論文 大口径貫通孔を有する梁部材の開口補強工法の開発

石岡 拓^{*1}·清水 隆^{*2}·和泉信之^{*3}

要旨:梁せいの1/2程度の直径を有する孔が貫通可能な鉄筋コンクリート梁の開口補強工法の開発を行った。 本工法は,K型の形状の補強筋を主体とした開口補強であり,開口補強筋量を変数とした4体の試験体により その構造性能と現行規準耐力式の適応性を確認した。実験では開口補強筋量が大きいほど,最大耐力上昇と 靱性能向上が見られた。本試験体では開口補強筋量と最大耐力はほぼ線形関係にあり,「RC規準」によるせん 断終局強度式では補強筋量が大きい場合に過小評価となり,「靱性保証型指針」では開口補強筋の効果を適切 に評価しているが,補強筋量に関わらず若干小さい評価となった。

キーワード:鉄筋コンクリート,有孔梁,開口補強,大口径

1. はじめに

鉄筋コンクリート造梁に貫通孔を設けると梁として の構造性能が低下することから,貫通孔が円形の場合に は,貫通孔径は梁せいの 1/3 以下とすることが望ましい とされている。基礎梁においても直径 600 φ 程度の人通 孔を設ける場合には,設計から定まる必要断面に関わら ず,梁せいは 1800mm 以上必要となる。このことは土工 事・躯体工事のコストアップにつながることから,新た に,梁せいの 1/2 程度の直径を有する孔が貫通可能な開 口補強工法の開発を行った。

本工法における開口補強の概要を図-1 に示す。開口 補強筋は3種類の補強筋で構成されている。K型補強筋 は材軸に沿った2本の鉄筋(=軸方向筋)と材軸からあ る角度をもって斜めに伸びた2本の鉄筋(=斜め筋)を 鋼板に溶接して一体化した補強筋である。原則として2 個1組で使用し,開口を中心に向かい合わせで配置する。 開口際あばら筋は開口周囲のあばら筋のうち,開口中心 より45°方向に引いた直線が引張鉄筋重心と交わる位 置(図中のc点)よりも,開口側に配置されたあばら筋 である。開口部あばら筋は開口上下の束材部分のあばら 筋である。

本開口補強工法を基礎梁に適用することを想定して, 開孔径を梁せいの 1/2 とした有孔梁試験体を用いた実験 により補強方法の妥当性を確認した。

*3 千葉大学 大学院工学研究科建築・都市科学専攻教授 博(工) (正会員)

2. 実験計画

2.1 試験体概要

試験体一覧を表-1に、試験体形状および配筋を図-2 にそれぞれ示す。試験体は、開口補強筋量を実験変数と した 1/2 縮小試験体 4 体であり、すべて開口部せん断破 壊先行型で設計した。試験体断面、開口径は全試験体共 通であり,梁幅 B=400mm,梁せい D=600mm,開口径 H=300mm (=D/2) とした。梁内法スパンは 1800mm であ り、シアスパン比は 1.5 とした。コンクリートは圧縮強 度σ_B=30N/mm²で計画したが、実際の実験時の強度は約 40N/mm²であった。梁主筋は、曲げ降伏が先行すること を防止するために一般的な基礎梁で想定されるよりも太 径,高強度とし,RCBO1,RCBO2 試験体で8-D19(SD345), RCBO3, RCBO4 試験体で 6-D22 (SD490) とした。せん 断補強筋は D6(SD295A)とし、開口部以外でのせん断 破壊を防止するために補強筋間隔を密にした。開口補強 筋は、RCBO1 試験体は K 型補強筋がなく、開口際あば ら筋 2-D6@20, 開口部あばら筋 2-D6@40 のみとした。

