論文 コンクリート円柱・角柱供試体の圧縮強度に及ぼす断面寸法の影響 に関する一考察

山本 貴正*1·小池 狹千朗*2

要旨:本研究では,既往の研究,および本研究で実施された諸々の圧縮強度試験の実験結果を比較・分析し, コンクリート円柱・角柱供試体の圧縮強度に及ぼす断面寸法の影響について検討した。その結果,i)断面 寸法が小さいかつ強度レベルが低い供試体の圧縮強度比は,非均質度が大きい,および水セメント比が大 きく水和反応の阻害を受けやすいため,大きく変動する可能性がある,ii)角柱供試体の圧縮強度の寸法効 果は,円柱供試体のそれと同等である,iii)角柱供試体の圧縮強度に,円柱供試体の圧縮強度を適用する 場合は,寸法効果に加え,断面形状の影響による補正を行う必要がある,などの知見を得た。 キーワード:寸法効果,標準供試体,標準強度,断面形状,単純累加耐力,既往の実験データ

1. はじめに

コンクリートの圧縮強度は、その強度特性を評価す るための重要な指標である。我が国では、実構造物や モデル供試体のコンクリート部材の圧縮強度を確認す るため、コンクリートが打設される際に、主として直 径100mm、高さ200mmのコンクリート円柱供試体(以下、 標準供試体)を作製し、その圧縮強度試験が行われる。 なお、コンクリートは、強度特性が部材の断面寸法に依 存するという寸法効果があるため、実構造物やモデル供 試体に標準供試体の圧縮強度(以下、標準強度)を適用 する場合は、なんらかの補正を行う必要がある。

例えば、コンクリート充填鋼管(以下、CFT)柱部材の 累加耐力は、コンクリート単体の圧縮強度の関数で表さ れる。よって、その計算において、コンクリート単体の 圧縮強度として、一般に使用される標準強度を、断面寸 法に応じて補正する必要がある。その一例として、CFT 短柱では、軸圧縮耐力を、次式に示す標準強度の補正を 加味した単純累加耐力と比較し、CFTの特徴である鋼管 とコンクリートの相互作用(以下、相乗効果)による耐 力上昇を検討している¹⁾。

 $N_0 = A_s \cdot \sigma_y + A_c \cdot R \cdot \sigma_B$ (1) ここに、 A_s 、 A_c :鋼管およびコンクリートの原断面積、 σ_y :鋼材の降伏応力度、R:標準強度 σ_B の補正係数

コンクリートの圧縮強度の寸法効果に関しては、断面 寸法が200mm程度以下の比較的小さい供試体を対象とし た実験・理論的研究は、数多く行われており、その要因 について明らかにされている(後述2.1参照)。しか し、断面寸法が400mm程度以上の比較的大きい供試体を 対象とした研究は、僅かしかないため^{例えば、2)}、大断面 を含むコンクリートの圧縮強度の寸法効果については、 *1 豊田工業高等専門学校 建築学科准教授 博士(工学)

*2 愛知工業大学 名誉教授 博士(工学)(正会員)

図 - 1 軸圧縮を受ける角形 CFT 短柱の単純累加耐力¹⁾

必ずしも統一的な見解が得られているわけではない(後 述2.2参照)。このような背景もあり、式(1)の標 準強度の補正係数は、定式化されていない。なお、この 補正係数は、一般に、従来慣用されている 0.85、もしく はBlanksらの円柱供試体の実験データ²⁾をもとに算出 した値が用いられている^{例えば,3)}。これらの場合の角形 CFT 短柱の単純累加耐力に対する実験値 Nmax は、前者の 補正では、その平均値が1.0より大きく、また標準偏差 も高くなる¹⁾。一方,後者の補正では,図-1に示すよ うに、おおよそ1.0付近に存在する。従って、角形 CFT 短柱については,後者による補正の結果より,相乗効果 による耐力上昇はほとんどないとされている¹⁾。一方, 同図より,変動が認められるため,相乗効果による耐力 上昇がある,また別途,標準強度の補正を考慮する必要 があるとも考えられる。従って、標準強度の補正の方法 次第で、対象とする項目の傾向が異なることから、コン クリートの圧縮強度の寸法効果を明確にしておく必要が ある。

