論文 低収縮超高強度 RC プリズムの長期長さ変化に関する検討

鈴木 雅博*1·佐久間 和弘*2·佐藤 良一*3

要旨:超高強度コンクリートは大きな自己収縮ひずみが発生する。このため、拘束を受ける部材のひび割れ 発生リスクは高くなる。粗骨材の一部に吸水率の高い廃瓦粗骨材を用いた内部養生法は、材齢 100 日までの 測定結果から自己応力の低減に有効であることを確認してきた。本研究では、材齢 1100 日の長期材齢におけ る内部養生法による自由変形および自己応力の低減効果を実験的に検討した。また、乾燥条件下における内 部養生法の効果を実験的に検討した。その結果、内部養生法にさらに膨張材と収縮低減剤を加えることによ り、乾燥条件下においても拘束応力が長期材齢においても抑制できることなどが明らかになった。 キーワード:超高強度コンクリート、自己変形、拘束応力、廃瓦粗骨材

1. はじめに

コンクリート構造物の長寿命化が求められている。超 高強度コンクリート(以下, UHSCと示す)は、高強度化に より組織が緻密になるため¹⁾、高耐久性となり、コンク リート構造物の長寿命化技術につながり、社会的要請に 対する1つの方策になると考えられる。一方で、UHSCは 自己収縮ひずみが大きくなることが知られており²⁾、 UHSCを用いたRC部材のひび割れの報告³⁾や、せん断ひ び割れ発生荷重を低下させるとの報告⁴⁾がなされている。

自己収縮ひずみを低減する方法には、高含水率の軽量 骨材⁵⁾ や高吸水性のポリマー(SAP)⁶⁾から水分を補給す る自己乾燥防止方法(以下,内部養生法と示す)や膨張材 により化学的な膨張ひずみを付与する方法⁷⁾や収縮低減 剤により表面張力の低下を制御する方法⁷⁾が提案されて いる。しかし、軽量骨材を用いた場合には、自己収縮ひ ずみの低減効果があるものの圧縮強度が頭打ちするこ とが報告⁸⁾されている。こうした背景から,筆者らは内 部養生で使用する材料として、吸水率が高く、かつ、軽 量粗骨材より破砕値の小さい多孔質材料である廃瓦粗 骨材(以下, PCWA)を用いた自己応力低減効果に関する実 験的検討を行った。この結果,材齢約1日まで圧縮応力 が発生し,自己応力が低減することを実験的に示した⁹。 さらに膨張材、および収縮低減剤を加えることにより拘 束応力を大幅に低減できること¹⁰⁾を明らかにしてきた。 また,粗骨材全容積を PCWA で 20%容積置換したコンク リートの自己応力の発現量は40%容積置換したコンクリ ートと比較して小さくなることも明らかにしてきた⁹。

本研究では、これまでは材齢 100 日までの実験結果に 基づき、PCWAの内部養生効果による拘束応力の低減効 果を検討してきたのに対し、材齢 1100 日(約3年)の

図-1 廃瓦粗骨材の細孔径分布

PCWAの自由変形および拘束応力の低減効果を長期材齢の観点から収縮ひずみの低減対策をとらないUHSCと実験的に比較検討を行った。また、封緘養生した供試体を材齢28日から気乾養生にすることにより、乾燥条件化における内部養生法が拘束応力に与える影響も検討した。さらにStep by step法¹¹⁾によるクリープ解析を行い、実験値と解析値との比較検討を行った。

2. 実験概要

2.1 使用材料

本実験における使用材料を表-1に示す。セメントに は、低熱ポルトランドセメント(記号 L)を使用した。混 和材には、シリカフューム(記号 SF)、標準使用量 20kg/m³ のエトリンガイト・石灰複合系低添加型膨張材(記号 EX) を使用した。なお、セメント種類 L と混和材 SF を混合 する配合では、L の重量の 10.3%を混和材 SF にあらかじ め置換したプレミックス材(記号 SFLC,密度 3.08g/cm³, 比表面積 6210cm²/g)を使用した。化学混和剤にはポリカ ルボン酸系の高性能減水剤(記号 SP)、ポリアルキレング リコール誘導体の消泡剤(記号 D)および低級アルコール 系の収縮低減剤(記号 SRA)を使用した。PCWA はカオリ

*1 (株) ピーエス三菱 技術本部 技術研究所 材料グループ グループリーダー 博(工) (正会員) *2 日本工営(株) 広島支店 技術部第三課 課長 修(工) (正会員) *3 広島大学大学院 工学研究科 社会基盤環境工学専攻 教授 工博 (正会員)

