論文 損傷スペクトルを用いた RC 構造物の損傷評価法

西尾 淳*1・今井 究*2・田嶋 和樹*3・白井 伸明*4

要旨:本研究では,建物の1次固有周期と建物全体の損傷指標の関係を表す損傷スペクトルを用いた損傷評価法の検証を行った。検証に際しては,東北地方太平洋沖地震において被災した RC 造校舎の損傷状況と損傷スペクトルから得られる損傷指標を比較した。その結果,旧耐震基準で設計された校舎に関しては,損傷指標 DI と実被害状況が良い対応を示した。一方,新耐震基準の校舎においては,実被害状況を過大評価する結果となり,その要因の1つとして,設計で想定している建物強度と実強度の差である余剰強度の影響が考えられることを示した。

キーワード:損傷スペクトル,損傷評価,地震被害調査,履歴エネルギー,塑性率,固有周期

1. はじめに

国内では,既存 RC 造建物の耐震性能を評価する耐震 診断¹⁾の考え方に基づいて,被災した建物の損傷評価に 関する基準²⁾が整備されてきた。さらに,性能評価型設 計への移行とともに,損傷評価を新築建物の耐震性能評 価に活用するための取り組み³⁾も進められている。これ らの損傷評価手法では,RC 部材に残留するひび割れ幅 に基づいて部材の残存エネルギー吸収能力を評価し,部 材,層および建物全体の損傷程度を推定する。

一方,Bertero ら⁴によって提案された損傷スペクトル は,建物の1次固有周期と建物全体の損傷指標 DI の関 係をスペクトル表示したものであり,地震動の周期特性 や地盤特性の影響が建物の損傷評価に反映される。任意 の地点における観測波または想定される地震波に対して 損傷スペクトルを作成すれば,建物の1次固有周期から 当該地震動に対する建物の損傷程度を推定可能になる。

本研究では、Bertero らが提案する損傷スペクトルを用 いた建物全体の損傷評価手法に着目し、その妥当性を検 証するとともに、それを発展させた損傷評価手法の構築 に取り組む。本報では、損傷スペクトルの検証を行うに あたり、防災科学技術研究所の K-NET および KiK-net⁵⁾ で観測された東北地方太平洋沖地震の地震動データを活 用して損傷スペクトルを作成し、観測点近傍の建物の被 害状況を推定する。さらに、観測点近傍の建物の被害調 査結果との比較検討を通じて、損傷スペクトルの検証を 行う。

2. 提案損傷評価手法とその活用

将来的な展望も含め,提案する損傷評価手法のフロー を図-1 に示す。損傷評価の第一段階は,地震動によっ

*1 日本大学大学院 理工学研究科建築学専攻 (正会員) *2 株式会社構造ソフト (正会員) *3 日本大学 理工学部建築学科助教 (正会員) *4 日本大学 理工学部建築学科教授 (正会員) て RC 造建物に生じる損傷程度の概略値を把握すること が目的であり、ここでは損傷スペクトルを活用する。例 えば、東北地方太平洋沖地震のような大規模地震が発生 した際、観測波を用いて即座に損傷スペクトルを計算し、 Damage Map を作成することで、地震発生直後にどの地 域の被害が顕著であるか把握することが可能となる。同 様に、想定地震動に対するハザードマップの整備にも役 立てることができ、既存建物や新築建物の簡易安全性評 価を行えば耐震診断・補強の優先度を決定する手法の1 つとして有用である。

損傷評価の第二段階は,第一段階で安全性が懸念され る建物に対して,具体的に損傷部位を特定することが目 的である。ここでは,建物全体の損傷だけでなく,層や 部材の損傷が対象となるため,建物を多質点系モデルや

フレームモデルに置き換えて地震応答解析を行い,層や 部材の損傷程度を推定する。これにより,建物中の弱点 が明確になるため,補修・補強が必要な部位を特定する ことができる。

損傷評価の第三段階は、役所、学校、病院など地域に おいて重要度の高い建物が主な対象となるが、建物に生 じる損傷状態を詳細に予測することが目的となる。ここ では、3次元FEM解析などの高度な解析技術を活用して、 発生が予想される損傷の状態(ひび割れ、圧壊、主筋や あばら筋の降伏など)をシミュレーションで明確にし、 建物の安全性を高度に管理する。