そこで、本研究では、コンクリートの圧縮強度に及ぼ す寸法効果を把握することを目的として、まず圧縮強度

(正会員)

に及ぼす供試体の断面寸法に関連する既往の研究を取り まとめた。次に,既往の研究,および本研究で実施され た諸々の圧縮強度試験の実験結果を比較・分析し,コン クリート円柱・角柱供試体の圧縮強度に及ぼす断面寸法 の影響について検討した。

ここでは、コンクリートの圧縮強度として、供試体全体の平均圧縮強度だけでなく、供試体内部の部分圧縮強 度にも着目して考察する。また、i)断面寸法に対する高 さの比が2.0以上の供試体、ii)コンクリートに空洞、 鋼材および繊維が含まれていない供試体、を対象とする。 i)の条件を設定した理由は、高さ直径(幅)比が2.0よ り小さい場合は、圧縮試験機の載荷板と供試体端面の間 の摩擦を受けて、圧縮強度が上昇するためである。

2. 寸法効果に関する既往の研究成果

2.1 寸法効果の要因

寸法効果の要因として,主に破壊の領域の局所化,骨 材寸法,養生温度および水和熱の影響が挙げられる。な お,これらの研究成果は,水和熱の影響を除き,断面寸 法50-200mm 程度の比較的小さい断面を有する供試体を 対象とした圧縮試験より得られている。

(1)破壊領域の局所化

畑中ら⁸⁾は、圧縮試験により破壊されたコンクリートについて、大径の破砕片の大きさが、供試体の断面寸 法にほぼ比例することを実験で明らかにした。図-2に 示すように、破壊領域が三次元であればひび割れは二次 元であり、供試体寸法が大きいほど、ひび割れ面で消費 されるエネルギーと比較して、全体に蓄えられるエネル ギーの増加が顕著となって、圧縮強度の低下が生じる⁹⁾。

(2) 骨材寸法の影響

Sanghaら¹⁰⁾は、骨材寸法に対する供試体の断面寸法 の比が小さい範囲では、断面寸法が大きいほど、圧縮強 度が高くなるとの実験結果を報告している。これは、谷 川ら¹¹⁾により、この領域では、断面寸法が大きいほど、 供試体内部のセメントペースト(以下、母材)と骨材の 非均質度が増大し、局所的なマイクロクラック発生から システム全体の破壊に至までの過程が長くなり、エネル ギー吸収能力が優るためと推察されている。また筆者の 一人¹²⁾は、この非均質度が増大するほど、圧縮強度の 変動係数が高くなるとの実験結果を得ている。

一方,母材強度が高くなると,これと骨材の強度の差 が小さくなり,供試体内部の非均質度が減少し,マイク ロクラック発生からシステム全体の破壊に至までの過程 が短くなるため,断面寸法が大きいほど,圧縮強度が低 くなると説明されている^{11,13)}。

以上の傾向を概念的にまとめると図-3(a)(b)のよう になり、非均質度が大きいほど、断面寸法が小さい場合、

断面寸法が大きいほど,圧縮強度が高くなる寸法効果が 表れやすくなる。なお、この傾向は、単一粒径の骨材を 使用している場合は顕著に表れるが、標準粒度かつ骨材 最大寸法が 25mm 程度以下の場合は、あまり顕著に表れ ないと指摘されている¹⁴⁾。

(3) 養生湿度の影響(水和反応の阻害)

筆者の一人¹⁵⁾は、養生湿度が低い場合、供試体の断 面寸法が小さいほど、圧縮強度が低くなるという実験結 果を得ている。これについては、乾燥した大気中で養生 された場合、湿潤のそれと比較し、断面寸法が小さいほ ど水分の散逸が顕著となり、水和反応が阻害されるため と考えて良いであろう。