使用材料	種類	1	性質						記号			
セメント	低熱セメ	ント	密度 3.22g/cm ³ ,比表面積 3510cm ² /g							L		
プレミックス材	_		$0.898 \times L + 0.103 \times SF$							SFLC		
細骨材	砕砂		表乾密度 2.62g/cm ³ ,吸水率 2.41%, 粗粒率 3.21,実積率 67.8%						S			
粗骨材	砕石		表乾密度 2.92g/cm ³ ,吸水率 0.88%, 粗粒率 6.51, 実積率 61.0%, 破砕値 7.86%								G	
	廃瓦粗骨材		表乾密度 2.27g/cm ³ ,吸水率 9.3%,粗粒率 6.66, 実積率 61.3%,破砕值 21.38%,骨材粒径 15-5mm							PCWA		
混和材	シリカフューム		密度 2.24g/cm ³ ,比表面積 16.3m ² /g							SF		
	膨張材		エトリンガイト・石灰複合系,密度 3.05g/cm ³							EX		
混和剤	収縮低減剤		低級アルコール系								SRA	
	高性能減水剤		ポリカルボン酸系								SP	
	消泡剤		ポリアルキレングリコール誘導体								D	
配合名	(W+SRA)/	W+SRA)/ 空気 かさ容積 ¹			容積 ¹⁾ 単位量(kg/m ³) SP/(SFLC							
	SFLC	量(%)	(m^3/m^3)	W	SFLC	EX	S	G	PCWA	SRA	+EX)	+EX)
В	0.15	2	0.530	155	1033	-	435	944	-	-	0.023	0.0002
PCA20	0.15	2	0.530	155	1033	-	435	755	147	-	0.023	0.0002
PCA20-R	0.15	2	0.530	149	1033	-	435	755	147	6	0.023	0.0002
PCA20-E10-R	0.15	2	0.530	149	1023	10	435	755	147	6	0.023	0.00002
E20-R	0.15	2	0.530	149	1013	20	435	944	-	6	0.023	0.00002

表-1 使用材料

1)かさ容積:単位粗骨材かさ容積

ン粘土(SiO₂:65.7%, Al₂O₃:27.1%, Fe₂O₃:2.9%, K₂O:1.8%) を焼成して作製した瓦の不適合品を破砕し、粗骨材径を 15mm から 5mm となるようにふるい分けして使用した。 廃瓦粗骨材は多孔質(図-1参照)であり、吸水率 9.3%、 破砕値 21.38%の材料特性を有する。骨材の破砕値試験は 骨材の強さを把握する方法として BS812part110 に記載 されており、容器に詰めた粗骨材を 400kN で載荷し、載 荷後に 2.5mm ふるいを通過した割合で示される。 廃瓦粗 骨材の強さは市販の軽量骨材(30%)と砕石(10%)の中間 的位置づけとなる¹²⁾。

2.2 配合

配合を表-2に示す。配合は5種類とした。水結合材 比は全て15%とし、単位水量は同一量の155kg/m³とした。 EX は単位結合材に含めることとし、SRA は単位水量に 含めることとした。配合 B は収縮ひずみの低減対策をと らない基準配合である。全配合の単位粗骨材かさ容積を 同一とし, 配合 PCA20, PCA20-R, PCA20-E10-R は, 配 合 B の単位粗骨材容積の 20%を廃瓦粗骨材で置換した。 配合 PCA20-R は, 配合 PCA20 の配合において SRA を添 加し,配合 PCA20-E10-Rは,さらに EX を標準添加量の 半分の 10kg/m³ を添加した配合である。配合 E20-R は PCWA を使用せずに SRA と標準添加量の EX を添加した 配合である。配合 EX20-R は EX と SRA による自己応力 低減効果と PCWA による自己応力低減効果とを比較す る目的で実施した。コンクリートのスランプフローは 675±75mmとなるように高性能減水剤で調整し,空気量 は2±1%となるように消泡剤で調整した。

使用した PCWA の水中浸漬日数ごとの含水率の測定

図-3 拘束応力供試体(RC プリズム)

例を図-2に示す。PCWAは概ね3日間で含水率が最大 となることから、使用した PCWA は3日間吸水させて使 用することとした。単位水量の管理は、PCWA を供試体 作製開始前に105℃の炉に24時間乾燥させて求めた含水 率と 24 時間吸水した PCWA の吸水率から算出した表面 水を単位水量に含めることにより調整した。