試験体名 RCB01 RCBO2 RCBO3 RCBO4 梁主筋 4+4-D19 (SD345) 4+2-D22 (SD490) 2-D10 (2組) 2-D13 (2組) 3-D13 (3組) K型 なし 補<u>強筋</u> (SD345) (SD345) (SD345) 0.58 pwd(%) 0 0.22 0.38 開口際 2-D6@20 4-D6@20 開 あ<u>ばら筋</u> (SD295A) (SD295A) pws(%) 部 0.28 0.27 0.55 開口部 2-D6@40 2-D6@30 4-D6@30 あ<u>ばら筋</u> (SD295A) (SD295A) (SD295A) pwo(%) 0.40 0.53 1.07 2-D6@50 2-D6@35 4-D6@35 (SD295A) (SD295A) (SD295A) 般 4-D6@50 4-D6@35 部 (端部) (SD295A) (SD295A)

表-1 試験体一覧

RCBO2 試験体は, K 型補強筋 D10 (SD345) を 4 個 2 組として,開口際あばら筋と開口部あばら筋は RCBO1 試験体と同様とした。RCBO3 試験体は,K 型補強筋 D13

(SD345) を 4 個 2 組とし,開口際あばら筋 2-D6@20, 開口部あばら筋 2-D6@30 とした。RCBO4 試験体は,K 型補強筋 D13 (SD345) を 6 個 3 組とし,開口際あばら 筋 4-D6@20,開口部あばら筋 4-D6@30 とした。開口部 あばら筋に中子筋を配筋するために,軸方向筋として 2-D16 を配置した。

試験体で使用したコンクリートと鉄筋,鋼板の材料試 験結果を表-2 に示す。コンクリートの粗骨材は最大径 13mm として,試験体の縮尺に合わせた。

2.2 加力方法

実験における加力状況を図-3 に、加力スケジュール を図-4 にそれぞれ示す。試験体の加力は試験部に逆対 称曲げせん断力が生じるように建研式加力装置を用いて, 正負漸増繰り返し加力を行った。試験体の全体変形は, 上下スタブ間に取り付けた変位計により計測した。試験 体に生じる荷重は、水平加力ジャッキに内蔵したロード セルにより計測した。加力は、試験体の全体変形を内法 スパン1800mmで除した部材角Rで制御する変位制御を 基本とし、R=±1/1000rad.を1回、R=±1/400rad.、± 1/200rad., $\pm 1/133$ rad., $\pm 1/100$ rad., $\pm 1/67$ rad., $\pm 1/50$ rad. を各 2 回, R=+1/33rad.を 1 回加力した。ただし, R=± 1/400rad.までは荷重制御として、加力途中に長期許容せ ん断力に達した場合には、ひび割れ幅の測定を実施し、 短期許容せん断力に達した場合にはピーク時のひび割れ 幅と除荷後の残留ひび割れ幅を測定した。許容せん断力 は、後述する日本建築学会「RC 規準」¹⁾の開口の影響を 考慮した許容せん断力式を用いて算出した。

	割線剛性	圧縮強度	割裂強度		
コンクリード	$(\times 10^3 N/mm^2)$	(N/mm^2)	(N/mm ²)		
RCB01	31.1	36.9	3.05		
RCBO2	31.1	39.9	3.15		
RCBO3	32.7	41.4	3.08		
RCBO4	31.4	41.0	2.87		
鉄筋·鋼板	ヤング係数	降伏強度	引張強度		
	$(\times 10^3 N/mm^2)$	(N/mm ²)	(N/mm ²)		
D6	182	371	511		
D10	194	401	546		
D13	183	389	548		
D16	192	384	530		
D19	192	396	583		
D22	190	539	710		
PL19	197	403	545		
PL22	204	399	569		

図-3 加力状況

図-5 最大耐力時ひび割れ発生状況(実線:正加力時,破線:負加力時)

3. 実験結果

3.1 破壊状況

最大耐力時のひび割れ発生状況を図-5に示す。

いずれの試験体においても、加力初期に梁端部とスタ ブの打継部に若干の開きが見られ、その後梁上下面に曲 げひび割れが発生した。部材角 R=1/1000rad.までに開口 部の中心から 45 度方向に開口部せん断ひび割れが 1,2 本発生した。このひび割れは部材角の進展とともに拡幅 し、ひび割れを横切る K型補強筋の斜め筋が降伏した。 その後、開口部の接線方向に新たな開口部せん断ひび割 れが発生し、主筋沿いのひび割れと一体となり、開口を 介して断面を斜めに横切るひび割れとなった。各試験体 で最大耐力が生じた部材角には差異が見られたものの、 いずれの試験体ともこのひび割れが大きく拡幅して最大 耐力に達した。