(4)水和熱の影響

コンクリート部材の断面寸法が大きいほど部材内部で 発生したセメント水和熱は,一般に放出されず蓄積され やすくなるため,その水和反応による最高温度が,i)部 材中心部と比較し表面部は低くなる。ii)部材の断面寸 法が大きいほど高くなる。

杉山ら¹⁶⁾は,i)部材中心部のコア供試体の圧縮強度 (以下,コア強度)は、表面部のそれと比較して低い, ii)コア強度は標準強度と比較して、短期材齢では高く, 長期材齢では低い,iii)部材の断面幅が大きいほど部材 中心部および表面部のコア強度が低くなる,との実験結 果を報告している。これら部材中心部の圧縮強度につい ては、上述のように部材内部の水和反応による最高温度 が高いほど、長期的な強度発現が停滞するため、と考え られている。

大木ら¹⁷⁾は、コア強度の変動係数は、i)部材の断面 幅が大きいほど高くなる、ii)水セメント比が大きいほ ど高くなる、iii)材齢が長いほど、部材寸法の影響が小 さくなり標準強度のそれと同程度になる、との実験結果 を得ている。これらの理由は, i) については部材寸法が 大きいほど部材内部で発生したセメント水和熱が放出さ れずに蓄積するため, ii) については, 水セメント比が 大きいほど, 水和反応の進行が遅いため, iii) について は, 材齢が長いほど, 強度発現が安定するため, と考え られている。

2.2 現状の不明点

昨今,断面寸法 400mm 以上を有する供試体を対象とし た圧縮試験が実施されている。これらの研究成果を踏ま え、寸法効果に関する現状の不明点を取り上げる。

(1) 円柱供試体

中村ら¹⁸⁾の報告した圧縮強度と断面直径の関係に及 ぼすコンクリートの強度レベルfの影響を図-4に示す。 図の縦軸は、各圧縮強度を断面直径 100mmの標準強度で 除した圧縮強度比を表している。図中の曲線は従来慣用 されている次式に示す Blanks らの提案式²⁾である。

 $R = (D/D_0)^{-0.1}$ (2) ここに、 $R: D_0$ の圧縮強度に対する断面直径Dの圧縮強 度の比、 $D_0: 標準とする供試体の断面直径$

同図より,強度レベル 33MPa かつ断面直径 600mmの圧 縮強度比が,式(2)と比較して高いことが認められる。 これは,前述2.1(4)の水和熱の影響であると考えら れているが¹⁸⁾,断面直径 900mmの圧縮強度比とは傾向 が異なるため,断定されていない。なお,ここでは断面 直径 100mmの標準供試体を標準としていることに注意し なければならない(後述4.3参照)。

(2)角柱供試体

正田ら¹⁹⁾の報告した圧縮強度と断面幅の関係に及ぼ すコンクリートの強度レベルfの影響を図-5に示す。 図の縦軸は,各圧縮強度を断面直径100mmの標準強度で 除した圧縮強度比を表している。図中の曲線は式(2) の補正の対象となる円柱供試体を角柱供試体に置き換え た次式である。

$$R = (B/D_0)^{-0.1}$$
(3)

ここに、*R*: *D*₀の圧縮強度に対する断面幅 *B*の圧縮強度の比

同図より,各圧縮強度比ともに,式(3)と比較して 低いことがわかる。また,前述2.2(1)に反して,強 度レベルが低いほど,圧縮強度比の低下が顕著であるこ とが認められる。これらの傾向より,角柱供試体の寸法 効果は,円柱供試体のそれより著しいと考えられるが, 断定されていない。なお,圧縮強度比が著しく低い強度 レベル 33MPaは,その破壊形状より,コンクリートの縦 方向打設による骨材の沈下の影響で圧縮強度が低下した ためと考えられている¹⁹⁾。

中谷ら²⁰⁾の報告した断面幅 800mm を有する供試体の 圧縮強度試験結果を表-1に示す。同表より,石炭灰混

表-1 中谷らの実験データ²⁰⁾(角柱供試体)