本研究は、ここで提案する損傷評価手法の第一段階に 関する検討を行うものであり、東北地方太平洋沖地震の 建物被害との比較を通じて、損傷スペクトルの妥当性を 検証する。

3. 損傷スペクトル

3.1 Bertero らの損傷スペクトルの概要

損傷スペクトルは、建物を1質点系モデルに置き換え て、建物の周期 T(sec)と損傷指標 DI(Damage Index)の関 係をグラフ化したものである。損傷指標 DI は、無損傷 の場合を 0、構造物が崩壊する可能性のある場合を 1 と して、定量的かつ連続的に損傷程度を表す。Bertero らは Park ら^のの部材損傷指標 DI_{PA}を改良し、最大変形と履歴 エネルギー吸収能力の組み合わせによる新たな損傷指標 提案している。DI_{PA} は次式により定義される。

DI_{PA}=(u_{max}/u_{mon})+βE_H/(F_yu_{mon}) (1) ここで, u_{max}:最大応答変形, u_{mon}:単調水平載荷時の限 界変形, E_H:履歴エネルギー吸収能力, F_y:降伏強度, β: 係数である。これに対し, Bertero らは,以下の DI_{PA}の 問題点を指摘している。

- ・弾性応答の場合,損傷指標は0となるべきだが,DI_{PA}は0より大きい値になる。
- ・単調水平変形時に終局変形 u_{mon}に達するとき,損傷指 標は1.0 となるべきだが, DI_{PA}は1.0 を超える。

Bertero らはこれらの問題点を改良し,建物全体の損傷指標として DI₁および DI₂を次式により定義した。

 $DI_1 = [(1 - \alpha_1)(\mu - \mu_e)/(\mu_{mon} - 1)] + \alpha_1 (E_H/E_{Hmon})$ (2)

 $DI_2=[(1-\alpha_2)(\mu-\mu_e)/(\mu_{mon}-1)]+\alpha_2 (E_H/E_{Hmon})^{1/2}$ (3) ここで、 μ :変位塑性率、 μ_e :降伏時変形に対する最大弾 性変形の比、 μ_{mon} :単調水平載荷時の終局塑性率、 E_{Hmon} : 単調水平載荷時の最大エネルギー吸収能力、 α_1 、 α_2 :定 数である。なお、(3)式においてエネルギー項を平方根と している理由は、エネルギーを速度換算するためである。 履歴エネルギー E_H は次式によって速度に換算される⁷)。

 $E_{H}=MV_{H}^{2}/2$, $(V_{H}^{2}=\sqrt{2E_{H}/M})$ (4) ここで、 $V_{H}: 履歴エネルギーの速度換算値, M: 質量で$

ある。したがって、(3)式は次式のように表現できる。

 $DI_2=[(1-\alpha_2)(\mu-\mu_e)/(\mu_{mon}-1)]+\alpha_2(V_H/V_{Hmon})$ (5) ここで, $V_{Hmon}: E_{Hmon}の速度換算値である。$

3.2 損傷スペクトル作成手法

損傷スペクトル作成手法を図-2 に示す。まず,設計 用加速度応答スペクトルを強度低減係数 R で除し,固有 周期毎の降伏強度 F_yを算出する。強度低減係数 R は,米 国では R factor (日本における構造特性係数 D_sの逆数) と呼ばれ,構造物の靭性を表す。次に,得られた降伏強 度 F_yを用いて復元力特性を設定し,1自由度1質点系モ デルにおける地震応答解析を実施する。さらに,単調水 平載荷時の履歴エネルギー吸収量 E_{Hmon}を算出し,解析 結果に基づいて塑性率スペクトルおよび履歴エネルギー スペクトルを作成した後,最後にそれらを利用して損傷 スペクトルを作成する。

3.3 損傷スペクトル作成に関するパラメータの設定

損傷スペクトル作成する際に必要なパラメータは、① 設計用加速度応答スペクトル、②強度低減係数 R、③復 元力特性、④単調水平載荷時の終局塑性率 μ_{mon} である。 本節では、これらのパラメータの設定方法について検討 する。