コンクリートの練混ぜは、容量100 リットルの2 軸強 制練りミキサを用い,1バッチあたり80リットルとした。 練混ぜ方法は、結合材と細骨材による空練り 15 秒、そ の後に水と混和剤を添加したモルタル練り240秒,最後 に粗骨材を投入してコンクリート練り60秒とした。

2.3 供試体

収縮ひずみ供試体寸法は 100×100×400mm とし, 拘 東応力供試体(RCプリズム)寸法は100×100×1400mmと した。RC プリズムの形状を図-3に示す。埋設する鉄

因 4 江船强反无坑

筋は SD345D16(鉄筋比 1.7%)とした。作製方法は JCI「コ ンクリートの自己応力試験方法(案)」¹³⁾に準拠した。

2.4 試験方法

(1) 養生方法

収縮ひずみ供試体と拘束応力供試体の養生条件は2種 類とした。1つは温度20℃の室内にて打込みを行い,打 込み後に打込み面をポリエステルシートで覆い,さらに 濡れウエスで覆い乾燥を防止した。材齢1日で脱枠を行 い,供試体をアルミ箔テープで覆い,封緘養生した。あ と1つは,内部養生をした供試体の乾燥条件下での影響 を把握するために,材齢28日まで封緘養生を行い,材 齢28日にアルミ箔テープをはがし,気乾養生とした。 封緘養生と気乾養生した供試体は室温20℃,湿度60%の 室内に静置した。配合PCA20-Rは自己収縮試験のみ実施 した。圧縮強度供試体の養生は封緘養生とした。

(2) 測定方法

拘束応力供試体に使用した鉄筋は、あらかじめ「荷重 -ひずみ」の関係を試験により求め、拘束応力算出に反 映した。また、温度ひずみは、コンクリートとの付着を 切った鉄筋に貼付したダミーゲージを用いて差し引い た。収縮ひずみの測定は、供試体中央部に埋設した低弾 性型(弾性係数:約40N/mm²)の埋込みひずみ計によって 測定した。コンクリートの温度変化に伴う体積変化はコ ンクリートの中心部に設置した熱電対にて測定した温 度変化をJCI 案¹³に準拠し、線膨張係数10×10⁻⁶/℃とし て補正した。

3.試験結果および考察

3.1 圧縮強度およびヤング係数

ここでは,後掲に示す拘束応力の解析に使用する圧縮 強度発現および圧縮強度とヤング係数との関係を試験 結果から求めた回帰曲線を示す。各配合の圧縮強度発現 を図-4に示す。式(1)に圧縮強度発現の回帰曲線を示す。 回帰結果を表-3に示す。

 $\sigma_{c}(t) = A \cdot \exp\left[B \cdot \left\{ 1 - \left(28 / (t - C)\right)^{0.5} \right\}\right] \quad (1)$

表一 3	圧縮強度発現 の	回帰結果
1X U	工船浊反元坑∽	'凹''''''''''''

供試体名	Α	В	С
В	149	0.193	0.6
PCA20	154	0.233	0.6
PCA20-R	140	0.298	0.6
PCA20-E10-R	141	0.247	0.6
E20-R	137	0.216	0.6

図-5 圧縮強度とヤング係数との関係

ここで、 $\sigma_{e}(t)$ は有効材齢t日での圧縮強度、A, B, Cは回帰係数を示す。

圧縮強度は全ての配合において材齢約365 日において, 160N/mm²を超える結果を示した。配合 PCA20 において 圧縮強度が配合 B より大きくなる結果を示した。この理 由として廃瓦粗骨材からの水分供給により,より強固な マトリックスを形成したため,圧縮強度が増加したこと が考えられる。膨張材と収縮低減剤を混入することによ り,圧縮強度が低下する傾向が認められた。膨張材の膨 張ひずみの発生は,膨張材自体の反応が収縮側となるが, 膨張材の水和生成物が空隙を生成するために生じると する報告¹⁴⁾がある。このことから,膨張材の添加による 圧縮強度の低下は,マトリックスが粗になったためと考 えられる。