最大耐力以降は,開口部接線方向のひび割れを境にし て試験体上下がずれるように変形が進行し,徐々に耐力 が低下した。

3.2 各種強度と荷重変形関係

各試験体の各種強度と発生部材角を表-3 に,荷重変 形関係を図-6 にそれぞれ示す。表中には各試験体の実 験結果として,開口部せん断ひび割れ発生時部材角と強 度,長期許容せん断力時,短期許容せん断力時の部材角 と計算値,最大耐力時の部材角と強度を示し,実験時の コンクリート圧縮強度 σ_B と最終破壊状況を併記した。 なお,ここでの長期・短期許容せん断力及びせん断終局 強度は,日本建築学会「RC 規準」¹⁾の開口の影響を考慮 した式(1),式(2)及び,式(3)によった。開口補強 筋量 p_sには,K型補強筋の斜め筋および開口際あばら筋 の断面積を算入した。

$$Q_{A0} = bj\{\alpha f_s(1 - H/D) + 0.5_w f_t(p_s - 0.002)\}$$
(1)

孔周囲の短期許容せん断力:

$$Q_{A0s} = bj\{(2/3)\alpha f_s(1 - H/D) + 0.5_w f_t(p_s - 0.002)\}(2)$$

孔周囲の終局せん断強度:

$$Q_{su0} = \left\{ \frac{0.092k_u k_p (\sigma_B + 18)}{M/Qd + 0.12} \left(1 - 1.61 \frac{H}{D} \right) + 0.85 \sqrt{p_{s \cdot s} \sigma_y} \right\} bj (3)$$

開口部せん断ひび割れ発生時の部材角は 1/4000~ 1/1000rad.であり,発生強度にもばらつきがあった。ひび 割れ発生前であることから,開口補強筋による影響とい うよりも目視確認によるためと考えられる。

長期許容せん断力計算値は開口補強筋量 ps の制限に

試験体名		RCB01		RCB02		RCBO3		RCBO4	
		36.9		39.9		41.4		41.0	
加力方向		(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
開口部せん断 ひび割れ発生時	部材角 (10 ⁻³ rad.)	0.50	-0.39	0.36	-0.45	1.02	-0.35	0.26	-0.36
	強 度 (kN)	112.3	-79.2	86.6	-96.7	130.0	-95.8	75.9	-86.5
長期許容せん断力時	部材角 (10 ⁻³ rad.)	1.00	-1.56	1.22	-1.49	1.92	-1.72	1.35	-1.66
	計算値 (kN)	141.4		185.6		207.8		207.2	
短期許容せん断力時	部材角 (10 ⁻³ rad.)	1.12	-1.56	1.60	-1.96	2.86	-2.48	4.14	-4.29
	計算値 (kN)	149.2		213.8		261.0		388.7	
最大耐力時	部材角 (10 ⁻³ rad.)	4.47	-4.39	6.76	-5.06	7.59	-7.58	15.44	-15.18
	強 度 (kN)	301.0	-248.9	380.5	-347.8	452.8	-432.4	697.8	-657.0
		開口部せん断破壊		開口部せん断破壊		開口部せん断破壊		開口部せん断破壊	

表-3 各種強度と発生部材角

より各試験体で大きな差がないが,短期許容せん断力計 算値は RCBO1 試験体で 149kN, RCBO4 試験体で 389kN であり,試験体間で最大 2.6 倍の差がある。そのため, 長期許容せん断力に達する部材角はばらつきがなく,短 期許容せん断力に達する部材角は計算値の大きさに応じ た結果となった。