3.3.1 設計用加速度応答スペクトル

設計用加速度応答スペクトルは、想定地震動に対する 弾性応答スペクトルであり、建物の降伏強度 Fyを決定す るために用いる。日本における設計上の想定地震動は、 設計法の改定に伴い随時変更されており、建物に適用さ れた設計法によって建物強度が異なると考えられる。そ のため、本研究では、1981年の建築基準法施行令改正以 降(新耐震基準)とそれ以前(旧耐震基準)を区別し、 降伏強度の算出法を変更する。具体的には、新耐震基準 で設計された建物に関しては、新耐震基準で用いられる 設計用加速度応答スペクトルを適用する。一方、旧耐震

基準における建物の設計では、中地震を想定した水平震 度 0.2 に対する許容応力度設計が行われており、設計用 加速度応答スペクトルが用いられていない。そのため、 旧耐震基準の建物に対しては、水平震度 0.2 を基準とし て、補正係数 λ を考慮した次式用いる。

 $F_v = 0.2W \times \lambda$

(6)

ここで,W:建物重量である。

3.3.2 強度低減係数 R

構造物の耐震性能はエネルギー吸収性能で表現でき, 弾性応答構造物と非弾性応答構造物で同等のエネルギー 吸収性能を有していれば,同等の耐震性能を持つという 考えがある。この考えに基づき,設計用加速度応答スペ クトルを降伏強度スペクトルに低減する強度低減係数 R を決定する。

Ishiyama ら⁸⁾は,既往の研究の多くが損傷を変形のみ で表現する塑性率評価型の強度低減係数に関するもので あるという点に着目し,累積損傷を考慮した強度低減係 数を提案している。本研究では,この累積損傷評価型の 強度低減係数 R を採用する。

累積損傷評価型の強度低減係数Rは次式により算出される。

 $R = \frac{\mu_{mon} - 1}{\Phi} + 1 \tag{7}$

ここで,μ_{mon}:単調水平載荷時終局塑性率,Φ:それぞれ 硬質,中間および軟弱地盤に対して定義される.

強度低減係数 R は,式中の Φ によって地盤条件の影響 を考慮する値であり,固有周期 T と単調水平載荷時終局 塑性率 μ_{mon} の関数で表現される。本研究では,K-NET お よび KiK-net の観測波を用いて地震応答解析を行うため, 観測地点の地盤種別を分類する必要がある。そこで,地 盤深さ 30m までの平均せん断波速度(AVS30)に基づく IBC2009⁹⁾を採用する (**表**-1)。なお,道路橋示方書¹⁰⁾ に基づく地盤分類との対応は,概ね**表**-1 に示すとおり である。また,K-NET のせん断波速度データが不足した 場合には,松岡ら¹¹⁾によって提案されたせん断波速度の 推定法に従って AVS30 を算出した。

3.3.3 復元力特性

Bertero らは、復元力特性に完全弾塑性(EPP)モデル を用いているが、このモデルは構造物の損傷にもかかわ らず、加力・除荷時の剛性が変化しないこと、小振幅繰 返しの場合には履歴エネルギー消費がないことなどから RC 構造物の復元力特性としては適当ではない。これに 対し、図-3に示す Cloughモデルは最大点指向型のモデ ルであり、除荷時剛性を損傷とともに低下させることが できる。このような特徴から、一般的に RC 構造物の復 元力特性として良く用いられるため、本研究では Clough モデルを復元力特性として用いた。なお、Cloughモデル の除荷時剛性は、塑性率に基づく劣化モデルとして次式 より求めた。

 $K_r = \mu_i^{-\beta} K_0$ (8) ここで、 K_r :除荷時剛性、 μ_i :塑性率、 β :除荷時剛性低 下係数(本研究では $\beta=0.78$ を適用)、 K_0 :初期剛性であ る。