圧縮強度とヤング係数の関係を図-5に示す。圧縮強 度とヤング係数の関係は概ね1つの回帰曲線で示すこと ができる。これは、本研究においては、単位粗骨材容積 と使用骨材を固定したためと考えられる。式(2)に有効材 齢*t*日の圧縮強度とヤング係数*E*_c(*t*)の回帰式を示す。

$$E_{c}(t) = 4.70\sigma_{c}(t)^{0.48}$$
⁽²⁾

3.2 収縮ひずみ

各配合の収縮ひずみの経時変化を図-6に示す。横軸 はlogで示しているため,有効材齢0日から発現を記載 するために有効材齢t日に1を加算した(t+1)日として 標記した(横軸の1日は有効材齢0日を示す)。以降のグ ラフも同様に示した。自己収縮ひずみは廃瓦粗骨材を混 入することにより,内部養生による低減効果が確認され, その収縮低減効果は膨張材と収縮低減剤を混入した配 合 E20-Rより高くなる結果を示した。廃瓦粗骨材を用い た配合のひずみ発現は、材齢 1.5 日まで膨張ひずみが発 生し、その後、収縮側に転じる結果となり、膨張材と収 縮低減剤を用いた配合 E20-R のひずみ発現とは明らかに 異なる性状を示した。吸水率以上に含水した軽量骨材を 用いたコンクリートの既往の研究⁸⁰においても膨張ひず みが発生しており、傾向的には整合している。

自己収縮ひずみの低減効果を把握するために,自己収 縮ひずみの低減量の経時変化を図-7に示す。ここでは, 自己収縮ひずみの低減量は各配合の自己収縮ひずみか ら配合Bの自己収縮ひずみを差し引くことにより算出し た。有効材齢 1100 日では配合 PCA20-E10-R が最も収縮 ひずみ低減量が大きくなる結果を示した。配合 PCA20 および PCA20-R では有効材齢初期において低減量が大 きくなったが,それ以降の低減量は小さくなる傾向が認 められた。一方, PCA20-E10-R の低減量はわずかに小さ くなるに留まった。このことから, PCWA に膨張材と収 縮低減剤を添加する効果は,自己収縮ひずみの低減効果 を持続させることに有効であると考えられる。

乾燥収縮ひずみの経時変化を図-8に示す。ここでは、 乾燥収縮ひずみは各配合の気乾養生した収縮ひずみか ら封緘養生した自己収縮ひずみを差し引くことにより 算出した。乾燥収縮ひずみの発現は有効材齢100日まで は、配合による差異がほとんど認められなかったが、配 合 PCA20と PCA20-E10-R は有効材齢100日から乾燥収 縮ひずみの発現がほとんどなく、乾燥からの有効材齢 1000日においては配合Bより小さくなる結果を示した。 このことから、PCWAを混入することにより乾燥収縮ひ ずみの最終値を抑制する効果があると考えられる。

3.3 拘束応力

ここでは、圧縮強度発現(式(1))、圧縮強度とヤング係 数との関係(式(2))および収縮ひずみの実験値(図-6)を 用いた拘束応力の解析値と実験値との比較をあわせて 行う。このことから、始めに解析方法を記述し、次に解 析値と実験値との比較を記述する。

(1) 解析方法

解析方法は、増分型 Step by step 法 ¹¹⁾を用いた。Step by step 法の概念図を図-9に示す。Step by step 法によるステップ i の応力変動は、式(3)で示される。

$$\Delta \sigma_{i} = E_{e}(t_{i}) \cdot \left[\left(\Delta \varepsilon_{e} \right)_{i} - \sum_{j=1}^{i-1} \Delta \sigma_{j} \cdot \left\{ \Delta \phi(t_{i}, t_{j}) \right\} / E_{e^{28}} - \left(\Delta \varepsilon_{sh} \right)_{i} \right]$$
(3)

ここで、 $\Delta \sigma_{j}$: step $_{j}$ のコンクリート変動応力度, $E_{e}(t_{i}) = 1/j(t_{i+1/2},t_{i})$, $j(t_{i+1/2},t_{i}) = 1/E_{e}(t_{i}) + \phi(t_{i},t_{i})/E_{e^{28}}$, $(\Delta \varepsilon_{e})_{i}$:時間ステップi-1からiのコンクリートの全 ひずみ変化量, $(\Delta \varepsilon_{sh})_{i}$:自由ひずみ変化量を示す。

