1	D16			10da		
2	D10	2本		15da		
3	D10	2 列		10da		
4	D19			15da		2200
5	D16			10da		2300
6	DIG	3本		15da		
\bigcirc	D10	2 列		10da		
8	DI9		鉛直	15da	10.1	
9	DIC		型	10da	Tuda	
10	D16	2本		15da		
(11)	D10	2 列		10da		
12	DI9			15da		1150
13	DIC			10da		1150
14	D16	3本		15da		
15	D10	2 列		10da		
16	019			15da		
			1			

※da…アンカー筋径(呼び名mm)

体名称とその諸元を記す。

試験体の形状と配筋詳細を図-1に示す。また,材料 強度を表-2と表-3に記す。各試験体は基礎梁に2枚 の補強パネルを加力方向に対して表裏対称に接着系あ と施工アンカーで留め付けた。これは,試験体が構面外 に変形することを抑止する目的と,群アンカーとして挙 動する状況を検証する目的から行った。なお、加力高さに 対して補強パネルの幅が450mmと小さいことから、曲げ応 力に対するせん断力の影響は小さいと考え、アンカー筋に は曲げによる圧縮と引張の応力のみ作用すると考えている。

*1 矢作建設工業株式会社 地震工学技術研究所 主席研究員 (正会員)

*4 日本ヒルティ株式会社 マーケティング本部 テクニカルエンジニア 修士(工学)

^{*2} 芝浦工業大学 名誉教授 博士(工学) (正会員)

^{*3} 工学院大学 工学部建築学科 准教授 博士(工学) (正会員)

表-2 コンクリート系材料試験結果

	圧縮強度 (N/mm ²)	割裂強度 (N/mm ²)	ヤング率 (N/mm ²)
既存部	21.6	2.0	24077
補強部	73.4	5.6	27153
V HT.	右切けコンクリー	1 対社 (1) オート	ルカルズキア

※既存部はコンクリート、補強部はモルタルである

	降伏強度 (N/mm²)	引張強度 (N/mm²)	ヤング率 (N/mm ²)	使用部位
D19	374.8	555.2	186857	アンカー
D16	370.7	529.5	189063	アンカー
D6	407.6	517.1	190014	壁筋
<i>ф</i> 19	321.7	449.9	203817	既存主筋
φ9	351.5	450.5	192545	既存 st

表-3 鉄筋材料試験結果

2.2 加力

加力装置の概要を図-2に示す。試験体の支持は基礎 梁を加力装置下枠架台に留め付けた。加力点は接合面 (基礎梁と補強パネルの界面)から2300mm と1150mm に加力高さを変動させて,接合面に生じる曲げモーメン トとせん断力の割合を変えた。

加力は変位制御で行った。補強パネルの部材角で± 1/500rad, ±1/250rad, ±1/125rad, ±1/83rad, ±1/63rad, ±1/50rad, +押切を1サイクル正負交番漸増加力した。

2.3 計測

計測は基礎梁を不動点とし、基礎梁に対する補強パネ ルの変位量を計測した他、アンカー筋のひずみ状況を観 測した(図-3)。

3. 実験結果

代表的な結果(損傷写真・Q-R図)を写真-1,図-4に示す。試験体は加力を受けて基礎梁と補強パネルの 接合面にはせん断力と曲げモーメントが生じる。これら の応力に対し,以下の検討を行う。

- i)アンカー筋①,②,④,⑤の正加力時歪状況について加力値との関係を検討する。[アンカー筋①,②,
 ④,⑤は,正加力時引張力を受ける]
- ii)樹脂系あと施工アンカーの引張耐力の設計値と最大 強度の実験値を比較・検討する。
- iii)定着部の設計強度の考え方を記す。〔試験体の幾つ かは補強パネル側でアンカー筋の定着部が破壊した (写真-1b)参照)。〕
- iv)アンカー筋を埋め込んだ基礎梁側で埋め込んだアン カー筋の先端を連ねるように割れ裂けを生じたこと に対する考え方を記す。
- v)樹脂系あと施工アンカーの設計,補強パネル定着部の破壊,基礎梁の割れ裂けの考え方を総合的に考察して,樹脂系あと施工群アンカーの実験結果を報告する。