3.3.4 単調水平載荷時終局塑性率 µmon

単調水平載荷時終局塑性率 µmon は,建物の靭性度合を 示す指標であり,単調荷重下で塑性率 µ=µmon となれば崩 壊を意味する。市之瀬ら¹²⁾は,曲げ降伏後にせん断破壊 する RC 部材における載荷履歴の影響を考察しており, 単調載荷の耐力低下点の変位が両側繰返し載荷の耐力低 下点の変位に比べて約2倍となる結果を得ている。また, 図-4に既存 RC 造校舎(旧耐震基準の校舎)における両側 繰返し載荷実験¹³⁾のベースシアー変形関係と損傷スペ クトル作成時に設定する復元力特性を示す。本研究では, 復元力特性の降伏点を最大耐力と初期剛性の交点として 求め,このときの塑性率µを1とする。その際,最大耐 力の8割まで耐力低下した時点の塑性率µは9.14となる。 そのため,市之瀬らの結果を参考にして,この実大実験 の試験体はµmon=18程度となると推定される。

3.3.5 各パラメータが損傷スペクトルに及ぼす影響

本項では,損傷スペクトル作成に必要な強度低減係数 R,復元力特性,単調載荷時終局塑性率 µmon がそれぞれ 損傷スペクトルにどのような影響を及ぼすかを検討する。

表-2に示すように Base モデルに対して,各パラメー タを変化させることで影響度合を確認する。Base モデル のパラメータは Bertero らが用いたものを使用している。 なお,設計用加速度応答スペクトルは,新耐震基準の応 答スペクトル,地震波は東北地方太平洋沖地震の際に K-NET:FKS003 で観測された EW 方向の記録を用いた。

表一1 地盤分類						
IBC2009	道路橋示方書					
Site Class	Soil Profile Name	Soil Shear Wave Velocity V _S (cm/s)	地盤種別			
А	Hard Rock	1524 <v<sub>S</v<sub>	第一種地盤			
В	Rock	762 <v<sub>S≦1524</v<sub>				
С	Very Dense Soil and Soft Rock	366 <v<sub>S≦762</v<sub>	_ 第二種地盤			
D	Stiff Soil Profile	183 <v<sub>S≦366</v<sub>				
E	Soft Soil Profile	V _s ≦183	第三種地盤			

図-5 に各パラメータを変化させた損傷スペクトルを 示す。復元力特性を変化させた Casel は、短周期および 0.5~1.0 秒程度の周期で Base モデルと大きく異なる値と なった。強度低減係数 R を変化させた Case2 は、Base モ デルのスペクトル形状とは大きく異なった。図-6 に (7) 式から算出した R と R=3.4 の一定値にした場合の固有周 期と R の関係を示す。図-6 より、R を一定値とした場 合と(7)式を用いた場合では強度低減係数に大きく差が 生じるため、降伏強度が大きく異なり、損傷スペクトル に大きな差が生じる。Case3 のように µmon を大きくした 場合、(2)、(3)式の変形項とエネルギー項の分母が大きく なり、損傷指標値 DI は小さくなる。そのため、スペク トル形状に大きな差はないが、DI が小さくなる。

4. 東北地方太平洋沖地震における地震被害調査

4.1 地震被害調査概要

東北地方太平洋沖地震により被災した観測点近傍に おける建物の損傷状況と地震応答解析より算出した損傷 スペクトルとの比較を通じて,損傷スペクトルの妥当性 を検証する。

被害調査地域は宇都宮(TCGH15),福島(FKS003),仙台 (MYG013)の周辺とし,RC造校舎計16校の被害調査を 行った。表-3 に耐震診断報告書より詳細なデータが入 手できた校舎の建物概要を示す。

調査項目は,損傷状況の目視調査と建物の1次固有周 期を推定するための常時微動計測の2つである。常時微 動計測では,サーボ型速度計を建物の1階に1つと屋上 に2つ設置した。サンプリング周波数は200Hzとし,15 分間計測を行った。計測したデータは40.96 秒の区間に 切り出し,フーリエスペクトルを求めて複数区間のアン サンブル平均値を計算した。1次固有周期は,屋上と1 階のフーリエスペクトル比が卓越する周期を桁行および 梁間方向で算出して求めた。