図-8 乾燥収縮ひずみの経時変化

クリープ関数は修正 MC90 法 ¹⁵⁾を用いて評価した。本 研究における解析で用いたクリープ関数は,配合 B と同 ーの配合である既報の文献 ¹⁶⁾を参考に定めた。クリープ 関数を式(4)に示す。 $\phi_0 \ge \beta_H$ は載荷時有効材齢のヤング 係数($E_c(t_0)$)と有効材齢 28 日のヤング係数(E_{c28})の比 とする関数で示される。

$$\phi(t,t_0) = \phi_0 \left(\frac{(t-t_0)/t_1}{\beta_H + (t-t_0)/t_1} \right)^{0.3}$$
(4)

ここで、 $\phi(t,t_0)$: クリープ係数、 ϕ_0 : クリープ係数 の終局値、 β_H : クリープ進行速度を表す係数、t: 有 効材齢(日), t_1 :1日, t_0 :載荷時有効材齢(日)を示す。 $\phi_0 - E_c(t_j)/E_{c28} \ge \beta_H - E_c(t_j)/E_{c28}$ の関係を図ー 10に示す。図より, $\phi_0 \ge \beta_H$ は式(5)と(6)となる。

$$\phi_0 = 0.15 + 5.2 \exp(-2.0(E_c(t_0) / E_{c^{28}})) \tag{5}$$

$$\begin{cases} 0 < E_{c}(t_{0})/E_{c,28} < 0.270 \\ \beta_{H} = 0.000001 \\ 0.270 < E_{c}(t_{0})/E_{c,28} \\ \beta_{H} = 49.4(E_{c}(t_{0})/E_{c,28}) - 13.2 \end{cases}$$
(6)

既報の研究¹¹⁾において,膨張材と収縮低減剤の混入の 有無にかかわらず,水結合材比の同じ配合ではほぼ等し いクリープ性状を示したことから,配合 EX20-R のクリ ープ関数は配合 B と同じと仮定した。また,配合 PCA20, PCA20-E10-R のクリープ特性は,本来は実施すべきであ るが,ここでは配合 B のクリープ関数を用いた。解析で 用いた線膨張係数は,鉄筋を 11.8×10⁵/℃(測定値),コン クリートを 10.0×10⁵/℃(仮定値)とした。

(2) 実験値と解析値との比較

各配合の拘束応力の実験値と解析値の経時変化を図 -11に示す。実験値を凡例に示すプロット,封緘養生し た解析値を実線,封緘養生から材齢 28 日から気乾養生 した解析値を一点鎖線でそれぞれ示す。拘束応力の実験 結果によれば,配合 PCA20 と PCA20-E10-R の供試体は 材齢1日まで圧縮応力が生じ,その後,引張応力の増加 が認められた。計測終了時点において配合 PCA20 の供試 体の引張応力は配合 E20-R と同程度となり,配合 PCA20-E10-R の供試体では配合 E20-R より小さくなる結 果となった。このことから,内部養生法にさらに膨張材 と収縮低減剤の併用することにより拘束応力の低減効 果を高める効果が認められた。

次に解析値と実験値との比較を行う。配合 B と PCA20 の拘束応力は養生条件に寄らず実験値と解析値とは概 ね合致した。このことから,配合 B と PCA20 のクリー プ特性はほぼ同等と考えられる。しかし, 配合 PCA20-E10-RとE20-Rは有効材齢1日までの段階で一致 しない結果となった。膨張材と収縮低減材を混入した場 合に実験値と解析値が一致しない要因を自己収縮ひず みと鉄筋ひずみとの関係を用いて検討する。配合 B と E20-R の有効材齢1日までの自己収縮ひずみと拘束応力 供試体の鉄筋ひずみとの関係を図-12 に示す。配合 E20-R の自己収縮ひずみ変動に対する鉄筋ひずみの変動 は配合 B と比較して小さくなる傾向が認められた。この ことから、膨張材と収縮低減剤を添加した配合の材齢初 期のクリープによる応力緩和は配合Bより大きいことが 推察され,前述の既往研究¹¹⁾とは異なる結果となった。 この理由として、膨張材を混入したことにより組織に空

図-10 $E_{c}(t_{0})/E_{c^{28}} \ge \phi_{0}$ および β_{H} の関係

図-12 自己収縮ひずみと鉄筋ひずみとの関係

隙が生じたため,異なるクリープ特性を示したことが考 えられる。膨張材と収縮低減剤を添加した供試体のクリ ープ特性はさらに検討をしていく必要があると考える。

(3) 乾燥応力

各配合の乾燥収縮ひずみに起因して生じた応力(以下, 乾燥応力)の実験値の経時変化を図-13 に示す。ここで は,乾燥応力は各配合の気乾養生した供試体の拘束応力 から封緘養生した供試体の拘束応力を差し引くことに より算出した。拘束応力の低減を実施した各供試体の乾 燥応力は,配合 B と比較して小さくなる傾向が認められ た。各低減方法はいずれも乾燥収縮ひずみに起因して生 じる拘束応力の低減にも有効であると考えられる。