3.1 あと施工アンカーの軸歪の状況

正加力時に引張力を受けるアンカー筋①とアンカー 筋②(図-3参照)の歪状況の代表例(試験体⑫,⑥) を図-5に加力値(Qc)と併記して示す。また,最大強 度時の前後のひずみ状況を表-4にまとめて記す。 アンカー筋は最大強度以前に既に降伏しているもの (「既降伏」と表記)や、最大強度時以降も降伏に至ら ないもの(「未降伏」と表記)、および最大強度時に降伏 したもの(「降伏」と表記)があり、試験体の最大強度 とアンカー筋の降伏に明確な相関は見られない。これよ り、アンカー筋の降伏現象のみで、最大強度を評価する ことは不合理と考える。

3.2 あと施工アンカーの引張耐力設計値

あと施工アンカーの引張耐力の設計値²⁾を基に,破壊 形式毎の試験体強度を計算して実験結果と比較した(**表** -5)。計算では,曲げモーメントの支持点位置を接合 面の補強パネル圧縮側端(図-7参照)とし,引張応力 中心は1列1本の時はアンカー筋の位置とした。1列2 本の時は2本の中間点とした。また,アンカー筋破断強 度での設計値も(Tal', calQcl')として記した。

図-6に群アンカーの引張り有効水平投影面積の扱い例を示す。1本のアンカーに対して有効水平投影面積 は赤破線で囲まれた矩形内で,かつ,青線で示す円内と した。

表-5 で試験体強度の設計値と実験値を比較して見 ると、破壊モードがアンカー筋の軸降伏で決まる設計値 を実験値が超えるものや、コンクリート破壊モード(以 降「C破壊」と表記)を実験値が下回るものがある。逆 に上回るものもある。これらより、アンカー要素試験体 の耐力をアンカーの引張耐力のみで推定することは不 合理と考える。

3.3 あと施工アンカーの定着部強度

試験体の半数がアンカー筋を補強パネルに定着した 部分で破壊した。破壊の状況は引張力を受けるアンカー のC破壊に類似していたことより、金属系あと施工アン カーの引張耐力の計算法を準用して定着強度の計算し 実験結果と比較した(**表**-6)。なお、添え字に定着強 度を意味する「f」を付記した。

図-7にアンカー筋の補強パネルへの定着状況を示 す。ナット付きで定着長さは首下10daである。C破壊の 想定面を45°とし、有効水平投影面積を計算した。 試験体の有効水平投影面積の算定例を図-8に示す。計 算要領は3.2節で示した図-6の算定と同様である。

表-6で,設計強度と実験値を比較する。設計値では 補強パネルが C 破壊となるが実験値はこれより大きい。 この要因として,定着部は補強パネルの枠鉄骨が存在す ること,補強パネル内に配筋があることなどが挙げられ る。よって,定着部の強度は C 破壊モードの計算値に比 べて大きな値となっていると考えられる。