4.2 調査結果の一例

被害調査を実施した学校校舎を2つ取り上げて結果を 示す。1つ目は、南棟・西棟・中棟・北棟の4棟で構成 されており、南棟は表-3に示す建物Aに該当する。4 棟は、それぞれがExp.Jtを介して接続されており、西棟 のみRC造4階建であり、他棟はRC造3階建である。 いずれも1959~1963年に竣工した旧耐震基準の建物で ある。被害状況はいずれの棟も同程度であり、Exp.Jt部 や壁にひび割れが発生した他、受水槽や配管など建築設 備にも被害が発生した。これらの被害状況より、被災度 区分²⁾は小破と判断する。また、常時微動計測は南棟で 行い、1次固有周期は桁行方向で0.17秒,梁間方向で0.18 秒となった。この結果は、RC造の1次固有周期略算法 ¹⁴⁾であるT=0.015H(=0.16秒)と対応した。なお、建物

表-2 各 Case のパラメータ設定

表-3 被害調査建物概要

建物名	」 竣工年	階数	スパン数	長辺×短辺長さ(m)
Α	1963	3	13×2	54.0×9.5
В	1970	4	7×2	54.5×9.5
С	1974	4	10×4	54.5 × 19.0
D	1981年以降	4	5×5	43.9×31.3
E	1963	3	15×3	102.0 × 13.5
F	1968	3	14×2	63.0×9.5
G	1970	3	14×2	60.0×9.5
Н	1964	4	17×2	64.9 × 10.5
I	1972	3	23×2	104.5×9.5
J	1977	3	18×3	81.0 × 14.5
K	1974	4	20×3	90.0 × 17.0

高さHは当該校舎の耐震診断報告書に記載された値を用 いた。

2つ目は、北棟・南棟の2棟で構成されており、渡り 廊下を介して接続されている。いずれも1981年以降に竣 工された新耐震基準の建物である。北棟はRC造4階, 南棟は5階建である。被害状況は、両棟全体に微細なひ び割れが分布しており、柱に曲げひび割れや一部の柱の 柱脚に圧壊も見られた。被害区分は中破と判断する。ま た、常時微動計測は北棟で行い、周期は桁行方向で0.30 秒,梁間方向で0.27秒となった。だが、被害を被ってい るので、固有周期が長くなっている可能性がある。なお、 建物1層の階高を3~4mと仮定すると、略算法を用いて、 T=0.18~0.24秒と推定できる。以下、この学校の北棟を建 物Lとする。

4. 補正係数λの検討

旧耐震基準で設計された建物Aをファイバーモデルで モデル化し、プッシュオーバー解析を行うことによって 建物の降伏強度 Fyを求め、(6)式により係数 λ を求める。 なお、解析には汎用コード OpenSees¹⁵⁾を用いる。

5.1 解析モデルの概要

解析対象である建物 A は,桁行方向 13 スパン,梁間 方向 2 スパンであり,垂壁や腰壁,一部袖壁が取り付い ている形状である。解析に必要なデータは,全て耐震診 断報告書より取得した。

図-7 に要素分割図および解析モデルを示す。柱およ び梁はファイバーモデル,スラブはトラス材を用いてモ デル化し,剛床を仮定した。雑壁は曲げ耐力に貢献する と考え,梁や柱の断面に雑壁の断面を含めてモデル化し た。境界条件は柱脚を完全固定とした。柱梁接合部およ び垂壁・腰壁が取り付く柱については,壁のフェイス位 置まで弾性体とした。腰壁・垂壁が取りつく柱に関して は,せん断余裕度が1以下となる場合にせん断バネ¹⁶) を挿入した。

材料構成則を図-8 に示す。コンクリートは引張抵抗 を考慮しない材料モデルを適用した。鉄筋は降伏値を折 点とするバイリニアモデルを適用し,降伏後の2次剛性 は初期剛性の1/100とした。

自重を各層の柱頭に負荷した後,桁行方向に加力を行い,荷重制御によるプッシュオーバー解析を行った。なお,荷重はAi分布を仮定した。

以降の検討においては,解析モデルにおける雑壁の有 無をパラメータ(Case1:ラーメン構造, Case2:ラーメ ン+雑壁)とする。

5.2 解析結果および補正係数λの検討

図-9 にベースシアー層間変形角関係を示す。Casel の耐力は約 9500kN となった。この結果は、診断結果に おけるベースシア耐力 8749.6kN と概ね対応した。これは、 耐震診断では腰壁・垂壁の影響を耐力に反映させていな いためである。一方、雑壁を考慮した Case2 の場合、最 大耐力は約 15800kN となり、Casel に比べて非常に大き い値となった。解析によって得られた建物 A の耐力値を (6)式に代入し、補正係数 λ を算出した結果、Casel では λ=2.41、Case2 では λ=4.01 となった。