各試験体の荷重変形関係の包絡線を図-7 に示す。開 ロ補強筋量の増大に伴い,最大耐力の上昇と靱性能の向 上が見られた。K型補強筋の有無で比較すると,K型補 強筋を有する RCBO2 試験体は,K型補強筋のない RCBO1 試験体と比べて正加力時の最大耐力は 1.26 倍に 上昇した。開口補強筋量で比較すると,RCBO2 試験体と 比べて RCBO3 試験体は 1.19 倍, RCBO4 試験体は 1.83 倍の最大耐力(正加力時)の上昇があった。

正加力時の最大耐力発生部材角は, RCBO1~4 試験体 でそれぞれ, 1/224rad., 1/148rad., 1/132rad., 1/65rad.で あり,開口補強筋量が大きいほど開口周囲の破壊が抑制 されて,変形能力が向上した。

3.3 開口部周囲の鉄筋ひずみ分布

(1) K 型補強筋

RCBO3 試験体の最大耐力時までの負加力時の K 型補 強筋ひずみ分布を図-8 に示す。斜め筋の開口付近(i 位置)のひずみは,開口部の中心から45度方向に発生し たひび割れの拡幅に伴って増大した。降伏部材角は, RCBO2 試験体で1/523rad., RCBO3 試験体で1/414rad., RCBO4 試験体で1/146rad.であり,RCBO2,RCBO3 試験 体では式(2)で算出される短期許容せん断力時相当であ った。斜め筋の端部(j位置)では降伏せず,そのひず

図-8 K型補強筋のひずみ分布(RCB03, 負加力時)

みは最大1000μ程度であった。

軸方向筋のひずみ測定では,開口際(c, d位置)と開 口際から 20d(d:鉄筋径)離れた位置(b, e位置),端 部(a,f位置)の6箇所にひずみゲージを貼付した。軸 方向筋のひずみ分布は,鋼板を中心として片側だけ(b, c位置)に引張ひずみが生じる分布となった。いずれの 試験体とも降伏は部材角約 1/67rad.で,開口際(c位置) だけに発生した。降伏は RCBO2, RCBO3 試験体では最 大耐力以降, RCBO4 試験体では最大耐力直前であった。 b, e位置では降伏せず,試験体における軸方向筋の定着 長の妥当性が確認できた。

(2) あばら筋

RCBO3 試験体のあばら筋の正加力時のひずみ分布を 図-9 に示す。いずれの試験体においても開口際あばら 筋(m, o位置)と開口部あばら筋(n位置)は実験終了 時まで降伏しなかった。RCBO1, RCBO2 試験体では 1/200rad.直後に最大耐力に達し,あばら筋のひずみはほ ぼ頭打ちとなった。両試験体のあばら筋のひずみは最大 でも1000μ程度であった。RCBO3, RCBO4 試験体では 1/200rad.以降も耐力が上昇し,開口部周辺以外の損傷も 進行するために,一般部(l, p位置)でもひずみが増大 し,最大耐力以降であるが,降伏ひずみに達した。

(3) 梁主筋

RCBO3 試験体の梁主筋の正加力時のひずみ分布を図 -10 に示す。梁主筋のひずみは、一端(v位置)は引張

ひずみ,他端(r 位置) は圧縮ひずみとなっており,試 験部に逆対称曲げモーメントが生じていた。各試験体と も最大耐力付近までは材軸方向に沿って直線的なひずみ 分布となっていたが,最大耐力以降は開口上下のコンク リートの損傷が進行するために開口位置(t 位置)にお ける梁主筋ひずみが大きくなる傾向がみられた。

4. 考察

本実験における最大耐力と計算値との比較を表-4 に 示す。表中には式(3)による計算値の他に,式(4)に 示す日本建築学会「靭性保証型指針」²⁾によるせん断強 度および式(5)に示す日本建築学会「RC 規準」³⁾によ る降伏曲げモーメントから算出したせん断力を併記した。 式中の記号は各文献による。

$$V_{\mu} = 2b_{e}j_{es}p_{ws}\sigma_{sv}\cot\phi_{s} + A_{r}\sigma_{rv}\sin\theta_{r} \qquad (4)$$

$$M_{\rm v} = 0.9a_t \sigma_{\rm v} d \tag{5}$$

また,式(3)と式(4)による実験値と計算値との比 較を図-11に示す。図中には実験値/計算値の下限値 (破線)を併記した。

本試験体の最大せん断耐力は,式(3)に対しては1.09 倍以上,式(4)に対しては1.13倍以上の余裕度を有す ると考えられる。また,式(3)では開口補強筋量が最も