<i>B</i> (mm)	f (MPa)	石炭灰	圧縮強度/標準強度	式(3)	
800	0.0	なし	0.79		
	30	あり	0.84	0.01	
	27	なし	0.78	0.81	
		あり	0.86		

[註] コンクリートの打設:横方向

入ありの圧縮強度比は、石炭灰混入なしと比較して高い ことがわかる。よって、石炭灰を混入することで、寸法 効果を低減する可能性があると考えられているが、この 理由については不明である。なお、ここでは、前掲図-5も同様に、断面直径100mmの標準供試体を標準として いることに注意しなければならない(後述4.3参照)。

3. 本実験概要

本研究では,前述2.2の傾向を踏まえ,コンクリー ト角柱供試体の圧縮強度と断面幅の関係を再検討するた め,断面幅の異なる角柱供試体の圧縮強度試験を実施し た。なお,既報²¹⁾の供試体を併せて記述する。

3.1 実験要因·水準

表 - 2に,実験要因および水準を示す。同表に示すように,実験要因として,角柱供試体の断面幅および前述 2.1(2)より骨材最大寸法を取り上げた。断面幅は 100,200,300および600mmの4種類である。骨材最大 寸法は25mmおよび15mm²¹⁾の2種類である。

3.2 調合表·使用材料

表-3に、コンクリートの調合表を示す。水は水道水、 セメントは普通ポルトランドセメント、細骨材および粗

表-2 実験要因・水準

_								
	実験要因					実験水準		
_	供試体断面幅 (mm)					, 200,	300, 600	
	骨材最大寸法 (mm)					25, 15		
_	表 −3 調合表一覧							
	W/C	d	W	С	S	G	混和剤/C	
	(%)	(mm)		(kg/m ³)		(%)		
	61	25	178	292	839	923	1.00	
	61	15	167	274	836	970	1.00	
[註]] W : :	水, <i>C</i>	:セメ	ドント,	<i>S</i> : ²	細骨材	, G:粗骨杉	

骨材はそれぞれ川砂および川砂利, 混和剤はAE 減水剤

3.3 供試体作製

を使用した。

コンクリートの打設は、各シリーズともに、縦方向に よる2層詰めとし、突き棒および振動機による締固めを施 した。なお、型枠は鋼製型枠を使用した。供試体の高さ に対する断面寸法の比は2である。打設後の材齢4日ま で実験室内にて封緘養生とし、その後、脱型し、ビニー ルシートで被覆し同様に実験室内にて養生した。供試体 の上面には、平滑性を確保するためセメントペースト キャッピングを施した。供試体の標本数は2である。

3.4 実験方法

圧縮強度試験における荷重の載荷条件は単調載荷と し、各供試体の断面寸法に応じて2、6および32MN級の 圧縮試験機を使用した。また、圧縮強度試験は、材齢5 週後に実施した。なお、圧縮試験機の載荷板と供試体端 面の間の摩擦を取り除く処理は施していない。

4. 既往の研究および本研究の実験結果・考察

本章では、前述2章でまとめた寸法効果の原因·不明 点を踏まえ、既往の研究および本研究で実施された圧縮 強度試験の結果と表示式による値を比較・検討した。な お、コンクリートの打設を縦方向としている供試体およ び前掲図-5より、縦方向打設による骨材の沈下が生じ ていないと考えられる供試体を対象とする。

4.1 角柱供試体の寸法効果

図-6に、本実験の圧縮強度と断面幅の関係に及ぼす 骨材最大寸法の影響を示す。図の縦軸は、各圧縮強度を 断面幅 100mm のそれで除した圧縮強度比を表している。 図中の実曲線は式(2)の Blanks らの提案式を角柱供試 体に置き換えた次式である。

$$R = (B / B_0)^{-0.1}$$
 (4)
ここに、 $R : B_0$ の圧縮強度に対する断面幅 Bの圧縮強度

の比, B₀:標準とする供試体の断面幅 同図より,骨材最大寸法 15mm の圧縮強度比が,式(4)