ここで,3.3.4 で示した既存 RC 造校舎の実大破壊実験 結果を用いて,実験結果の履歴エネルギー量と最大耐力 を降伏強度として設定した復元力特性(Clough モデル) を用いた1質点系モデルの解析結果より得られる履歴エ ネルギー量を比較する。なお,履歴エネルギー量は,実 験結果の最大変形まで考慮した。実験結果の履歴エネル ギー量が433kNm であるのに対し,解析結果より得られ た履歴エネルギー吸収量は480kNm となり,実験結果を 上回った。そこで,実験結果と復元力特性の履歴エネル ギー量が等しくなるような修正係数を導入する。復元力 特性の降伏強度を変化させて履歴エネルギー量を算出し た結果,修正係数として0.83 が得られた。よって,前述 した係数 λ に修正係数を乗じた結果, Casel の場合 λ =2.00, Case2 の場合 λ=3.33 となった。

6. 実被害状況と損傷スペクトルの対応

まず、旧耐震基準で設計された建物 A を対象として、

被害状況と損傷スペクトルの対応を検討する。建物Aは, 梁間方向は耐震壁が多く,全ての階で $I_s=1.2$ 以上と耐震 性が高く,南北にほぼ平行に位置している。一方,桁行 方向は1階で $I_s=0.37$ と最も低く,2階および3階の I_s 値はそれぞれ0.49,0.65と目標耐震性能 $I_{so}=0.7$ を満たし ていない。したがって,建物Aの損傷は桁行方向に入力 した地震動によって生じる可能性が高いと考えられるた め,EW方向の地震波を使用する。建物Aは旧耐震基準 の建物であるため,先に求めた $\lambda=3.33$ (Case2)を用い て降伏強度 F_y を設定すると,(6)式から $F_y=0.66W$ となる。 なお,耐震診断より,1層の桁行方向に対する累積強度 指標 C_t は0.44となり,0.66を下回る結果となった。耐 震診断では,建物の性能を評価する際に安全側の配慮が あるため,このような差が生じたと考えられる。また,

 μ_{mon} =18 とした。減衰は降伏による剛性低下に応じて減 衰を小さくする瞬間剛性比例型とし,減衰定数は Bertero らと同様に 5%を用いた。作成した損傷スペクトルを図 -10に示す。建物 A の被災度は小破と区分されるため, 損傷指標 DI は, $\mathbf{a}-2$ に示す Park らの損傷カテゴリー より 0.1~0.25 に対応する。図-10 より,建物 A の固有 周期 0.17 秒において, DI₁=0.18, DI₂=0.19 となり,損傷 スペクトルは実被害と良い対応を示した。次に,新耐震 基準の建物である建物 L について検討する。建物 L は新 耐震新基準の建物であるため,設計用加速度応答スペク

トルを用いて降伏強度を設定する。また、地震波は、EW および NS の両方向使用し、各方向について損傷スペク トルを作成する。新耐震基準の建物は旧耐震基準の建物 (建物 A や実大実験の校舎)と比較して、せん断補強筋量 が多く、 μ_{mon} も大きくなると考えられる。そのため、 μ_{mon} =20 と設定した。作成した損傷スペクトルを図-11 に示 す。建物の被災度は中破に区分されるため、 DI は 0.25~0.4 に対応する。図-11 より、建物 L の固有周期 0.18~0.24 秒において、EW および NS の地震波における DI₁および DI₂はいずれも 1.0 以上となり、崩壊を示す値 となった。