図-6 群アンカーの有効水平投影面積の扱い

※赤文字が設計最小値

								,		
	試験体名	1)	2	3	(4)	(5)	6	$\overline{\mathcal{O}}$	8	
>, ±±+	アンカー筋	D	16	D	19	D16		D19		供来
ノ団	埋込み深さ	10da	15da	10da	15da	10da	15da	10da	15da	1佣~5
ノ加	引張アンカー本数(n)			2				4		
- ホ のち	Ta(kN)	73.8	73.8	97.0	107.6	58.7	73.8	68.5	95.7	設計値
	Ta1(kN)	73.8	73.8	107.6	107.6	73.8	73.8	107.6	107.6	軸降伏
りて	Ta1'(kN)	105.3	105.3	159.3	159.3	105.3	105.3	159.3	159.3	軸破断
「一」で	Ta2(kN)	77.5	125.1	97.0	151.2	58.7	82.6	68.5	95.7	C破壊
	Ta3(kN)	81.6	122.3	115.0	172.5	81.6	122.3	115.0	172.5	付着
,,,,	<i>τ</i> a(N/mm2)				10.	.14				
ŧ≓	h(mm), j(mm)	h:加力	h:加力高さ(2300),j:パネル圧縮縁とアンカー筋中心間距離(n=2→373, n=4→300)							
計瞬	calQc1(kN)=Ta1*n*j/h	24.1	24.1	35.1	35.1	38.5	38.5	56.2	56.2	軸降伏
強族	calQc1'(kN)=Ta1'*n*j∕h	34.3	34.3	51.9	51.9	54.9	54.9	83.1	83.1	軸破断
度盕	calQc2(kN)=Ta2*n*j/h	25.3	40.8	31.6	49.3	30.6	43.1	35.8	49.9	C破壊
īχ	calQc3(kN)=Ta3∗n∗j∕h	26.6	39.9	37.5	56.3	42.6	63.8	60.0	90.0	付着
	testQcu(kN)	26.0	29.0	32.8	37.8	33.0	41.0	35.3	53.8	実験値
	試験体名	9	10	1	(12)	13	(14)	(15)	16	備考
≣ , †	h(mm), j(mm)	h:加力	高さ(2300)	, j:パネル	圧縮縁とアン	シカー筋中心	,間距離(n=	2→373, n=	4→300)	
計瞬	calQc1(kN)=Ta1*n*j/h	48.1	48.1	70.2	70.2	77.0	77.0	112.3	112.3	軸降伏
強族	calQc1'(kN)=Ta1'*n*j∕h	68.7	68.7	103.9	103.9	109.8	109.8	166.2	166.2	軸破断
度亞	calQc2(kN)=Ta2*n*j/h	50.5	81.6	63.2	98.6	61.2	86.2	71.5	99.8	C破壊
고	calQc3(kN)=Ta3*n*j/h	53.2	79.8	75.0	112.5	85.1	127.7	120.0	180.0	付着
	testQcu(kN)	52.8	56.0	67.0	73.8	66.8	86.0	78.3	108.5	実験値

表-5	あと施エアンカ・	ーの引張耐力設計値か	いら換算した試験体(の耐力と実験結果の比較
-----	----------	------------	------------	-------------

図-8 定着部有効水平投影面積

図-9 拘束効果を発揮する基礎梁あばら筋想定範囲

1										
	試験体名	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
マ	アンカー筋	D	16	D	D19		D16		D19	
· · ·	定着長さ	10da	10da	10da	10da	10da	10da	10da	10da	1用 クラ
- -	引張アンカー本数(n)	2				4				
75	Taf(kN)	49.6	49.6	55.9	55.9	31.7	31.7	31.7	31.7	設計値
(1)	Taf1(kN)	73.8	73.8	107.6	107.6	73.8	73.8	107.6	107.6	軸降伏
	Taf1'(kN)	105.3	105.3	159.3	159.3	105.3	105.3	159.3	159.3	軸破断
田田田	Taf2(kN)	49.6	49.6	55.9	55.9	31.7	31.7	31.7	31.7	C破壊
反	τ a(N/mm2)				18.	78				
P	Taf(kN)					47.6	47.6	53.9	53.9	設計値
2.	Taf1(kN)			/		73.8	73.8	107.6	107.6	軸降伏
強力	Taf1'(kN)		\sim			105.3	105.3	159.3	159.3	軸破断
度一	Taf2(kN)	\sim				47.6	47.6	53.9	53.9	C破壊
	τ a(N/mm2)				18.	78				
_, 試	h(mm), j(mm)	h:加力	高さ(2300)	, j:パネル	王縮縁とアン	/カー筋中心	>間距離(n=	2→373, n=	4→300)	
計験	calQcf1(kN)=Taf1*n*j/h	24.1	24.1	35.1	35.1	38.5	38.5	56.2	56.2	軸降伏
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	calQcf1'(kN)=Taf1'*n*j∕h	34.3	34.3	51.9	51.9	54.9	54.9	83.1	83.1	軸破断
^皮 設	calQcf2(kN)=Taf2*n*j/h	16.2	16.2	18.2	18.2	20.7	20.7	22.3	22.3	C破壊
	testQcu(kN)	26.0	29.0	32.8	37.8	33.0	41.0	35.3	53.8	実験値
-										
	試検体名	9	10	1	(12)	(13)	14	(15)	16	備考
=⊥ 試	h(mm), j(mm)	h:加力	高さ(2300)	, j:パネル	王縮縁とアン	/カー筋中心	間距離(n=	2→373, n=	4→300)	
計験	calQc1(kN)=Taf1*n*j/h	48.1	48.1	70.2	70.2	77.0	77.0	112.3	112.3	軸降伏
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	calQc1'(kN)=Taf1'*n*j∕h	68.7	68.7	103.9	103.9	109.8	109.8	166.2	166.2	軸破断
∽設	calQc2(kN)=Taf2*n*j/h	32.3	32.3	36.5	36.5	41.4	41.4	44.7	44.7	C破壊