より高いことがわかる。なお、これらは、断面幅 100mm を標準として検討していることが影響していると考えら

図-8 中村らの実験データ¹⁸⁾(断面直径 300mm を標準)

れる(後掲図-10参照)。そこで、図-7に、標準とし ている供試体の断面幅を300mmに置き換えた場合の圧縮 強度比と断面幅の関係を示す。同図より、各骨材最大寸 法ともに、寸法効果の傾向を、Blanksらの提案式を角柱 供試体に置き換えた式(4)でおおむね表せることがわ かる。

以上より,角柱供試体の圧縮強度の寸法効果は,円柱 供試体のそれとほぼ同等であると言える。

4.2 円柱供試体の寸法効果

前述4.1を踏まえ,前掲図-4の中村ら¹⁸⁾の実験デー タの標準としている供試体の断面直径を300mmに置き換 えた圧縮強度比と断面直径の関係を図-8に示す。同図 より,各強度レベルともに,寸法効果の傾向を,式(2) でおおむね表せることがわかる。

以上より,相対的に圧縮強度の寸法効果を検討する場合は,標準とする供試体次第で,その傾向が異なると言える。更に,これは前述2.2を踏まえ,強度レベルの低い供試体が,影響を受けやすい傾向にあることが認められる。なお,谷川ら²²⁾は,強度レベルが低い場合, 圧縮強度の変動係数が大きくなりやすい実験結果を得ている。従って,断面寸法が小さいかつ強度レベルが低い 圧縮強度比は、前掲図-3(b)の非均質度が大きい、および水セメント比が大きく前述2.1(3)の水和反応の 阻害を受けやすいため、大きく変動する可能性があると 推察される。

以上の結果を概念的にまとめると図-9のようになる。 4 3 標準供試体と毎時供試体の圧縮強度の関係

4.3 標準供試体と角柱供試体の圧縮強度の関係

前述2.2(2)を踏まえ、本研究の実験データと表 -4に示す既往の実験データ^{19,21,23)}を対象として、標 準強度と角柱供試体の圧縮強度の関係について検討を行 う。また、Gonnerman²⁴⁾が、角柱供試体の圧縮強度は、 その断面幅と等しい断面直径を有する円柱供試体の圧縮 強度と比較し、低い実験結果を得ている。さらに、横尾 ら²⁵⁾、および杉田ら²⁶⁾は、角柱供試体のコンクリート の圧縮強度は、円柱供試体のそれと比較して、著しく低 下する実験結果を報告している。そこで、ここでは、こ の断面形状の影響についても検討する。

図-10に、標準強度(直径 100mm, 高さ 200mmの円柱 供試体の圧縮強度)に対する角柱供試体の圧縮強度の圧 縮強度比と断面幅の関係を示す。図中の実曲線は式(4) の標準となる角柱供試体を円柱供試体に置き換え、また、 前述4.1より、角柱供試体の圧縮強度の寸法効果は、 円柱供試体のそれとほぼ同等であるため(*B*/*D*₀)の指数 を,式(2)と同様に-0.1とし、これに断面形状の影響 による補正を加味した次式である。

$$R = \alpha \left(B / D_0 \right)^{-0.1} \tag{5}$$

ここに, *R*: *D*₀の圧縮強度に対する断面幅 *B*の圧縮強度の比, α: 断面形状の影響による補正係数

図中の実線,破線および点線は,それぞれ α を 1.0, 0.9, および 0.8 とした式(5)を表している。

同図より,各圧縮強度比のほとんどが,補正係数が1.0 の実線付近に存在していないことが認められる。これは, 標準強度を標準にしているため,前掲図-9に示す変動 に加え,断面形状の影響があると考えられる。なお,図 中の各曲線より,これら圧縮強度比と断面幅の関係は, 補正係数αを定めることにより式(5)で,おおむね表 せると考えられる。