4. まとめ

超高強度コンクリートの内部養生による自由変形お よび拘束応力の低減効果を収縮ひずみの低減対策とら ないコンクリートと実験的,解析的に比較検討し,以下 のことが明らかになった。

- (1) 廃瓦粗骨材を混入した供試体の収縮ひずみと拘束 応力は基準コンクリートと比較して長期にわたり 小さくなり、低減効果が認められた。廃瓦粗骨材の 適用は、ひび割れ抵抗性の向上に有効であることが 認められた。その効果は乾燥条件下においても膨張 材と収縮低減剤を混入することにより、長期的に持 続することが認められた。
- (2) 廃瓦粗骨材を混入したコンクリートの圧縮強度は 基準配合のコンクリートと比較して大きくなる。
- (3) 廃瓦粗骨材を用いた場合の拘束応力は基準配合のク リープ特性を用いることにより解析値と実験値が 概ね一致したが,膨張材と収縮低減剤を混入した供 試体では若材齢時に解析値と実験値の乖離が認め られた。

参考文献

- 五十嵐心一ほか:若材齢における高強度コンクリートの内部組織の特徴と自己収縮拘束特性,土木学会 論文集,No.704,V-55,pp.173-186,2002.5
- 2) 田澤榮一ほか:コンクリートの自己収縮,コンクリ ート工学年次論文集, Vol.14, No.1, pp.561-566, 1992.5
- 片寄哲務ほか:高強度コンクリートの若材齢における力学特性と自己収縮挙動、コンクリート工学年次 論文集, Vol.28, No.1, pp.497-502, 2006.7
- Ryoichi sato and Hazime Kawakane: A New Concept for the Early Age Shrinkage Effect on Diagonal Cracking Strength of Reinforced HSC Beams, Journal of Advanced Concrete Technology Vol.6, No.1, pp.45-67, Feb. 2008
- 5) 五十嵐心一ほか:軽量骨材の使用による高強度コン

図-13 各配合における乾燥応力の経時変化

クリートの自己収縮の低減効果, コンクリート工学 年次論文集, Vol.24, No.1, pp.399-404, 2002.6

- O. M. Jensen and P. F. Hansen: Water-entrained cement-based materials I. Principals and theoretical background', Cement and Concrete Research, Vol.31, No.4, pp.647-654, Apr. 2001
- 7) 谷村充ほか:膨張材を用いた高強度コンクリートの 自己膨張・収縮特性、コンクリート工学年次論文集, Vol.24, No.1, pp.951-956, 2002.6
- 8) 日紫喜剛啓ほか:自己収縮を低減した 150N/mm² 級 超高強度コンクリートに関する実験的検討,土木学 会論文集, No.781, V-66, pp.101-112, 2005.2
- 9) 鈴木雅博ほか:廃瓦粗骨材を用いた超高強度コンク リートの変形と拘束応力に関する検討,コンクリー ト工学年次論文集, Vol.29, No.1, pp.651-656, 2007.7
- 鈴木雅博ほか:超高強度 RC プリズムの自己応力低 減に関する検討,コンクリート工学年次論文集, Vol.30, No.1, pp.459-461, 2008.7
- Ito, Hidetoshi, et al. : Early Age Deformation and Result Induced Stress in Expansive High Strength Concrete, Jounal of Advanced Concrete Technologe, Vol.2, No.2, pp.155-174, June 2004
- 12) 例えば、鈴木雅博他: PVA 繊維補強軽量コンクリートの耐凍害性、第 14 回プレストレストコンクリートの発展に関するシンポジウム論文集, pp.143-146, 2005.10
- 日本コンクリート協会:自己収縮研究委員会報告書, 1996 および 2002
- 14) 盛岡実他:膨張材を混和したセメント硬化体の微細構造、コンクリート工学年次論文集、Vol.20, No.2, pp.169-174, 1998.6
- 15) CEB-FIP Model Code 1990, Tomas Telford, 1993
- 16) 鈴木雅博ほか:超高強度膨張コンクリートの自由変形と拘束応力に関する検討、コンクリート工学年次論文集、Vol.28, No.1, pp.563-568, 2006.7