3.4 あと施工アンカーを埋め込んだ基礎梁の強度

testQcu(kN)

あと施工アンカーは基礎梁に埋め込んだ。よって、あ と施工アンカーの破壊モードのうち「C破壊」であって も、アンカー筋の周囲に付着したコンクリート塊が基礎 梁上端主筋に拘束され、引張側アンカー筋の抜け出しを 抑止する。その結果、上端筋の拘束効果はあばら筋の引 張力に起因し、アンカー埋め込み部分の破壊モードのう ちC破壊は基礎梁あばら筋の拘束効果が影響すると考え

52.8

56.0

67.0

た。図-9に、各試験体のアンカー埋め込み部コンクリ ート破壊時に拘束効果を発揮する基礎梁あばら筋の範 囲想定の例を示す。C破壊の線を引張側アンカー筋の先 端から 45 度線に採り、その一つ外側にあるあばら筋ま で(図-9中,赤〇印・青〇印)が拘束効果を発揮する と考えた。表-7の「基礎梁破壊」の値は拘束効果を発 揮するあばら筋の総断面積に降伏強度および最大強度 を乗じた値である。

78.3

実験値

108.5

66.8

73.8

86.0

	試験体名	1	2	3	4	5	6	$\overline{\mathcal{O}}$	8	
_{途 助} アンカー筋		D16		D19		D16		D19		供去
<u> </u>	埋込み深さ	10da	15da	10da	15da	10da	15da	10da	15da	调石
反肋	本数(n)	8	8	8	10	10	10	10	10	
設試	h(mm), j(mm)	h:加力	高さ(2300)	, j:パネル	圧縮縁とアン	レカー筋中心	。間距離(n=	2→373, n=	4→300)	
度計験	cQcsy(kN)=n∗σy*as*j∕h	29.2	29.2	29.2	36.4	29.2	29.2	29.2	29.2	降伏
強体	cQcsu(kN)=n∗σu*as*j∕h	37.4	37.4	37.4	46.7	37.4	37.4	37.4	37.4	破断
	testQcu(kN)	26.0	29.0	32.8	37.8	33.0	41.0	35.3	53.8	実験値
				-						
	試検体名	9	10	1	(12)	(13)	(14)	(15)	(16)	備考
設試	h(mm), j(mm)	h:加力	高さ(2300)	, j:パネル	圧縮縁とアン	ノカー筋中心	>間距離(n=	:2→373, n=	4→300)	
度計験	cQcsy(kN)=n*σy*as*j∕h	58.3	58.3	58.3	72.9	58.3	58.3	58.3	58.3	降伏
強体	cQcsu(kN)=n∗σu*as*j∕h	74.7	74.7	74.7	93.4	74.7	74.7	74.7	74.7	破断
	testQcu(kN)	52.8	56.0	67.0	73.8	66.8	86.0	78.3	108.5	実験値