以上より,コンクリート角柱供試体の圧縮強度に,標 準強度(直径100mm,高さ200mmの円柱供試体の圧縮強度) を適用する場合は,寸法効果に加え,断面形状の影響に よる補正を行う必要があると推察される。なお,これら コンクリートの円柱供試体の圧縮強度と角柱供試体の圧 縮強度の関係は,確定されるに至っていない。

5. おわりに

本研究では、コンクリート円柱・角柱供試体の圧縮強 度に及ぼす断面寸法の影響について検討した。本研究の 範囲内で得た主な結果を次に示す。

図-9 寸法効果に及ぼす各種要因の影響(概念図)

表-4 検討対象とした角柱供試体(縦方向打設)

著者	文献 番号	f	d	断面幅	印
		(MPa)	(mm)	(mm)	(図-10)
本研究		30	25	000 000 000	
筆者ら	21)	30	15	200, 300, 600	
	23) -	60	25	400	
		30		400	
正田ら	10)	50	25	194 400	

図-10 標準強度を標準とした圧縮強度比と断面幅の関係

- 断面寸法が小さいかつ強度レベルが低い供試体の 圧縮強度比は、非均質度が大きい、および水セメント 比が大きく水和反応の阻害を受けやすいため、大きく 変動する可能性がある。
- 2) 角柱供試体の圧縮強度に関する寸法効果は、円柱 供試体のそれと同等である。
- 3) コンクリート角柱供試体の圧縮強度に,標準強度 (直径100mm,高さ200mmの円柱供試体の圧縮強度) を適用する場合は、寸法効果に加え、断面形状の影響 による補正を行う必要がある。

謝辞

研究の実施にあたり,貴重なご意見をくださいました 三重大学大学院工学研究科畑中重光教授に深謝します。 また,研究成果を引用させていただいた多くの文献著者 に敬意と謝意を表します。

参考文献

- 日本建築学会: コンクリート充填鋼管構造設計施工 指針,第2版, pp. 3-28, 2008.10
- 2) Blanks, R. F. and McNamara, C. C. : Mass

Concrete Tests in Large Cylinders, Journal of ACI, Vol. 31, No. 3, pp. 280-303, 1935. 1-2

- 3) 中原浩之,稲井栄一,崎野健治:コンクリート充填 角形鋼管短柱の中心圧縮耐力,構造工学論文集,Vol. 44B,pp. 167-174, 1998.3
- 4)山口育雄,菅野俊介,長嶋俊雄,平出亨,沢田博: 充てん型コンクリート短柱の中心圧縮性状(その1, 2),日本建築学会大会学術講演梗概集(関東),構造 II, pp. 1353-1356, 1988. 10
- 5) 渡辺英義,竹崎真一,成原弘之,小林淳,渡辺征 晃,中村敏治: コンクリート充填鋼管柱の構造性能 に関する研究(その4),日本建築学会大会学術講演 梗概集(北海道),構造 III, pp. 773-774, 1995.8
- 6)藤本利昭,崎野健治,森野捷輔,他10名:高強 度材料を用いたコンクリート充てん鋼管短柱の軸圧縮
 特性,日本建築学会構造系論文集,第498号,pp. 161-168,1997.8
- 7) Yamamoto, T., Kawaguchi, J. and Morino, S.: Size Effect on Ultimate Compressive Strength of Concret-Filled Steel Tube Short Columns, Proc. of the Structural Engineers World Congress, Yokohama, CD-Rom, 2002.10
- Hatanaka, S., Mizuno, E., Koike, S. and Tanigawa, Y. : Experimental Study of the Effect of Size on the Physical Properties of Concrete under Compression, Concrete Library of JSCE, Vol. 24, No. 3, pp. 151-161, 1994. 12
- 9) 土木学会コンクリート委員会・寸法効果小委員会:
 コンクリートの寸法効果と引張軟化曲線、コンクリート技術シリーズ, Vol. 18, pp. 2-5, 1997. 5
- 10) Sangha, C. M. and Dhir, R. K. : Strength and Complete Stress-Strain Relationships fot Concrete Tesetd in Uniaxial Compression under Different Test Conditions, Materiaux et Constructions, Vol. 5, No. 30, pp. 361-370, 1972
- 谷川恭雄,山田和夫:コンクリートの圧縮強度の 寸法効果について、日本建築学会報告集、第262号、 pp.13-20,1977.12
- 小池狹千朗: コンクリートの各種強度の確率分布に 及ぼす供試体寸法の影響, セメント技術年報, Vol. 35, pp. 120-124, 1981. 5
- 13) 野口貴文,友澤史紀:高強度コンクリートの圧縮力 学特性に及ぼす供試体寸法・形状の影響,日本建築学 会構造系論文集,第473号,pp. 19-28, 1995.7
- 14) 畑中重光,岸圭介,山田和夫,谷川恭雄: 骨材の 粒度分布を考慮したコンクリート強度の寸法効果予測 式,コンクリート工学年次報告集, Vol. 17, No. 1,