	コンクリート 圧縮強度	最大耐力		(3)式との比較		(4)式との比較		(5)式との比較		
試験体名		部本	才角	実験値	計算値	実験値	計算値	実験値	計算値	実験値
	(N/mm ²)	(10 ⁻³ rad.)	(rad.)	(kN)	(kN)	/計算値	(kN)	/計算値	(kN)	/計算値
RCBO1	26.0	4.47	+1/224	301.0	227.6	1.32	167.4	1.80	477.1	0.63
	30.9	-4.39	-1/228	-248.9		1.09		1.49		0.52
RCB02	39.9	6.76	+1/148	380.5	289.8	1.31	240.7	1.58	477.1	0.80
		-5.06	-1/198	-347.8		1.20		1.45		0.73
RCBO3	41.4	7.59	+1/132	452.8	326.8	1.39	352.9	1.28	667.3	0.68
		-7.58	-1/132	-432.4		1.32		1.23		0.65
RCBO4	41.0	15.44	+1/65	697.8	403.7	1.73	580.8	1.20	667.3	1.05
		-15.18	-1/66	-657.0		1.63		1.13		0.98
					(平均)	1.37	(平均)	1.39	(平均)	0.75

表-4 最大耐力と計算値との比較

大きい RCBO4 試験体で最大耐力を過小評価したが,式 (4) では開口補強筋量に関わらず,最大耐力を過小評価 する傾向があった。

開口補強筋量と最大耐力の関係を図-12に示す。図中 には式(3)の計算値を併記した。式(3)ではせん断耐 力に対する開口補強筋の効果は平方根の項として表わさ れているが、本試験体では開口補強筋量とせん断耐力の 関係はほぼ線形であった。そのため、本試験体の範囲内 では開口補強筋量が大きいほど最大耐力を過小評価する 結果となり、特に RCBO4 試験体ではその影響が大きか ったと考えられる。

K型補強による耐力とK型補強筋比との関係を図-13 に示す。K型補強による耐力はRCBO1, RCBO2 試験体 の最大耐力差とした。図中には式(4)の第2項を併記し た。試験体1体での評価となるが,式(4)第2項はK 型補強筋の効果を比較的よく評価していると考えられる。

最大耐力実験値から式(4)第2項計算値を差し引い た値を開口上下の束材のせん断耐力として開口部あばら 筋比との関係を図-14に示す。図中には式(4)の第1 項を併記した。式(4)第1項は束材耐力の傾向をとらえ ているが,開口部あばら筋比に関係なく全体的に過小評 価である。式(4)第1項と束材せん断耐力との差の平均 値は85kNであり,有孔梁で考慮しないアーチ作用によ る耐力上昇と推測されるが,試験体数が限られているた め今後の検討課題としたい。

5. まとめ

K型の形状をした補強筋を用いて開口補強した鉄筋コ ンクリート造有孔梁の加力実験により,以下の結果が得 られた。

- 開口補強筋量が大きいほど開口周囲の破壊が抑制 されて、最大耐力の上昇と靱性能の向上が見られた。
- 2) 開口周囲の補強筋のひずみ分布から、K型補強筋の 斜め筋は効果的な開口補強として働いていたこと が分かった。

3) 本試験体では開口補強筋量とせん断耐力の関係は ほぼ線形であり、「RC規準」によるせん断終局強度 式では補強筋量が大きい場合に過小評価し、「靭性 保証型指針」では開口補強筋の効果を適切に評価す るが、補強筋量に関わらず若干小さい評価となった。

参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,pp.355-358,2010
- 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説,pp.169-175,1999
- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説, p.76, 2010