損傷指標値が実被害状況を過大評価する要因の1つと して、余剰強度¹⁷⁾の影響が考えられる。余剰強度とは、 設計で想定している建物強度と実強度との差である。余 剰強度は、設計段階で設定する材料強度と実強度の違い、 非構造部材の影響、拘束効果の影響および様々な安全係 数の影響が要因として考えられ、近年では、いくつかの 値が提案されており、例えばカナダでは1.67 が導入され ている¹⁸⁾。旧耐震基準の建物の損傷評価においては、係 数λを算出する過程において建物の降伏強度 Fy を解析 的に評価するため、自動的に余剰強度の影響が組み込ま れる。一方、新耐震基準の建物については、設計用加速 度スペクトルを用いて建物の降伏強度 Fy を求めるため、 余剰強度に関する検討が今後必要となる。

7. まとめ

- Bertero らが提案した損傷スペクトルを用いた損傷 評価手法における各種パラメータについて検討し、 それらの設定方法を確立した。ただし、μ_{mon}に関し ては今後の検討が必要である。
- (2) 旧耐震基準で設計された学校校舎に対して損傷スペクトルにより求めた損傷指標値は、実被害状況と良く対応した。
- (3) 新耐震基準で設計された学校校舎に対して損傷スペクトルにより求めた損傷指標値は、実被害状況を 過大評価した。その原因として、余剰強度の影響が 考えられる。

謝辞

地震被害調査において,仙台市,福島市および宇都宮市 の教育委員会,市役所関係者および学校管理者の協力を 得た。ここに謝意を表します。

参考文献

- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・同解説,2001.10
- 日本建築防災協会:震災建築物の被災度区分判定基 準および復旧技術指針,2001.9
- 日本建築学会:鉄筋コンクリート造建物の耐震性能 評価指針(案)・同解説,2004.1
- Bozorgnia, Y. and Bertero, V. V.: Damage Spectra: Characteristics and Applications to Seismic Risk Reduction, Journal of Structural Engineering, ASCE, pp.1330 1340, 2003.10
- 防災科学研究所:強震ネットワーク K-NET および KiK-net
- Park, Y. J., Ang, A.H. S. Mechanistic Seismic Damage Model for Reinforced Concrete, Journal of Structural Engineering, ASCE, Vol.111, No.4, pp722-739, 1985.4
- 秋山 宏:エネルギーの釣合に基づく建築物の耐震 設計,技報堂出版,1999
- Philip DE GUZMAN, Mitsumasa MIDORIKAWA, Tetsuhiro ASARI, Yuji ISHIYAMA: EVALUATION OF SEISMIC DESIGN STRENGTH REDUCTION FACTOR CONSIDERING CUMULATIVE DAMAGE AND SITE CONDITIONS, 日本建築学会構造系論文 集, No.607, pp.73-80, 2006.
- International Code Council, Inc: International Building Code, 2009.
- 10) 日本道路協会:道路示方書・同解説, 耐震設計編, 2002.
- 松岡昌,若松加寿江,藤本一雄,翠川三郎:日本全 国地形・地盤分類メッシュマップを利用した地盤の 平均 S 波速度分布の推定,土木学会論文集, No.794/I-72, pp.239-251, 2005.
- 12) 梅村恒,市之瀬敏勝,松澤敦行:載荷履歴と中子筋 の有無が RC 部材の復元力特性に及ぼす影響,コン クリート工学年次論文集, Vol.25, No.2, 2003.
- (満内基ほか:制振補強された実在鉄筋コンクリート 造校舎の補強効果に関する実験的研究,日本建築学 会構造系論文集,第 592 号, pp.145-152, 2005.6
- 荒川利治ほか:実測資料に基づくコンクリート系建 物の減衰性状,日本建築学会大会学術講演梗概集, pp.1041-1042,1998.
- 15) Open System for Earthquake Engineering Simulation http://opensees.berkeley.edu/index.php
- 16) K.Tajima, N.Shirai, E.Ozaki, K.Imai: FE Modeling and Fiber Modeling for RC Column failing in Shear after Flexural Yielding, Computational Modeling of Concrete Structures, 737-748, 2010
- 17) Park R. 1996. Explicit incorporation of element and structure overstrength in the design process. In proceedings 11th WCEE. IAEE, Acapulco, Mexico. Paper 2130.
- CCBFC(Canadian Commission on Building and Fire Code). 1995. National building code of Canada 1995. National Research Council of Canada, Ottawa, Ontario.