pp. 481-484, 1995

- 小池狹千朗,畑中重光:横拘束コンクリートの圧 縮強度特性に及ぼす供試体の形状・寸法の影響,コン クリート工学年次論文報告集,Vol. 12,No. 2, pp. 707-712,1990
- 16) 杉山央,安田正雪:各種形状・断面厚を有する高 強度コンクリート部材の温度履歴特性および強度特性 に関する実験的研究,日本建築学会構造系論文集, 第 594 号,pp. 1-8, 2005.8
- 17) 大木崇輔,中田善久,大塚秀三,毛見虎雄:大き さが異なる高強度コンクリート部材から採取したコア 強度とその変動に及ぼす影響,コンクリート工学年 次論文集, Vol. 31, No. 1, pp. 1579-1584, 2009
- 18)勝倉靖,中村敏治,田口典生,小林淳:大口径 CFT 柱の構造性能確認実験,コンクリート工学年次論文報 告集, Vol. 20, No. 3, pp. 919-921, 1998
- 19) 疋田次峰, 倉本洋, 田中仁史, 中治弘行: コンク リートの一軸圧縮応力-ひずみ関係に及ぼす寸法効果 の影響, コンクリート工学年次論文集, Vol. 24, No. 2, pp. 193-198, 2002
- 20) 中谷誠, 椛山健二, 荒木秀夫, 菅野俊介: 石炭 灰を多量に用いたコンクリートの素材特性, コン クリート工学年次論文集, Vol. 24, No. 2, pp. 1609-1614, 2002
- 21)小池狹千朗,畑中重光,吉田幸夫,水野英二:内 部に欠陥を有するプレーンコンクリートの圧縮特性に おける寸法効果,日本建築学会大会学術講演梗概集, A-1,pp. 17-18, 2002.8
- 22)谷川恭雄,山田和夫,畑中重光,柴田辰正:高強 度・超高強度コンクリートの圧縮強度の試験方法並び に変動に関する研究,コンクリート工学年次論文報 告集, Vol. 12, No. 1, pp. 231-236, 1990
- 山本貴正,川口 淳,森野捷輔,小池狭千朗:コ ンクリート充てん鋼管短柱の応力-ひずみ関係に及 ぼす寸法効果に関する実験的研究 (その13),日本 建築学会大会学術講演梗概集,B-3,pp.1085-1086, 2004.8
- 24) Gonnerman, R. F. : Effect of Size and Shape of Test Specimen of Compressive Strength of Concrete, Proc. ASTM, Vol. 25, No. 2, pp. 237-250, 1925. 10
- 25) 横尾義貫,若林実,末永保美,宮村篤典:H形鋼を 用いた鉄骨コンクリートに関する研究(No.3),日本建 築学会論文報告集,No. 134, pp. 20-23, 1967.4
- 26) 杉田和直, 大野生二, 阿部正慶: コンクリートの 断面形状が圧縮強度に及ぼす影響, 日本建築学会大会 学術講演梗概集, A-1, pp. 309-310, 2007. 8