表-7 あばら筋の拘束効果を考慮した基礎梁破壊の設計値と実験結果の比較

σy:降伏強度351N/mm2, σu:引張強度450N/mm2, as:あばら筋断面積63.6mm2

試験	体名	1	2	3	4	5	6	Ī	8	備考
アンナ	」一筋	D16	D16	D19	D19	D16	D16	D19	D19	
引張側アン	カー筋本数	2	2	2	2	4	4	4	4	マンカー谷
有効埋め	込み深さ	10da	15da	10da	15da	10da	15da	10da	15da	アンハー肋
定規	昏長	10da	10da	10da	10da	10da	10da	10da	10da	
	calQc1(kN)	24.1	24.1	35.1	35.1	38.5	38.5	56.2	56.2	軸降伏
埋め込み部破	calQc1'(kN)	34.3	34.3	51.9	51.9	54.9	54.9	83.1	83.1	軸破断
壊	calQc2(kN)	25.3	40.8	31.6	49.3	30.6	43.1	35.8	49.9	コンクリート
	calQc3(kN)	26.6	39.9	37.5	56.3	42.6	63.8	60.0	90.0	付着
甘砵沙咕垴	cQcsy(kN)	29.2	29.2	29.2	36.4	36.4	36.4	36.4	36.4	降伏
圣 诞 未 娰 场	cQcsu(kN)	37.4	37.4	37.4	46.7	46.7	46.7	46.7	46.7	破断
定着部破壊	calQcf2(kN)	16.2	16.2	18.2	18.2	20.7	20.7	22.3	22.3	コンクリート
testQ	cu(kN)	26.0	29.0	32.8	37.8	33.0	41.0	35.3	53.8	
損傷	部位	定着部	定着部	基礎梁	定着部	基礎梁	定着部	基礎梁	定着部	実験結果
最大耐力時	変形角(rad)	1/83	1/83	1/250	1/125	1/250	1/125	1/125	1/83	
破壊部位	判定式(kN)	26.6	32.3	31.6	36.5	36.4	41.4	36.4	44.7	<i>α</i> =2.0
試験	体名	9	10	1	12	(13)	14	(15)	16	備考
試験	体名	9 D16	10 D16	1) D19	12 D19	(<u>1</u> 3) D16	(1) D16	15 D19	(<u>16</u>) D19	備考
試験 アンナ 引張側アン	体名 コー筋 カー筋本数	9 D16 2	10 D16 2	① D19 2	12 D19 2	(]3 D16 4	(1) D16 4	(15) D19 4	(16) D19 4	備考
試験 アンナ 引張側アン 有効埋め	体名 コー筋 カー筋本数 込み深さ	 (9) D16 2 10da 	10 D16 2 15da	① D19 2 10da	12 D19 2 15da	 (3) D16 4 10da 	(14) D16 4 15da	(15) D19 4 10da	(16) D19 4 15da	備考 アンカー筋
試験 アンナ 引張側アン 有効埋め 定新	体名 コー筋 カー筋本数 -込み深さ 音長	 (9) D16 2 10da 10da 	1 D16 2 15da 10da	1) D19 2 10da 10da	12 D19 2 15da 10da	 (13) D16 4 10da 10da 	(14) D16 4 15da 10da	(15) D19 4 10da 10da	(16) D19 4 15da 10da	備考
試験 アンオ 引張側アン 有効埋め 定新	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN)	 (9) D16 2 10da 10da 48.1 	① D16 2 15da 10da 48.1	(1) D19 2 10da 10da 70.2	12 D19 2 15da 10da 70.2	(13) D16 4 10da 10da 77.0	(14) D16 4 15da 10da 77.0	(15) D19 4 10da 10da 112.3	(16) D19 4 15da 10da 112.3	備考 アンカー筋 軸降伏
試験 アンオ 引張側アン 有効埋め 定新 埋め込み部破	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN)	 (9) D16 2 10da 10da 48.1 68.7 	10 D16 2 15da 10da 48.1 68.7	(1) D19 2 10da 10da 70.2 103.9	12 D19 2 15da 10da 70.2 103.9	 (13) D16 4 10da 10da 77.0 109.8 	14 D16 4 15da 10da 77.0 109.8	(15) D19 4 10da 112.3 166.2	(f) D19 4 15da 10da 112.3 166.2	備考 アンカー筋 <u>軸降伏</u> 軸破断
試験 アンオ 引張側アン 有効埋め 定 規 埋め込み部破 壊	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN)	 (9) D16 2 10da 10da 48.1 68.7 50.5 	10 D16 2 15da 10da 48.1 68.7 81.6	 (1) D19 2 10da 10da 70.2 103.9 63.2 	 (2) D19 2 15da 10da 70.2 103.9 98.6 	 (3) D16 4 10da 10da 77.0 109.8 61.2 	(14) D16 4 15da 10da 77.0 109.8 86.2	(15) D19 4 10da 10da 112.3 166.2 71.5	 (6) D19 4 15da 10da 112.3 166.2 99.8 	備考 アンカー筋 <u>軸降伏</u> <u>軸破断</u> コンクリート
試験 アンオ 引張側アン 有効埋め 定 規 埋め込み部破 壊	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN)	 (9) D16 2 10da 10da 48.1 68.7 50.5 53.2 	10 D16 2 15da 10da 48.1 68.7 81.6 79.8	(1) D19 2 10da 10da 70.2 103.9 63.2 75.0	(12) D19 2 15da 10da 70.2 103.9 98.6 112.5	 (3) D16 4 10da 10da 77.0 109.8 61.2 85.1 	 Image: A state of the state of the	(5) D19 4 10da 112.3 166.2 71.5 120.0	 (6) D19 4 15da 10da 112.3 166.2 99.8 180.0 	備考 アンカー筋 <u>軸降伏</u> <u>軸破断</u> コンクリート 付着
試験 アンオ 引張側アン 有効埋め 定 が 埋め込み部破 壊	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN)	 (9) D16 2 10da 48.1 68.7 50.5 53.2 58.3 	15da 15da 10da 48.1 68.7 81.6 79.8 58.3	 ① D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 	 12 D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 	 (3) D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 	 Image: A state of the state of the	(5) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3	(6) D19 4 15da 10da 112.3 166.2 99.8 180.0 58.3	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏
試験 アンオ 引張側アン 有効埋め 定新 埋め込み部破 壊 基礎梁破壊	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN) cQcsy(kN)	 (9) D16 2 10da 48.1 68.7 50.5 53.2 58.3 74.7 	(1) D16 2 15da 10da 48.1 68.7 81.6 79.8 58.3 74.7	1) D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 74.7	12 D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 93.4	 ① D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 74.7 	(14) D16 4 15da 10da 77.0 109.8 86.2 127.7 58.3 74.7	(5) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3 74.7	Image: Constraint of the system 019 4 15da 10da 112.3 166.2 99.8 180.0 58.3 74.7	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏 破断
試験 アンオ 引張側アン 有効埋め 定新 埋め込み部破 壊 基礎梁破壊 定着部破壊	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN) cQcsu(kN) calQc2(kN)	 (9) D16 2 10da 48.1 68.7 50.5 53.2 58.3 74.7 32.3 	(1) D16 2 15da 10da 48.1 68.7 81.6 79.8 58.3 74.7 32.3	 ① D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 74.7 36.5 	12 D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 93.4 36.5	 ① D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 74.7 41.4 	(14) D16 4 15da 10da 77.0 109.8 86.2 127.7 58.3 74.7 41.4	(5) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3 74.7 44.7	(f) D19 4 15da 10da 112.3 166.2 99.8 180.0 58.3 74.7 44.7	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏 破断 コンクリート
試験 アンチ 引張側アン 有効埋め 定新 埋め込み部破 壊 基礎梁破壊 定着部破壊 testQ	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN) cQcsy(kN) cQcsu(kN) calQc2(kN) calQc2(kN) calQc2(kN)	 (9) D16 2 10da 48.1 68.7 50.5 53.2 58.3 74.7 32.3 52.8 	(1) D16 2 15da 10da 48.1 68.7 81.6 79.8 58.3 74.7 32.3 56.0	 ① D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 74.7 36.5 67.0 	12 D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 93.4 36.5 73.8	 ① D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 74.7 41.4 66.8 	(14) D16 4 15da 10da 77.0 109.8 86.2 127.7 58.3 74.7 41.4 86.0	(5) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3 74.7 44.7 78.3	Image: box of the system 019 4 15da 10da 112.3 166.2 99.8 180.0 58.3 74.7 44.7 108.5	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏 破断 コンクリート
試験 アンチ 引張側アン 有効埋め 定 素 埋め込み部破 壊 基礎梁破壊 定着部破壊 testQu 損傷	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN) cQcsy(kN) cQcsu(kN) calQc2(kN) calQc	 ⑨ D16 2 10da 48.1 68.7 50.5 53.2 58.3 74.7 32.3 52.8 基礎梁 	① D16 2 15da 10da 48.1 68.7 81.6 79.8 58.3 74.7 32.3 56.0 定着部	① D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 74.7 36.5 67.0 基礎梁	① D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 93.4 36.5 73.8 定着部	 ① D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 74.7 41.4 66.8 基礎梁 	① D16 4 15da 10da 77.0 109.8 86.2 127.7 58.3 74.7 41.4 86.0 定着部	(15) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3 74.7 44.7 78.3 基礎梁	 ① D19 4 15da 10da 112.3 166.2 99.8 180.0 58.3 74.7 44.7 108.5 定着部 	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏 破断 コンクリート 実験結果
試験 アンチ 引張側アン 有効埋め 定 素 埋め込み部破 壊 基礎梁破壊 定着部破壊 を着部破壊 した 転 した 手	体名 コー筋 カー筋本数 込み深さ 音長 calQc1(kN) calQc2(kN) calQc3(kN) cQcsy(kN) cQcsy(kN) cQcsu(kN) calQc2(kN) calQc3(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc3(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc3(kN) calQc3(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc2(kN) calQc3(kN) calQc	 ⑨ D16 2 10da 48.1 68.7 50.5 53.2 58.3 74.7 32.3 52.8 基礎梁 1/125 	① D16 2 15da 10da 48.1 68.7 81.6 79.8 58.3 74.7 32.3 56.0 定着部 1/125	① D19 2 10da 10da 70.2 103.9 63.2 75.0 58.3 74.7 36.5 67.0 基礎梁 1/250	① D19 2 15da 10da 70.2 103.9 98.6 112.5 72.9 93.4 36.5 73.8 定着部 1/125	 ① D16 4 10da 10da 77.0 109.8 61.2 85.1 58.3 74.7 41.4 66.8 基礎梁 1/250 	① D16 4 15da 10da 77.0 109.8 86.2 127.7 58.3 74.7 41.4 86.0 定着部 1/63	(5) D19 4 10da 10da 112.3 166.2 71.5 120.0 58.3 74.7 44.7 78.3 基礎梁 1/250	 ① ① D19 4 15da 10da 112.3 166.2 99.8 180.0 58.3 74.7 44.7 108.5 定着部 1/125 	備考 アンカー筋 軸降伏 軸破断 コンクリート 付着 降伏 破断 コンクリート 実験結果

表-8 群アンカーの強度計算値と実験結果の比較

3.5 群アンカーの性能評価結果

表-8は表-5,表-6,表-7の計算結果と実験結 果を比較して表記した。合わせて,損傷が顕著だった部 位を記した。

最大耐力および破壊部位の評価方法として実験考察 より,関与項目を①アンカー強度(i.埋込み部コンクリ ート破壊 ii.付着破壊 iii.軸破断),②基礎梁破壊,③ 定着部破壊とし判別式を創案した。

補強パネルの定着部の破壊= α×定着部破壊

< min {max (埋込み部コンクリート破壊、 基礎梁破壊)、付着破壊、軸破断}

- 基礎梁の破壊= α×定着部破壊
 - > min {max (埋込み部コンクリート破壊、 基礎梁破壊)、付着破壊、軸破断}

この破壊部位判定式でα=2.0程度とみて試検体の強度 を算定すると概ね実験結果と符合する。

4. まとめ

今回の実験の範囲で,以下の知見が得られた。

 アンカー筋の軸降伏は群アンカーの耐力性能に関わり が少ない。

- ・群アンカーを埋め込んだ側(基礎梁)の強度はコンク リート破壊と基礎梁のあばら筋の降伏を比較して大 きな方を採用する。なお、この値とアンカー筋の引張 り強度、付着強度のうち最も小さいものが群アンカー の埋め込み側の引張り強度である。
- ・群アンカーの補強パネル内の定着強度は金属系アンカ ーの引張り強度式を準用する。なお、補強パネルの鉄 骨枠の包含効果、および、補強パネルの縦横筋の効果 を加味して計算値の2倍を群アンカーの定着強度の 設計値とできる。
- ・群アンカーの埋め込み側の引張り強度と群アンカーの
 定着強度の比較で, 群アンカーの引張り強度と破壊形
 式を判定できる。

参考文献

- 近藤龍哉,伴幸雄,加藤三晴,山本泰稔:既存建物 袖壁付き柱のせん断補強に関する実験的研究, コンクリート工学年次論文集,Vol.32,No.2, pp997-1002,2010.7
- 2) 既存鉄筋コンクリート造建築物の耐震改修設計指 針・同解説,(財)日本建築防災協会,2001年改訂版

謝辞

本実験に際し、工学院大学の学生諸子の協力を得た。ここに謝意を表す。